1
|
Farzamfar P, Heirani A, Amiri E, Sedighi M, da Silva Machado DG. The Effect of Transcranial Direct Current Stimulation on M1 with and without Mirror Visual Feedback on Range of Motion and Hand Grip Strength of the Affected Upper Limb in Children with Spastic Hemiplegic Cerebral Palsy. IRANIAN JOURNAL OF CHILD NEUROLOGY 2024; 18:93-106. [PMID: 39478944 PMCID: PMC11520274 DOI: 10.22037/ijcn.v18i4.45110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/21/2024] [Indexed: 11/02/2024]
Abstract
Objectives This study investigated the effects of transcranial direct current stimulation (tDCS) before and during the mirror visual feedback (MVF) on hand grip strength (HGS) and range of motion of the affected hand in children with spastic hemiplegia cerebral palsy (SHCP). Materials & Methods Twelve children with SHCP participated in this randomized, crossover, and double-blind study. They were randomly exposed to one of four intervention conditions, including 1) a-tDCS-offline, 2) s-tDCS-offline, 3) a-tDCS-online, and 4) s-tDCS-online, with a one-week interval. Participants in the online condition received either anodal or sham tDCS during MVF, while those in the offline condition received tDCS before performing MVF. The tDCS was applied over the M1 area of the affected hemisphere for 20 minutes at 1 mA intensity. The HGS and range of motion of the wrist and elbow (ROM-W and ROM-E) of the affected limb were measured before (pre) and immediately after (post) interventions in each session. Results The results showed that the HGS was significantly higher under a-tDCS-offline (p=0.001), s-tDCS-offline (p=0.004), and s-tDCS-online (p=0.005) compared to the a-tDCS-online. Moreover, the ROM-W was significantly higher under a-tDCS-offline (p=0.034), s-tDCS-offline (0.011), and s-tDCS-online (p=0.027) compared to the a-tDCS-online. Eventually, the ROM-E was significantly higher under a-tDCS-offline, s-tDCS-offline, and s-tDCS-online compared to the a-tDCS-online (p ˂0.001; p ˂0.001; p=0.01, respectively). Conclusion The results might have practical implications regarding the timing of the application of tDCS in conjunction with MVF in children with SHCP.
Collapse
Affiliation(s)
- Pegah Farzamfar
- Department Motor behavior and Corrective Exercises. Faculty of Sport Sciences. Razi University, Kermanshah, Iran
| | - Ali Heirani
- Department Motor behavior and Corrective Exercises. Faculty of Sport Sciences. Razi University, Kermanshah, Iran
| | - Ehsan Amiri
- Exercise Metabolism and Performance lab (EMPL), Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | - Mustafa Sedighi
- Department of Pediatric Neurology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Daniel Gomes da Silva Machado
- Research Group in Neuroscience of Human Movement (NeuroMove), Department of Physical Education, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| |
Collapse
|
2
|
Lapenta OM, Rêgo GG, Boggio PS. Transcranial electrical stimulation for procedural learning and rehabilitation. Neurobiol Learn Mem 2024; 213:107958. [PMID: 38971460 DOI: 10.1016/j.nlm.2024.107958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
Procedural learning is the acquisition of motor and non-motor skills through a gradual process that increases with practice. Impairments in procedural learning have been consistently demonstrated in neurodevelopmental, neurodegenerative, and neuropsychiatric disorders. Considering that noninvasive brain stimulation modulates brain activity and boosts neuroplastic mechanisms, we reviewed the effects of coupling transcranial direct current stimulation (tDCS) with training methods for motor and non-motor procedural learning to explore tDCS potential use as a tool for enhancing implicit learning in healthy and clinical populations. The review covers tDCS effects over i. motor procedural learning, from basic to complex activities; ii. non-motor procedural learning; iii. procedural rehabilitation in several clinical populations. We conclude that targeting the primary motor cortex and prefrontal areas seems the most promising for motor and non-motor procedural learning, respectively. For procedural rehabilitation, the use of tDCS is yet at an early stage but some effectiveness has been reported for implicit motor and memory learning. Still, systematic comparisons of stimulation parameters and target areas are recommended for maximising the effectiveness of tDCS and its robustness for procedural rehabilitation.
Collapse
Affiliation(s)
- Olivia Morgan Lapenta
- Psychological Neuroscience Laboratory, Psychology Research Center, School of Psychology, University of Minho - Rua da Universidade, 4710-057 Braga, Portugal.
| | - Gabriel Gaudencio Rêgo
- Social and Cognitive Neuroscience Laboratory, Mackenzie Presbyterian University - Rua Piauí, 181, 01241-001 São Paulo, Brazil; National Institute of Science and Technology on Social and Affective Neuroscience (INCT-SANI), São Paulo, Brazil
| | - Paulo Sérgio Boggio
- Social and Cognitive Neuroscience Laboratory, Mackenzie Presbyterian University - Rua Piauí, 181, 01241-001 São Paulo, Brazil; National Institute of Science and Technology on Social and Affective Neuroscience (INCT-SANI), São Paulo, Brazil
| |
Collapse
|
3
|
Lefaucheur JP, Moro E, Shirota Y, Ugawa Y, Grippe T, Chen R, Benninger DH, Jabbari B, Attaripour S, Hallett M, Paulus W. Clinical neurophysiology in the treatment of movement disorders: IFCN handbook chapter. Clin Neurophysiol 2024; 164:57-99. [PMID: 38852434 PMCID: PMC11418354 DOI: 10.1016/j.clinph.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/02/2024] [Accepted: 05/15/2024] [Indexed: 06/11/2024]
Abstract
In this review, different aspects of the use of clinical neurophysiology techniques for the treatment of movement disorders are addressed. First of all, these techniques can be used to guide neuromodulation techniques or to perform therapeutic neuromodulation as such. Neuromodulation includes invasive techniques based on the surgical implantation of electrodes and a pulse generator, such as deep brain stimulation (DBS) or spinal cord stimulation (SCS) on the one hand, and non-invasive techniques aimed at modulating or even lesioning neural structures by transcranial application. Movement disorders are one of the main areas of indication for the various neuromodulation techniques. This review focuses on the following techniques: DBS, repetitive transcranial magnetic stimulation (rTMS), low-intensity transcranial electrical stimulation, including transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS), and focused ultrasound (FUS), including high-intensity magnetic resonance-guided FUS (MRgFUS), and pulsed mode low-intensity transcranial FUS stimulation (TUS). The main clinical conditions in which neuromodulation has proven its efficacy are Parkinson's disease, dystonia, and essential tremor, mainly using DBS or MRgFUS. There is also some evidence for Tourette syndrome (DBS), Huntington's disease (DBS), cerebellar ataxia (tDCS), and axial signs (SCS) and depression (rTMS) in PD. The development of non-invasive transcranial neuromodulation techniques is limited by the short-term clinical impact of these techniques, especially rTMS, in the context of very chronic diseases. However, at-home use (tDCS) or current advances in the design of closed-loop stimulation (tACS) may open new perspectives for the application of these techniques in patients, favored by their easier use and lower rate of adverse effects compared to invasive or lesioning methods. Finally, this review summarizes the evidence for keeping the use of electromyography to optimize the identification of muscles to be treated with botulinum toxin injection, which is indicated and widely performed for the treatment of various movement disorders.
Collapse
Affiliation(s)
- Jean-Pascal Lefaucheur
- Clinical Neurophysiology Unit, Henri Mondor University Hospital, AP-HP, Créteil, France; EA 4391, ENT Team, Paris-Est Créteil University, Créteil, France.
| | - Elena Moro
- Grenoble Alpes University, Division of Neurology, CHU of Grenoble, Grenoble Institute of Neuroscience, Grenoble, France
| | - Yuichiro Shirota
- Department of Neurology, Division of Neuroscience, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Talyta Grippe
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada; Neuroscience Graduate Program, Federal University of Minas Gerais, Belo Horizonte, Brazil; Krembil Brain Institute, Toronto, Ontario, Canada
| | - Robert Chen
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada; Krembil Brain Institute, Toronto, Ontario, Canada
| | - David H Benninger
- Service of Neurology, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Bahman Jabbari
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Sanaz Attaripour
- Department of Neurology, University of California, Irvine, CA, USA
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Walter Paulus
- Department of Neurology, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
4
|
Firouzi M, Baetens K, Swinnen E, Baeken C, Van Overwalle F, Deroost N. Does transcranial direct current stimulation of the primary motor cortex improve implicit motor sequence learning in Parkinson's disease? J Neurosci Res 2024; 102:e25311. [PMID: 38400585 DOI: 10.1002/jnr.25311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024]
Abstract
Implicit motor sequence learning (IMSL) is a cognitive function that is known to be associated with impaired motor function in Parkinson's disease (PD). We previously reported positive effects of transcranial direct current stimulation (tDCS) over the primary motor cortex (M1) on IMSL in 11 individuals with PD with mild cognitive impairments (MCI), with the largest effects occurring during reacquisition. In the present study, we included 35 individuals with PD, with (n = 15) and without MCI (n = 20), and 35 age- and sex-matched controls without PD, with (n = 13) and without MCI (n = 22). We used mixed-effects models to analyze anodal M1 tDCS effects on acquisition (during tDCS), short-term (five minutes post-tDCS) and long-term reacquisition (one-week post-tDCS) of general and sequence-specific learning skills, as measured by the serial reaction time task. At long-term reacquisition, anodal tDCS resulted in smaller general learning effects compared to sham, only in the PD group, p = .018, possibly due to floor effects. Anodal tDCS facilitated the acquisition of sequence-specific learning (M = 54.26 ms) compared to sham (M = 38.98 ms), p = .003, regardless of group (PD/controls). Further analyses revealed that this positive effect was the largest in the PD-MCI group (anodal: M = 69.07 ms; sham: M = 24.33 ms), p < .001. Although the observed effect did not exceed the stimulation period, this single-session tDCS study confirms the potential of tDCS to enhance IMSL, with the largest effects observed in patients with lower cognitive status. These findings add to the body of evidence that anodal tDCS can beneficially modulate the abnormal basal ganglia network activity that occurs in PD.
Collapse
Affiliation(s)
- Mahyar Firouzi
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Rehabilitation Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Vrije Universiteit Brussel, Jette, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Kris Baetens
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Eva Swinnen
- Rehabilitation Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Vrije Universiteit Brussel, Jette, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Chris Baeken
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
- Department of Psychiatry and Medical Psychology, Ghent University, University Hospital Ghent (UZ Ghent), Ghent, Belgium
- Department of Psychiatry, Vrije Universiteit Brussel (VUB), Faculty of Medicine and Pharmacy, University Hospital Brussel (UZ Brussel), Brussels, Belgium
| | - Frank Van Overwalle
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Natacha Deroost
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| |
Collapse
|
5
|
Parreira RB, Oliveira CS. Improvement of motor control in neurological patients through motor evoked potential changes induced by transcranial direct current stimulation therapy: A meta-analysis study. Gait Posture 2023; 106:53-64. [PMID: 37660514 DOI: 10.1016/j.gaitpost.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 06/14/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) seems to facilitate and/or inhibit neural activity and improve motor function in neurological patients. However, it is important to confirm such improvements as well as determine the association between neurophysiological changes and the enhancement of motor control. RESEARCH QUESTION Does the improvement of motor control in neurological patients after transcranial direct current stimulation translate into changes in the motor evoked potential? METHODS A systematic electronic search strategy was employed to identify studies indexed in the PubMed, BIREME, and COCHRANE databases using a combination of search terms adapted to each database: transcranial direct current stimulation; evoked potential motor; and motor control. Relevant data was extracted from each selected article and methodological quality was assessed using the PEDro scale. Standard mean differences with 95% confidence intervals were pooled using a random-effects model. Moreover, standard methods were employed for assessment of the heterogeneity of the studies. RESULTS Thirteen articles were included in this review. Anodal tDCS was found to increase the amplitude and diminish the latency of the MEP, which correlated positively with improvements in motor control. However, the improvement in MEP did not persist over time. SIGNIFICANCE Despite the paucity of studies, positive effects are found when combining anodal tDCS and a therapeutic intervention, such as an improvement in MEP and better motor control in neurological patients. Future studies should include neurophysiological measures other than MEP and consider a homogenous analysis.
Collapse
Affiliation(s)
- Rodolfo Borges Parreira
- Health Sciences Program, Faculty of Medical Sciences of Santa Casa de Sao Paulo, Doutor Cesário Motta Júnior st. #61, zip code 01221-020, São Paulo, SP, Brazil; PostureLab, 20 rue du rendez-vous, 75012 Paris, France; Universidade Evangelica de Goias, Universitária av. 3,5 - Cidade Universitária, zip code: 75083-515, Anápolis, GO, Brazil.
| | - Claudia Santos Oliveira
- Health Sciences Program, Faculty of Medical Sciences of Santa Casa de Sao Paulo, Doutor Cesário Motta Júnior st. #61, zip code 01221-020, São Paulo, SP, Brazil; Universidade Evangelica de Goias, Universitária av. 3,5 - Cidade Universitária, zip code: 75083-515, Anápolis, GO, Brazil.
| |
Collapse
|
6
|
Byczynski G, Vanneste S. Modulating motor learning with brain stimulation: Stage-specific perspectives for transcranial and transcutaneous delivery. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110766. [PMID: 37044280 DOI: 10.1016/j.pnpbp.2023.110766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/22/2023] [Accepted: 04/09/2023] [Indexed: 04/14/2023]
Abstract
Brain stimulation has been used in motor learning studies with success in improving aspects of task learning, retention, and consolidation. Using a variety of motor tasks and stimulus parameters, researchers have produced an array of literature supporting the efficacy of brain stimulation to modulate motor task learning. We discuss the use of transcranial direct current stimulation, transcranial alternating current stimulation, and peripheral nerve stimulation to modulate motor learning. In a novel approach, we review literature of motor learning modulation in terms of learning stage, categorizing learning into acquisition, consolidation, and retention. We endeavour to provide a current perspective on the stage-specific mechanism behind modulation of motor task learning, to give insight into how electrical stimulation improves or hinders motor learning, and how mechanisms differ depending on learning stage. Offering a look into the effectiveness of peripheral nerve stimulation for motor learning, we include potential mechanisms and overlapping features with transcranial stimulation. We conclude by exploring how peripheral stimulation may contribute to the results of studies that employed brain stimulation intracranially.
Collapse
Affiliation(s)
- Gabriel Byczynski
- Lab for Clinical and Integrative Neuroscience, Trinity College Institute for Neuroscience, School of Psychology, Trinity College Dublin, D02 PN40, Ireland; Global Brain Health Institute, Trinity College Dublin, D02 PN40, Ireland
| | - Sven Vanneste
- Lab for Clinical and Integrative Neuroscience, Trinity College Institute for Neuroscience, School of Psychology, Trinity College Dublin, D02 PN40, Ireland; School of Psychology, Trinity College Institute for Neuroscience, School of Psychology, Trinity College Dublin, D02 PN40, Ireland; Global Brain Health Institute, Trinity College Dublin, D02 PN40, Ireland.
| |
Collapse
|
7
|
Shimizu Y, Tanikawa M, Horiba M, Sahashi K, Kawashima S, Kandori A, Yamanaka T, Nishikawa Y, Matsukawa N, Ueki Y, Mase M. Clinical utility of paced finger tapping assessment in idiopathic normal pressure hydrocephalus. Front Hum Neurosci 2023; 17:1109670. [PMID: 36908708 PMCID: PMC9996087 DOI: 10.3389/fnhum.2023.1109670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Background The Finger Tapping (F-T) test is useful for assessing motor function of the upper limbs in patients with idiopathic normal pressure hydrocephalus (iNPH). However, quantitative evaluation of F-T for iNPH has not yet been established. The purpose of this study was to investigate the usefulness of the quantitative F-T test and optimal measurement conditions as a motor evaluation and screening test for iNPH. Methods Sixteen age-matched healthy controls (mean age 73 ± 5 years; 7/16 male) and fifteen participants with a diagnosis of definitive iNPH (mean age 76 ± 5 years; 8/15 male) completed the study (mean ± standard deviation). F-T performance of the index finger and thumb was quantified using a magnetic sensing device. The performance of repetitive F-T by participants was recorded in both not timing-regulated and timing-regulated conditions. The mean value of the maximum amplitude of F-T was defined as M-Amplitude, and the mean value of the maximum velocity of closure of F-T was defined as cl-Velocity. Results Finger Tapping in the iNPH group, with or without timing control, showed a decrease in M-Amplitude and cl-Velocity compared to the control group. We found the only paced F-T with 2.0 Hz auditory stimuli was found to improve both M-Amplitude and cl-Velocity after shunt surgery. Conclusion The quantitative assessment of F-T with auditory stimuli at the rate of 2.0 Hz may be a useful and potentially supplemental screening method for motor assessment in patients with iNPH.
Collapse
Affiliation(s)
- Yoko Shimizu
- Department of Rehabilitation Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,Department of Neurosurgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Motoki Tanikawa
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Mitsuya Horiba
- Department of Rehabilitation Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kento Sahashi
- Department of Rehabilitation Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shoji Kawashima
- Department of Neurology and Neuroscience, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akihiko Kandori
- Hitachi, Ltd., Research and Development Group, Center for Exploratory Research, Tokyo, Japan
| | - Tomoyasu Yamanaka
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yusuke Nishikawa
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Noriyuki Matsukawa
- Department of Neurology and Neuroscience, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yoshino Ueki
- Department of Rehabilitation Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Mitsuhito Mase
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
8
|
Pei G, Liu X, Huang Q, Shi Z, Wang L, Suo D, Funahashi S, Wu J, Zhang J, Fang B. Characterizing cortical responses to short-term multidisciplinary intensive rehabilitation treatment in patients with Parkinson’s disease: A transcranial magnetic stimulation and electroencephalography study. Front Aging Neurosci 2022; 14:1045073. [PMID: 36408100 PMCID: PMC9669794 DOI: 10.3389/fnagi.2022.1045073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Combined transcranial magnetic stimulation and electroencephalography (TMS-EEG) is a powerful non-invasive tool for qualifying the neurophysiological effects of interventions by recording TMS-induced cortical activation with high temporal resolution and generates reproducible and reliable waves of activity without participant cooperation. Cortical dysfunction contributes to the pathogenesis of the clinical symptoms of Parkinson’s disease (PD). Here, we examined changes in cortical activity in patients with PD following multidisciplinary intensive rehabilitation treatment (MIRT). Forty-eight patients with PD received 2 weeks of MIRT. The cortical response was examined following single-pulse TMS over the primary motor cortex by 64-channel EEG, and clinical symptoms were assessed before and after MIRT. TMS-evoked potentials were quantified by the global mean field power, as well as oscillatory power in theta, alpha, beta, and gamma bands, and their clinical correlations were calculated. After MIRT, motor and non-motor symptoms improved in 22 responders, and only non-motor function was enhanced in 26 non-responders. Primary motor cortex stimulation reduced global mean field power amplitudes in responders but not significantly in non-responders. Oscillations exhibited attenuated power in the theta, beta, and gamma bands in responders but only reduced gamma power in non-responders. Associations were observed between beta oscillations and motor function and between gamma oscillations and non-motor symptoms. Our results suggest that motor function enhancement by MIRT may be due to beta oscillatory power modulation and that alterations in cortical plasticity in the primary motor cortex contribute to PD recovery.
Collapse
Affiliation(s)
- Guangying Pei
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xinting Liu
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Qiwei Huang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Zhongyan Shi
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Li Wang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Dingjie Suo
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Shintaro Funahashi
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China
| | - Jinglong Wu
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Jian Zhang
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
- Jian Zhang,
| | - Boyan Fang
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
- *Correspondence: Boyan Fang,
| |
Collapse
|
9
|
Siew-Pin Leuk J, Yow KE, Zi-Xin Tan C, Hendy AM, Kar-Wing Tan M, Hock-Beng Ng T, Teo WP. A meta-analytical review of transcranial direct current stimulation parameters on upper limb motor learning in healthy older adults and people with Parkinson's disease. Rev Neurosci 2022; 34:325-348. [PMID: 36138560 DOI: 10.1515/revneuro-2022-0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/22/2022] [Indexed: 11/15/2022]
Abstract
Current literature lacks consolidated evidence for the impact of stimulation parameters on the effects of transcranial direct current stimulation (tDCS) in enhancing upper limb motor learning. Hence, we aim to synthesise available methodologies and results to guide future research on the usage of tDCS on upper limb motor learning, specifically in older adults and Parkinson's disease (PD). Thirty-two studies (Healthy older adults, N = 526, M = 67.25, SD = 4.30 years; PD, N = 216, M = 66.62, SD = 6.25 years) were included in the meta-analysis. All included studies consisted of active and sham protocols. Random effect meta-analyses were conducted for (i) subjects (healthy older adults and PD); (ii) intensity (1.0, 1.5, 2 mA); (iii) electrode montage (unilateral anodal, bilateral anodal, unilateral cathodal); (iv) stimulation site (cerebellum, frontal, motor, premotor, SMA, somatosensory); (v) protocol (online, offline). Significant tDCS effect on motor learning was reported for both populations, intensity 1.0 and 2.0 mA, unilateral anodal and cathodal stimulation, stimulation site of the motor and premotor cortex, and both online and offline protocols. Regression showed no significant relationship between tDCS effects and density. The efficacy of tDCS is also not affected by the number of sessions. However, studies that reported only single session tDCS found significant negative association between duration with motor learning outcomes. Our findings suggest that different stimulation parameters enhanced upper limb motor learning in older adults and PD. Future research should combine tDCS with neuroimaging techniques to help with optimisation of the stimulation parameters, considering the type of task and population.
Collapse
Affiliation(s)
- Jessie Siew-Pin Leuk
- Physical Education and Sports Science (PESS) Academic Group, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
| | - Kai-En Yow
- Physical Education and Sports Science (PESS) Academic Group, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
| | - Clenyce Zi-Xin Tan
- Physical Education and Sports Science (PESS) Academic Group, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
| | - Ashlee M Hendy
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences (SENS), Deakin University, 221 Burwood Highway, Burwood, VIC 3125, Australia
| | - Mika Kar-Wing Tan
- Physical Education and Sports Science (PESS) Academic Group, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
| | - Tommy Hock-Beng Ng
- Physical Education and Sports Science (PESS) Academic Group, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
| | - Wei-Peng Teo
- Physical Education and Sports Science (PESS) Academic Group, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
| |
Collapse
|
10
|
Fujikawa J, Morigaki R, Yamamoto N, Oda T, Nakanishi H, Izumi Y, Takagi Y. Therapeutic Devices for Motor Symptoms in Parkinson’s Disease: Current Progress and a Systematic Review of Recent Randomized Controlled Trials. Front Aging Neurosci 2022; 14:807909. [PMID: 35462692 PMCID: PMC9020378 DOI: 10.3389/fnagi.2022.807909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/14/2022] [Indexed: 11/29/2022] Open
Abstract
Background Pharmacotherapy is the first-line treatment option for Parkinson’s disease, and levodopa is considered the most effective drug for managing motor symptoms. However, side effects such as motor fluctuation and dyskinesia have been associated with levodopa treatment. For these conditions, alternative therapies, including invasive and non-invasive medical devices, may be helpful. This review sheds light on current progress in the development of devices to alleviate motor symptoms in Parkinson’s disease. Methods We first conducted a narrative literature review to obtain an overview of current invasive and non-invasive medical devices and thereafter performed a systematic review of recent randomized controlled trials (RCTs) of these devices. Results Our review revealed different characteristics of each device and their effectiveness for motor symptoms. Although invasive medical devices are usually highly effective, surgical procedures can be burdensome for patients and have serious side effects. In contrast, non-pharmacological/non-surgical devices have fewer complications. RCTs of non-invasive devices, especially non-invasive brain stimulation and mechanical peripheral stimulation devices, have proven effectiveness on motor symptoms. Nearly no non-invasive devices have yet received Food and Drug Administration certification or a CE mark. Conclusion Invasive and non-invasive medical devices have unique characteristics, and several RCTs have been conducted for each device. Invasive devices are more effective, while non-invasive devices are less effective and have lower hurdles and risks. It is important to understand the characteristics of each device and capitalize on these.
Collapse
Affiliation(s)
- Joji Fujikawa
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Ryoma Morigaki
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
- *Correspondence: Ryoma Morigaki,
| | - Nobuaki Yamamoto
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
- Department of Neurology, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Teruo Oda
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Hiroshi Nakanishi
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Yuishin Izumi
- Department of Neurology, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Yasushi Takagi
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| |
Collapse
|
11
|
A Novel Highly Durable Carbon/Silver/Silver Chloride Composite Electrode for High-Definition Transcranial Direct Current Stimulation. NANOMATERIALS 2021; 11:nano11081962. [PMID: 34443793 PMCID: PMC8400871 DOI: 10.3390/nano11081962] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 11/29/2022]
Abstract
High-definition transcranial direct current stimulation (HD-tDCS) is a promising non-invasive neuromodulation technique, which has been widely used in the clinical intervention and treatment of neurological or psychiatric disorders. Sintered Ag/AgCl electrode has become a preferred candidate for HD-tDCS, but its service life is very short, especially for long-term anodal stimulation. To address this issue, a novel highly durable conductive carbon/silver/silver chloride composite (C/Ag/AgCl) electrode was fabricated by a facile cold rolling method. The important parameters were systematically optimized, including the conductive enhancer, the particle size of Ag powder, the C:Ag:PTFE ratio, the saline concentration, and the active substance loading. The CNT/Ag/AgCl-721 electrode demonstrated excellent specific capacity and cycling performance. Both constant current anodal polarization and simulated tDCS measurement demonstrated that the service life of the CNT/Ag/AgCl-721 electrodes was 15-16 times of that of sintered Ag/AgCl electrodes. The much longer service life can be attributed to the formation of the three-dimensional interpenetrating conductive network with CNT doping, which can maintain a good conductivity and cycling performance even if excessive non-conductive AgCl is accumulated on the surface during long-term anodal stimulation. Considering their low cost, long service life, and good skin tolerance, the proposed CNT/Ag/AgCl electrodes have shown promising application prospects in HD-tDCS, especially for daily life scenarios.
Collapse
|
12
|
Firouzi M, Baetens K, Swinnen E, Baeken C, Van Overwalle F, Deroost N. Registered report: Does transcranial direct current stimulation of the primary motor cortex improve implicit motor sequence learning in Parkinson's disease? J Neurosci Res 2021; 99:2406-2415. [PMID: 34181300 DOI: 10.1002/jnr.24908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 03/10/2021] [Accepted: 05/06/2021] [Indexed: 11/10/2022]
Abstract
Implicit motor sequence learning (IMSL) is a cognitive function that is known to be directly associated with impaired motor function in Parkinson's disease (PD). Research on healthy young participants shows the potential for transcranial direct current stimulation (tDCS), a noninvasive brain stimulation technique, over the primary motor cortex (M1) to enhance IMSL. tDCS has direct effects on the underlying cortex, but also induces distant (basal ganglia) network effects-hence its potential value in PD, a prime model of basal ganglia dysfunction. To date, only null effects have been reported in persons with PD. However, these studies did not determine the reacquisition effects, although previous studies in healthy young adults suggest that tDCS specifically exerts its beneficial effects on IMSL on reacquisition rather than acquisition. In the current study, we will therefore establish possible reacquisition effects, which are of a particular interest, as long-term effects are vital for the successful functional rehabilitation of persons with PD. Using a sham-controlled, counterbalanced design, we will investigate the potential of tDCS delivered over M1 to enhance IMSL, as measured by the serial reaction time task, in persons with PD and a neurologically healthy age- and sex-matched control (HC) group. Multilevel Mixed Models will be implemented to analyze the sequence-specific aspect of IMSL (primary outcome) and general learning (secondary outcome). We will determine not only the immediate effects that may occur concurrently with the application of tDCS but also the short-term (5 min post-tDCS) and long-term (1 week post-tDCS) reacquisition effects.
Collapse
Affiliation(s)
- Mahyar Firouzi
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium.,Rehabilitation Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Vrije Universiteit Brussel, Jette, Belgium.,Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Kris Baetens
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium.,Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Eva Swinnen
- Rehabilitation Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Vrije Universiteit Brussel, Jette, Belgium.,Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Chris Baeken
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium.,Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium.,Department of Psychiatry and Medical Psychology, Ghent University, University Hospital Ghent (UZ Ghent), Ghent, Belgium.,Department of Psychiatry, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), University Hospital Brussel (UZ Brussel), Brussels, Belgium
| | - Frank Van Overwalle
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium.,Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Natacha Deroost
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium.,Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| |
Collapse
|
13
|
Neuropsychiatric and Cognitive Deficits in Parkinson's Disease and Their Modeling in Rodents. Biomedicines 2021; 9:biomedicines9060684. [PMID: 34204380 PMCID: PMC8234051 DOI: 10.3390/biomedicines9060684] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 11/29/2022] Open
Abstract
Parkinson’s disease (PD) is associated with a large burden of non-motor symptoms including olfactory and autonomic dysfunction, as well as neuropsychiatric (depression, anxiety, apathy) and cognitive disorders (executive dysfunctions, memory and learning impairments). Some of these non-motor symptoms may precede the onset of motor symptoms by several years, and they significantly worsen during the course of the disease. The lack of systematic improvement of these non-motor features by dopamine replacement therapy underlines their multifactorial origin, with an involvement of monoaminergic and cholinergic systems, as well as alpha-synuclein pathology in frontal and limbic cortical circuits. Here we describe mood and neuropsychiatric disorders in PD and review their occurrence in rodent models of PD. Altogether, toxin-based rodent models of PD indicate a significant but non-exclusive contribution of mesencephalic dopaminergic loss in anxiety, apathy, and depressive-like behaviors, as well as in learning and memory deficits. Gene-based models display significant deficits in learning and memory, as well as executive functions, highlighting the contribution of alpha-synuclein pathology to these non-motor deficits. Collectively, neuropsychiatric and cognitive deficits are recapitulated to some extent in rodent models, providing partial but nevertheless useful options to understand the pathophysiology of non-motor symptoms and develop therapeutic options for these debilitating symptoms of PD.
Collapse
|
14
|
Iso N, Moriuchi T, Fujiwara K, Matsuo M, Mitsunaga W, Hasegawa T, Iso F, Cho K, Suzuki M, Higashi T. Hemodynamic Signal Changes During Motor Imagery Task Performance Are Associated With the Degree of Motor Task Learning. Front Hum Neurosci 2021; 15:603069. [PMID: 33935666 PMCID: PMC8081959 DOI: 10.3389/fnhum.2021.603069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 03/12/2021] [Indexed: 12/19/2022] Open
Abstract
Purpose This study aimed to investigate whether oxygenated hemoglobin (oxy-Hb) generated during a motor imagery (MI) task is associated with the motor learning level of the task. Methods We included 16 right-handed healthy participants who were trained to perform a ball rotation (BR) task. Hemodynamic brain activity was measured using near-infrared spectroscopy to monitor changes in oxy-Hb concentration during the BR MI task. The experimental protocol used a block design, and measurements were performed three times before and after the initial training of the BR task as well as after the final training. The BR count during training was also measured. Furthermore, subjective vividness of MI was evaluated three times after NIRS measurement using the Visual Analog Scale (VAS). Results The results showed that the number of BRs increased significantly with training (P < 0.001). VAS scores also improved with training (P < 0.001). Furthermore, oxy-Hb concentration and the region of interest (ROI) showed a main effect (P = 0.001). An interaction was confirmed (P < 0.001), and it was ascertained that the change in oxy-Hb concentrations due to training was different for each ROI. The most significant predictor of subjective MI vividness was supplementary motor area (SMA) oxy-Hb concentration (coefficient = 0.365). Discussion Hemodynamic brain activity during MI tasks may be correlated with task motor learning levels, since significant changes in oxy-Hb concentrations were observed following initial and final training in the SMA. In particular, hemodynamic brain activity in the SMA was suggested to reflect the MI vividness of participants.
Collapse
Affiliation(s)
- Naoki Iso
- Faculty of Health Sciences, Tokyo Kasei University, Saitama, Japan
| | - Takefumi Moriuchi
- Department of Occupational Therapy, Nagasaki University Graduate School of Biomedical Sciences and Health Sciences, Nagasaki, Japan
| | - Kengo Fujiwara
- Department of Health Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Moemi Matsuo
- Department of Health Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Wataru Mitsunaga
- Department of Health Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takashi Hasegawa
- Department of Health Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Fumiko Iso
- Department of Health Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kilchoon Cho
- Faculty of Health Sciences, Tokyo Kasei University, Saitama, Japan
| | - Makoto Suzuki
- Faculty of Health Sciences, Tokyo Kasei University, Saitama, Japan
| | - Toshio Higashi
- Department of Health Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
15
|
Beheshti I, Ko JH. Modulating brain networks associated with cognitive deficits in Parkinson's disease. Mol Med 2021; 27:24. [PMID: 33691622 PMCID: PMC7945662 DOI: 10.1186/s10020-021-00284-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) is a relatively well characterised neurological disorder that primarily affects motor and cognitive functions. This paper reviews on how transcranial direct current stimulation (tDCS) can be used to modulate brain networks associated with cognitive deficits in PD. We first provide an overview of brain network abnormalities in PD, by introducing the brain network modulation approaches such as pharmacological interventions and brain stimulation techniques. We then present the potential underlying mechanisms of tDCS technique, and specifically highlight how tDCS can be applied to modulate brain network abnormality associated with cognitive dysfunction among PD patients. More importantly, we address the limitations of existing studies and suggest possible future directions, with the aim of helping researchers to further develop the use of tDCS technique in clinical settings.
Collapse
Affiliation(s)
- Iman Beheshti
- Department of Human Anatomy and Cell Science, University of Manitoba, 130-745 Bannatyne Ave., Winnipeg, MB R3E 0J9 Canada
- Kleysen Institute for Advanced Medicine, Health Science Centre, Winnipeg, MB Canada
| | - Ji Hyun Ko
- Department of Human Anatomy and Cell Science, University of Manitoba, 130-745 Bannatyne Ave., Winnipeg, MB R3E 0J9 Canada
- Kleysen Institute for Advanced Medicine, Health Science Centre, Winnipeg, MB Canada
- Graduate Program in Biomedical Engineering, University of Manitoba, Winnipeg, MB Canada
| |
Collapse
|
16
|
Ferreira CM, de Carvalho CD, Gomes R, Bonifácio de Assis ED, Andrade SM. Transcranial Direct Current Stimulation and Mirror Therapy for Neuropathic Pain After Brachial Plexus Avulsion: A Randomized, Double-Blind, Controlled Pilot Study. Front Neurol 2020; 11:568261. [PMID: 33362687 PMCID: PMC7759497 DOI: 10.3389/fneur.2020.568261] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 11/20/2020] [Indexed: 12/16/2022] Open
Abstract
Introduction: Although transcranial direct current stimulation (tDCS) and mirror therapy (MT) have benefits in combating chronic pain, there is still no evidence of the effects of the simultaneous application of these techniques in patients with neuropathic pain. This study aims to assess the efficacy of tDCS paired with MT in neuropathic pain after brachial plexus injury. Methods: In a sham controlled, double-blind, parallel-group design, 16 patients were randomized to receive active or sham tDCS administered during mirror therapy. Each patient received 12 treatment sessions, 30 min each, during a period of 4 weeks over M1 contralateral to the side of the injury. Outcome variables were evaluated at baseline and post-treatment using the McGill questionnaire, Brief Pain Inventory, and Medical Outcomes Study 36-Item Short-Form Health Survey. Long-term effects of treatment were evaluated at a 3-month follow-up. Results: An improvement in pain relief and quality of life were observed in both groups (p ≤ 0.05). However, active tDCS and mirror therapy resulted in greater improvements after the endpoint (p ≤ 0.02). No statistically significant differences in the outcome measures were identified among the groups at follow-up (p ≥ 0.12). A significant relationship was found between baseline pain intensity and outcome measures (p ≤ 0.04). Moreover, the results showed that state anxiety is closely linked to post-treatment pain relief (p ≤ 0.05). Conclusion: Active tDCS combined with mirror therapy has a short-term effect of pain relief, however, levels of pain and anxiety at the baseline should be considered. Clinical Trial Registration: www.ClinicalTrials.gov, identifier NCT04385030.
Collapse
Affiliation(s)
| | | | - Ruth Gomes
- Neuroscience and Aging Laboratory, Federal University of Paraíba, João Pessoa, Brazil
| | | | | |
Collapse
|
17
|
Firouzi M, Van Herk K, Kerckhofs E, Swinnen E, Baeken C, Van Overwalle F, Deroost N. Transcranial direct‐current stimulation enhances implicit motor sequence learning in persons with Parkinson's disease with mild cognitive impairment. J Neuropsychol 2020; 15:363-378. [DOI: 10.1111/jnp.12231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 10/07/2020] [Indexed: 01/17/2023]
Affiliation(s)
- Mahyar Firouzi
- Brain, Body and Cognition Department of Psychology and Educational Sciences Vrije Universiteit Brussel Belgium
- Rehabilitation Research Department of Physiotherapy Human Physiology and Anatomy Vrije Universiteit Brussel Belgium
- Center for Neurosciences (C4N) Vrije Universiteit Brussel Belgium
| | - Karlijn Van Herk
- Rehabilitation Research Department of Physiotherapy Human Physiology and Anatomy Vrije Universiteit Brussel Belgium
| | - Eric Kerckhofs
- Brain, Body and Cognition Department of Psychology and Educational Sciences Vrije Universiteit Brussel Belgium
- Rehabilitation Research Department of Physiotherapy Human Physiology and Anatomy Vrije Universiteit Brussel Belgium
- Center for Neurosciences (C4N) Vrije Universiteit Brussel Belgium
| | - Eva Swinnen
- Rehabilitation Research Department of Physiotherapy Human Physiology and Anatomy Vrije Universiteit Brussel Belgium
- Center for Neurosciences (C4N) Vrije Universiteit Brussel Belgium
| | - Chris Baeken
- Brain, Body and Cognition Department of Psychology and Educational Sciences Vrije Universiteit Brussel Belgium
- Center for Neurosciences (C4N) Vrije Universiteit Brussel Belgium
- Department of Psychiatry and Medical Psychology Ghent University University Hospital Ghent Belgium
- Department of Psychiatry Faculty of Medicine and Pharmacy Vrije Universiteit Brussel University Hospital Brussel Belgium
| | - Frank Van Overwalle
- Brain, Body and Cognition Department of Psychology and Educational Sciences Vrije Universiteit Brussel Belgium
- Center for Neurosciences (C4N) Vrije Universiteit Brussel Belgium
| | - Natacha Deroost
- Brain, Body and Cognition Department of Psychology and Educational Sciences Vrije Universiteit Brussel Belgium
- Rehabilitation Research Department of Physiotherapy Human Physiology and Anatomy Vrije Universiteit Brussel Belgium
- Center for Neurosciences (C4N) Vrije Universiteit Brussel Belgium
| |
Collapse
|
18
|
Beretta VS, Conceição NR, Nóbrega-Sousa P, Orcioli-Silva D, Dantas LKBF, Gobbi LTB, Vitório R. Transcranial direct current stimulation combined with physical or cognitive training in people with Parkinson's disease: a systematic review. J Neuroeng Rehabil 2020; 17:74. [PMID: 32539819 PMCID: PMC7296764 DOI: 10.1186/s12984-020-00701-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 05/21/2020] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Pharmacologic therapy is the primary treatment used to manage Parkinson's disease (PD) symptoms. However, it becomes less effective with time and some symptoms do not respond to medication. Complementary interventions are therefore required for PD. Recent studies have implemented transcranial direct current stimulation (tDCS) in combination with other modalities of interventions, such as physical and cognitive training. Although the combination of tDCS with physical and cognitive training seems promising, the existing studies present mixed results. Therefore, a systematic review of the literature is necessary. AIMS This systematic review aims to (i) assess the clinical effects of tDCS when applied in combination with physical or cognitive therapies in people with PD and; (ii) analyze how specific details of the intervention protocols may relate to findings. METHODS The search strategy detailed the technique of stimulation, population and combined interventions (i.e. cognitive and/or physical training). Only controlled studies were included. RESULTS Seventeen of an initial yield of 408 studies satisfied the criteria. Studies involved small sample sizes. tDCS protocols and characteristics of combined interventions varied. The reviewed studies suggest that synergistic effects may be obtained for cognition, upper limb function, gait/mobility and posture when tDCS is combined with cognitive and/or motor interventions in PD. CONCLUSION The reported results encourage further research to better understand the therapeutic utility of tDCS and to inform optimal clinical use in PD. Future studies in this field should focus on determining optimal stimulation parameters and intervention characteristics for maximal benefits in people with PD.
Collapse
Affiliation(s)
- Victor Spiandor Beretta
- Institute of Biosciences, Posture and Gait Studies Laboratory (LEPLO), São Paulo State University (Unesp), Avenue 24-A, 1515, Bela Vista, Rio Claro, São Paulo State, 13506-900, Brazil
- Graduate Program in Movement Sciences, São Paulo State University - UNESP, Rio Claro, São Paulo State, Brazil
| | - Núbia Ribeiro Conceição
- Institute of Biosciences, Posture and Gait Studies Laboratory (LEPLO), São Paulo State University (Unesp), Avenue 24-A, 1515, Bela Vista, Rio Claro, São Paulo State, 13506-900, Brazil
- Graduate Program in Movement Sciences, São Paulo State University - UNESP, Rio Claro, São Paulo State, Brazil
| | - Priscila Nóbrega-Sousa
- Institute of Biosciences, Posture and Gait Studies Laboratory (LEPLO), São Paulo State University (Unesp), Avenue 24-A, 1515, Bela Vista, Rio Claro, São Paulo State, 13506-900, Brazil
- Graduate Program in Movement Sciences, São Paulo State University - UNESP, Rio Claro, São Paulo State, Brazil
| | - Diego Orcioli-Silva
- Institute of Biosciences, Posture and Gait Studies Laboratory (LEPLO), São Paulo State University (Unesp), Avenue 24-A, 1515, Bela Vista, Rio Claro, São Paulo State, 13506-900, Brazil
- Graduate Program in Movement Sciences, São Paulo State University - UNESP, Rio Claro, São Paulo State, Brazil
| | - Luana Karla Braz Fonseca Dantas
- Institute of Biosciences, Posture and Gait Studies Laboratory (LEPLO), São Paulo State University (Unesp), Avenue 24-A, 1515, Bela Vista, Rio Claro, São Paulo State, 13506-900, Brazil
| | - Lilian Teresa Bucken Gobbi
- Institute of Biosciences, Posture and Gait Studies Laboratory (LEPLO), São Paulo State University (Unesp), Avenue 24-A, 1515, Bela Vista, Rio Claro, São Paulo State, 13506-900, Brazil
- Graduate Program in Movement Sciences, São Paulo State University - UNESP, Rio Claro, São Paulo State, Brazil
| | - Rodrigo Vitório
- Institute of Biosciences, Posture and Gait Studies Laboratory (LEPLO), São Paulo State University (Unesp), Avenue 24-A, 1515, Bela Vista, Rio Claro, São Paulo State, 13506-900, Brazil.
- Graduate Program in Movement Sciences, São Paulo State University - UNESP, Rio Claro, São Paulo State, Brazil.
- Department of Neurology, Oregon Health and Science University, Portland, Oregon, USA.
| |
Collapse
|
19
|
Lim H, Kim WS, Ku J. Transcranial Direct Current Stimulation Effect on Virtual Hand Illusion. CYBERPSYCHOLOGY BEHAVIOR AND SOCIAL NETWORKING 2020; 23:541-549. [PMID: 32478563 DOI: 10.1089/cyber.2019.0741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Virtual reality (VR) is effectively used to evoke the mirror illusion, and transcranial direct current stimulation (tDCS) synergistically facilitates this illusion. This study investigated whether a mirror virtual hand illusion (MVHI) induced by an immersive, first-person-perspective, virtual mirror system could be modulated by tDCS of the primary motor cortex. Fourteen healthy adults (average age 21.86 years ±0.47, seven men and seven women) participated in this study, and they experienced VR with and without tDCS-the tDCS and sham conditions, each of which takes ∼30 minutes-on separate days to allow the washout of the tDCS effect. While experiencing VR, the movements of the virtual left hand reflected the flexion and extension of the real right hand. Subsequently, electroencephalogram was recorded, the magnitude of the proprioceptive shift was measured, and the participants provided responses to a questionnaire regarding hand ownership. A significant difference in the proprioceptive shift was observed between the tDCS and sham conditions. In addition, there was significant suppression of the mu power in Pz, and augmentation of the beta power in the Pz, P4, O1, and O2 channels. The difference in proprioceptive deviation between the two conditions showed significant negative correlation with mu suppression over the left frontal lobe in the tDCS condition. Finally, the question "I felt that the virtual hand was my own hand" received a significantly higher score under the tDCS condition. In short, applying tDCS over the motor cortex facilitates the MVHI by activating the attentional network over the parietal and frontal lobes such that the MVHI induces more proprioceptive drift, which suggests that the combination of VR and tDCS can enhance the immersive effect in VR. This result provides better support for the use of the MVHI paradigm in combination with tDCS for recovery from illnesses such as stroke.
Collapse
Affiliation(s)
- Hyunmi Lim
- Department of Biomedical Engineering, School of Medicine, Keimyung University, Daegu, Republic of Korea
| | - Won-Seok Kim
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jeonghun Ku
- Department of Biomedical Engineering, School of Medicine, Keimyung University, Daegu, Republic of Korea
| |
Collapse
|
20
|
Memory and Cognition-Related Neuroplasticity Enhancement by Transcranial Direct Current Stimulation in Rodents: A Systematic Review. Neural Plast 2020; 2020:4795267. [PMID: 32211039 PMCID: PMC7061127 DOI: 10.1155/2020/4795267] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/27/2020] [Accepted: 02/06/2020] [Indexed: 12/19/2022] Open
Abstract
Brain stimulation techniques, including transcranial direct current stimulation (tDCS), were identified as promising therapeutic tools to modulate synaptic plasticity abnormalities and minimize memory and learning deficits in many neuropsychiatric diseases. Here, we revised the effect of tDCS on the modulation of neuroplasticity and cognition in several animal disease models of brain diseases affecting plasticity and cognition. Studies included in this review were searched following the terms (“transcranial direct current stimulation”) AND (mice OR mouse OR animal) and according to the PRISMA statement requirements. Overall, the studies collected suggest that tDCS was able to modulate brain plasticity due to synaptic modifications within the stimulated area. Changes in plasticity-related mechanisms were achieved through induction of long-term potentiation (LTP) and upregulation of neuroplasticity-related proteins, such as c-fos, brain-derived neurotrophic factor (BDNF), or N-methyl-D-aspartate receptors (NMDARs). Taken into account all revised studies, tDCS is a safe, easy, and noninvasive brain stimulation technique, therapeutically reliable, and with promising potential to promote cognitive enhancement and neuroplasticity. Since the use of tDCS has increased as a novel therapeutic approach in humans, animal studies are important to better understand its mechanisms as well as to help improve the stimulation protocols and their potential role in different neuropathologies.
Collapse
|