1
|
Wu J, Zhao Y. Single cocaine exposure attenuates the intrinsic excitability of CRH neurons in the ventral BNST via Sigma-1 receptors. Transl Neurosci 2024; 15:20220339. [PMID: 38681523 PMCID: PMC11047800 DOI: 10.1515/tnsci-2022-0339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 05/01/2024] Open
Abstract
The ventral bed nucleus of the stria terminalis (vBNST) plays a key role in cocaine addiction, especially relapse. However, the direct effects of cocaine on corticotropin-releasing hormone (CRH) neurons in the vBNST remain unclear. Here, we identify that cocaine exposure can remarkably attenuate the intrinsic excitability of CRH neurons in the vBNST in vitro. Accumulating studies reveal the crucial role of Sigma-1 receptors (Sig-1Rs) in modulating cocaine addiction. However, to the authors' best knowledge no investigations have explored the role of Sig-1Rs in the vBNST, let alone CRH neurons. Given that cocaine acts as a type of Sig-1Rs agonist, and the dramatic role of Sig-1Rs played in intrinsic excitability of neurons as well as cocaine addiction, we employ BD1063 a canonical Sig-1Rs antagonist to block the effects of cocaine, and significantly recover the excitability of CRH neurons. Together, we suggest that cocaine exposure leads to the firing rate depression of CRH neurons in the vBNST via binding to Sig-1Rs.
Collapse
Affiliation(s)
- Jintao Wu
- School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
- School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yue Zhao
- School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Crouzier L, Denus M, Richard EM, Tavernier A, Diez C, Cubedo N, Maurice T, Delprat B. Sigma-1 Receptor Is Critical for Mitochondrial Activity and Unfolded Protein Response in Larval Zebrafish. Int J Mol Sci 2021; 22:11049. [PMID: 34681705 PMCID: PMC8537383 DOI: 10.3390/ijms222011049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/06/2021] [Accepted: 10/10/2021] [Indexed: 01/05/2023] Open
Abstract
The sigma-1 receptor (S1R) is a highly conserved transmembrane protein highly enriched in mitochondria-associated endoplasmic reticulum (ER) membranes, where it interacts with several partners involved in ER-mitochondria Ca2+ transfer, activation of the ER stress pathways, and mitochondria function. We characterized a new S1R deficient zebrafish line and analyzed the impact of S1R deficiency on visual, auditory and locomotor functions. The s1r+25/+25 mutant line showed impairments in visual and locomotor functions compared to s1rWT. The locomotion of the s1r+25/+25 larvae, at 5 days post fertilization, was increased in the light and dark phases of the visual motor response. No deficit was observed in acoustic startle response. A critical role of S1R was shown in ER stress pathways and mitochondrial activity. Using qPCR to analyze the unfolded protein response genes, we observed that loss of S1R led to decreased levels of IRE1 and PERK-related effectors and increased over-expression of most of the effectors after a tunicamycin challenge. Finally, S1R deficiency led to alterations in mitochondria bioenergetics with decreased in basal, ATP-linked and non-mitochondrial respiration and following tunicamycin challenge. In conclusion, this new zebrafish model confirmed the importance of S1R activity on ER-mitochondria communication. It will be a useful tool to further analyze the physiopathological roles of S1R.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Benjamin Delprat
- MMDN, University of Montpellier, EPHE, INSERM, 34095 Montpellier, France; (L.C.); (M.D.); (E.M.R.); (A.T.); (C.D.); (N.C.); (T.M.)
| |
Collapse
|
3
|
Maurice T. Bi-phasic dose response in the preclinical and clinical developments of sigma-1 receptor ligands for the treatment of neurodegenerative disorders. Expert Opin Drug Discov 2021; 16:373-389. [PMID: 33070647 DOI: 10.1080/17460441.2021.1838483] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/14/2020] [Indexed: 12/19/2022]
Abstract
Introduction: The sigma-1 receptor (S1R) is attracting much attention for disease-modifying therapies in neurodegenerative diseases. It is a conserved protein, present in plasma and endoplasmic reticulum (ER) membranes and enriched in mitochondria-associated ER membranes (MAMs). It modulates ER-mitochondria Ca2+ transfer and ER stress pathways. Mitochondrial and MAM dysfunctions contribute to neurodegenerative processes in diseases such as Alzheimer, Parkinson, Huntington or Amyotrophic Lateral Sclerosis. Interestingly, the S1R can be activated by small druggable molecules and accumulating preclinical data suggest that S1R agonists are effective protectants in these neurodegenerative diseases.Area covered: In this review, we will present the data showing the high therapeutic potential of S1R drugs for the treatment of neurodegenerative diseases, focusing on pridopidine as a potent and selective S1R agonist under clinical development. Of particular interest is the bi-phasic (bell-shaped) dose-response effect, representing a common feature of all S1R agonists and described in numerous preclinical models in vitro, in vivo and in clinical trials.Expert opinion: S1R agonists modulate inter-organelles communication altered in neurodegenerative diseases and activate intracellular survival pathways. Research will continue growing in the future. The particular cellular nature of this chaperone protein must be better understood to facilitate the clinical developement of promising molecules.
Collapse
Affiliation(s)
- Tangui Maurice
- MMDN, Univ Montpellier, EPHE, INSERM, UMR_S1198, Montpellier, France
| |
Collapse
|
4
|
Hashimoto K. Repurposing of CNS drugs to treat COVID-19 infection: targeting the sigma-1 receptor. Eur Arch Psychiatry Clin Neurosci 2021; 271:249-258. [PMID: 33403480 PMCID: PMC7785036 DOI: 10.1007/s00406-020-01231-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 12/19/2020] [Indexed: 01/31/2023]
Abstract
The novel coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The escalating number of SARS-CoV-2-infected individuals has conferred the viral spread with the status of global pandemic. However, there are no prophylactic or therapeutic drugs available on the market to treat COVID-19, although several drugs have been approved. Recently, two articles using the comparative viral-human protein-protein interaction map revealed that the sigma-1 receptor in the endoplasmic reticulum plays an important role in SARS-CoV-2 replication in cells. Knockout and knockdown of SIGMAR1 (sigma-1 receptor, encoded by SIGMAR1) caused robust reductions in SARS-CoV-2 replication, which indicates that the sigma-1 receptor is a key therapeutic target for SARS-CoV-2 replication. Interestingly, a recent clinical trial demonstrated that treatment with the antidepressant fluvoxamine, which has a high affinity at the sigma-1 receptor, could prevent clinical deterioration in adult outpatients infected with SARS-CoV-2. In this review, we discuss the brief history of the sigma-1 receptor and its role in SARS-CoV-2 replication in cells. Here, we propose repurposing of traditional central nervous system (CNS) drugs that have a high affinity at the sigma-1 receptor (i.e., fluvoxamine, donepezil, ifenprodil) for the treatment of SARS-CoV-2-infected patients. Finally, we discussed the potential of other CNS candidates such as cutamesine and arketamine.
Collapse
Affiliation(s)
- Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chiba, 260-8670, Japan.
| |
Collapse
|
5
|
Abate C, Niso M, Abatematteo FS, Contino M, Colabufo NA, Berardi F. PB28, the Sigma-1 and Sigma-2 Receptors Modulator With Potent Anti-SARS-CoV-2 Activity: A Review About Its Pharmacological Properties and Structure Affinity Relationships. Front Pharmacol 2020; 11:589810. [PMID: 33364961 PMCID: PMC7750835 DOI: 10.3389/fphar.2020.589810] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/15/2020] [Indexed: 12/27/2022] Open
Abstract
These unprecedented times have forced the scientific community to gather to face the COVID-19 pandemic. Efforts in diverse directions have been made. A multi-university team has focused on the identification of the host (human) proteins interacting with SARS-CoV-2 viral proteins, with the aim of hampering these interactions that may cause severe COVID-19 symptoms. Sigma-1 and sigma-2 receptors surprisingly belong to the “druggable” host proteins found, with the pan-sigma receptor modulator PB28 displaying the most potent anti–SARS-CoV-2 activity in in vitro assays. Being 20-fold more active than hydroxychloroquine, without cardiac side effects, PB28 is a promising antiviral candidate worthy of further investigation. Our research group developed PB28 in 1996 and have thoroughly characterized its biological properties since then. Structure–affinity relationship (SAfiR) studies at the sigma receptor subtypes were also undertaken with PB28 as the lead compound. We herein report our knowledge of PB28 to share information that may help to gain insight into the antiviral action of this compound and sigma receptors, while providing structural hints that may speed up the translation into therapeutics of this class of ligands.
Collapse
Affiliation(s)
- Carmen Abate
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Bari, Italy
| | - Mauro Niso
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Bari, Italy
| | | | - Marialessandra Contino
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Bari, Italy
| | - Nicola Antonio Colabufo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Bari, Italy
| | - Francesco Berardi
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Bari, Italy
| |
Collapse
|
6
|
Acute cocaine treatment enhances the antagonistic allosteric adenosine A2A-dopamine D2 receptor-receptor interactions in rat dorsal striatum without increasing significantly extracellular dopamine levels. Pharmacol Rep 2020; 72:332-339. [PMID: 32124388 DOI: 10.1007/s43440-020-00069-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/26/2019] [Accepted: 12/03/2019] [Indexed: 01/13/2023]
Abstract
BACKGROUND Antagonistic adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) receptor-receptor interactions have previously been demonstrated in A2AR-D2R heteroreceptor complexes in the rat dorsal striatum. They mainly involve a reduction of affinity in the high-affinity component of the D2R agonist binding site upon activation in vivo of the A2AR by an A2AR agonist. Upon cocaine self-administration, this antagonistic A2AR-D2R interaction disappeared in the dorsal striatum. METHODS In the current experiments, it was tested whether such modifications in the antagonistic A2AR-D2R receptor-receptor interactions can develop also after an acute systemic injection of a low cocaine dose (1 mg/kg; sc). RESULTS Microdialysis experiments indicated that acute cocaine did not significantly alter the extracellular dopamine levels in the dorsal striatum of the awake Wistar rats. Competition dopamine receptor binding experiments demonstrated that in the acute cocaine group, the A2AR agonist CGS-21680 produced significantly larger increases in the D2R Ki, High values (reduction of high-affinity) versus the saline-injected (i.e. control) group. Furthermore, in the dorsal striatum membrane preparation from acute cocaine-injected rats, CGS-21680 also produced significant increases in the D2R Ki, Low values (reduction of low-affinity) and in the proportion of D2Rs in the high-affinity state (RH). Such significant effects were not observed with CGS-21680 in the control group. CONCLUSIONS The molecular mechanism involved in the acute cocaine-induced increase in the antagonistic allosteric A2AR-D2R receptor-receptor interactions may be an increased formation of higher-order complexes A2AR-D2R-sigma1R in which cocaine by binding to the sigma1R protomer also allosterically enhances the inhibitory A2AR-D2R interaction in this receptor complex.
Collapse
|
7
|
Bera K, Kamajaya A, Shivange AV, Muthusamy AK, Nichols AL, Borden PM, Grant S, Jeon J, Lin E, Bishara I, Chin TM, Cohen BN, Kim CH, Unger EK, Tian L, Marvin JS, Looger LL, Lester HA. Biosensors Show the Pharmacokinetics of S-Ketamine in the Endoplasmic Reticulum. Front Cell Neurosci 2019; 13:499. [PMID: 31798415 PMCID: PMC6874132 DOI: 10.3389/fncel.2019.00499] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/22/2019] [Indexed: 12/20/2022] Open
Abstract
The target for the “rapid” (<24 h) antidepressant effects of S-ketamine is unknown, vitiating programs to rationally develop more effective rapid antidepressants. To describe a drug’s target, one must first understand the compartments entered by the drug, at all levels—the organ, the cell, and the organelle. We have, therefore, developed molecular tools to measure the subcellular, organellar pharmacokinetics of S-ketamine. The tools are genetically encoded intensity-based S-ketamine-sensing fluorescent reporters, iSKetSnFR1 and iSKetSnFR2. In solution, these biosensors respond to S-ketamine with a sensitivity, S-slope = delta(F/F0)/(delta[S-ketamine]) of 0.23 and 1.9/μM, respectively. The iSKetSnFR2 construct allows measurements at <0.3 μM S-ketamine. The iSKetSnFR1 and iSKetSnFR2 biosensors display >100-fold selectivity over other ligands tested, including R-ketamine. We targeted each of the sensors to either the plasma membrane (PM) or the endoplasmic reticulum (ER). Measurements on these biosensors expressed in Neuro2a cells and in human dopaminergic neurons differentiated from induced pluripotent stem cells (iPSCs) show that S-ketamine enters the ER within a few seconds after appearing in the external solution near the PM, then leaves as rapidly after S-ketamine is removed from the extracellular solution. In cells, S-slopes for the ER and PM-targeted sensors differ by <2-fold, indicating that the ER [S-ketamine] is less than 2-fold different from the extracellular [S-ketamine]. Organelles represent potential compartments for the engagement of S-ketamine with its antidepressant target, and potential S-ketamine targets include organellar ion channels, receptors, and transporters.
Collapse
Affiliation(s)
- Kallol Bera
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Aron Kamajaya
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Amol V Shivange
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Anand K Muthusamy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States.,Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Aaron L Nichols
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States.,Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Philip M Borden
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - Stephen Grant
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Janice Jeon
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Elaine Lin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Ishak Bishara
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Theodore M Chin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Bruce N Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Charlene H Kim
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Elizabeth K Unger
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, United States
| | - Lin Tian
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, United States
| | - Jonathan S Marvin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - Loren L Looger
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - Henry A Lester
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|