1
|
Rubio C, Romo-Parra H, López-Landa A, Rubio-Osornio M. Classification of Current Experimental Models of Epilepsy. Brain Sci 2024; 14:1024. [PMID: 39452036 PMCID: PMC11506208 DOI: 10.3390/brainsci14101024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/03/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024] Open
Abstract
INTRODUCTION This article provides an overview of several experimental models, including in vivo, genetics, chemical, knock-in, knock-out, electrical, in vitro, and optogenetics models, that have been employed to investigate epileptogenesis. The present review introduces a novel categorization of these models, taking into account the fact that the most recent classification that gained widespread acceptance was established by Fisher in 1989. A significant number of such models have become virtually outdated. OBJECTIVE This paper specifically examines the models that have contributed to the investigation of partial seizures, generalized seizures, and status epilepticus. DISCUSSION A description is provided of the primary features associated with the processes that produce and regulate the symptoms of various epileptogenesis models. Numerous experimental epilepsy models in animals have made substantial contributions to the investigation of particular brain regions that are capable of inducing seizures. Experimental models of epilepsy have also enabled the investigation of the therapeutic mechanisms of anti-epileptic medications. Typically, animals are selected for the development and study of experimental animal models of epilepsy based on the specific form of epilepsy being investigated. CONCLUSIONS Currently, it is established that specific animal species can undergo epileptic seizures that resemble those described in humans. Nevertheless, it is crucial to acknowledge that a comprehensive assessment of all forms of human epilepsy has not been feasible. However, these experimental models, both those derived from channelopathies and others, have provided a limited comprehension of the fundamental mechanisms of this disease.
Collapse
Affiliation(s)
- Carmen Rubio
- Department of Neurophysiology, Instituto Nacional de Neurología y Neurocirugía, Mexico City 14269, Mexico; (C.R.); (H.R.-P.); (A.L.-L.)
| | - Héctor Romo-Parra
- Department of Neurophysiology, Instituto Nacional de Neurología y Neurocirugía, Mexico City 14269, Mexico; (C.R.); (H.R.-P.); (A.L.-L.)
- Psychology Department, Universidad Iberoamericana, Mexico City 01219, Mexico
| | - Alejandro López-Landa
- Department of Neurophysiology, Instituto Nacional de Neurología y Neurocirugía, Mexico City 14269, Mexico; (C.R.); (H.R.-P.); (A.L.-L.)
| | - Moisés Rubio-Osornio
- Department of Neurochemistry, Instituto Nacional de Neurología y Neurocirugía, Av. Insurgentes Sur 3877, Mexico City 14269, Mexico
| |
Collapse
|
2
|
Tsytsarev V, Sopova JV, Leonova EI, Inyushin M, Markina AA, Chirinskaite AV, Volnova AB. Neurophotonic methods in approach to in vivo animal epileptic models: Advantages and limitations. Epilepsia 2024; 65:600-614. [PMID: 38115808 PMCID: PMC10948300 DOI: 10.1111/epi.17870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Neurophotonic technology is a rapidly growing group of techniques that are based on the interactions of light with natural or genetically modified cells of the neural system. New optical technologies make it possible to considerably extend the tools of neurophysiological research, from the visualization of functional activity changes to control of brain tissue excitability. This opens new perspectives for studying the mechanisms underlying the development of human neurological diseases. Epilepsy is one of the most common brain disorders; it is characterized by recurrent seizures and affects >1% of the world's population. However, how seizures occur, spread, and terminate in a healthy brain is still unclear. Therefore, it is extremely important to develop appropriate models to accurately explore the causal relationship of epileptic activity. The use of neurophotonic technologies in epilepsy research falls into two broad categories: the visualization of neural epileptic activity, and the direct optical influence on neurons to induce or suppress epileptic activity. An optogenetic variant of the classical kindling model of epileptic seizures, in which activatable cells are genetically defined, is called optokindling. Research is also underway concerning the application of neurophotonic techniques for suppressing epileptic activity, aiming to bring these methods into clinical practice. This review aims to systematize and describe new approaches that use combinations of different neurophotonic methods to work with in vivo models of epilepsy. These approaches overcome many of the shortcomings associated with classical animal models of epilepsy and thus increase the effectiveness of developing new diagnostic methods and antiepileptic therapy.
Collapse
Affiliation(s)
- Vassiliy Tsytsarev
- University of Maryland School of Medicine, Department of Neurobiology 20 Penn St, HSF-2, 21201 MD, Baltimore, United States
| | - Julia V. Sopova
- Center of Transgenesis and Genome Editing, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Elena I. Leonova
- Center of Transgenesis and Genome Editing, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Mikhail Inyushin
- School of Medicine, Universidad Central del Caribe, Bayamon, PR 00956, USA
| | - Alisa A. Markina
- Institute of Translational Biomedicine, Saint Petersburg State University, St. Petersburg 199034, Russia
| | - Angelina V. Chirinskaite
- Center of Transgenesis and Genome Editing, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anna B. Volnova
- Institute of Translational Biomedicine, Saint Petersburg State University, St. Petersburg 199034, Russia
| |
Collapse
|
3
|
Li HT, Viskaitis P, Bracey E, Peleg-Raibstein D, Burdakov D. Transient targeting of hypothalamic orexin neurons alleviates seizures in a mouse model of epilepsy. Nat Commun 2024; 15:1249. [PMID: 38341419 PMCID: PMC10858876 DOI: 10.1038/s41467-024-45515-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Lateral hypothalamic (LH) hypocretin/orexin neurons (HONs) control brain-wide electrical excitation. Abnormally high excitation produces epileptic seizures, which affect millions of people and need better treatments. HON population activity spikes from minute to minute, but the role of this in seizures is unknown. Here, we describe correlative and causal links between HON activity spikes and seizures. Applying temporally-targeted HON recordings and optogenetic silencing to a male mouse model of acute epilepsy, we found that pre-seizure HON activity predicts and controls the electrophysiology and behavioral pathology of subsequent seizures. No such links were detected for HON activity during seizures. Having thus defined the time window where HONs influence seizures, we targeted it with LH deep brain stimulation (DBS), which inhibited HON population activity, and produced seizure protection. Collectively, these results uncover a feature of brain activity linked to seizures, and demonstrate a proof-of-concept treatment that controls this feature and alleviates epilepsy.
Collapse
Affiliation(s)
- Han-Tao Li
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology | ETH Zurich, 8603, Schwerzenbach, Switzerland
- Section of Epilepsy, Department of Neurology, Chang Gung Memorial Hospital at Linkou Medical Center and Chang Gung University College of Medicine, 333, Taoyuan, Taiwan
| | - Paulius Viskaitis
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology | ETH Zurich, 8603, Schwerzenbach, Switzerland
| | - Eva Bracey
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology | ETH Zurich, 8603, Schwerzenbach, Switzerland
| | - Daria Peleg-Raibstein
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology | ETH Zurich, 8603, Schwerzenbach, Switzerland
| | - Denis Burdakov
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology | ETH Zurich, 8603, Schwerzenbach, Switzerland.
| |
Collapse
|
4
|
Tescarollo FC, Valdivia D, Chen S, Sun H. Unilateral optogenetic kindling of hippocampus leads to more severe impairments of the inhibitory signaling in the contralateral hippocampus. Front Mol Neurosci 2023; 16:1268311. [PMID: 37942301 PMCID: PMC10627882 DOI: 10.3389/fnmol.2023.1268311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/20/2023] [Indexed: 11/10/2023] Open
Abstract
The kindling model has been used extensively by researchers to study the neurobiology of temporal lobe epilepsy (TLE) due to its capacity to induce intensification of seizures by the progressive recruitment of additional neuronal clusters into epileptogenic networks. We applied repetitive focal optogenetic activation of putative excitatory neurons in the dorsal CA1 area of the hippocampus of mice to investigate the role of inhibitory signaling during this process. This experimental protocol resulted in a kindling phenotype that was maintained for 2 weeks after the animals were fully kindled. As a result of the different phases of optogenetic kindling (OpK), key inhibitory signaling elements, such as KCC2 and NKCC1, exhibited distinct temporal and spatial dynamics of regulation. These alterations in protein expression were related to the distinct pattern of ictal activity propagation through the different hippocampal sublayers. Our results suggest the KCC2 disruption in the contralateral hippocampus of fully kindled animals progressively facilitated the creation of pathological pathways for seizure propagation through the hippocampal network. Upon completion of kindling, we observed animals that were restimulated after a rest period of 14-day showed, besides a persistent KCC2 downregulation, an NKCC1 upregulation in the bilateral dentate gyrus and hippocampus-wide loss of parvalbumin-positive interneurons. These alterations observed in the chronic phase of OpK suggest that the hippocampus of rekindled animals continued to undergo self-modifications during the rest period. The changes resulting from this period suggest the possibility of the development of a mirror focus on the hippocampus contralateral to the site of optical stimulations. Our results offer perspectives for preventing the recruitment and conversion of healthy neuronal networks into epileptogenic ones among patients with epilepsy.
Collapse
Affiliation(s)
| | | | | | - Hai Sun
- Department of Neurosurgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| |
Collapse
|
5
|
Schoeters R, Tarnaud T, Weyn L, Joseph W, Raedt R, Tanghe E. Quantitative analysis of the optogenetic excitability of CA1 neurons. Front Comput Neurosci 2023; 17:1229715. [PMID: 37649730 PMCID: PMC10465168 DOI: 10.3389/fncom.2023.1229715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/27/2023] [Indexed: 09/01/2023] Open
Abstract
Introduction Optogenetics has emerged as a promising technique for modulating neuronal activity and holds potential for the treatment of neurological disorders such as temporal lobe epilepsy (TLE). However, clinical translation still faces many challenges. This in-silico study aims to enhance the understanding of optogenetic excitability in CA1 cells and to identify strategies for improving stimulation protocols. Methods Employing state-of-the-art computational models coupled with Monte Carlo simulated light propagation, the optogenetic excitability of four CA1 cells, two pyramidal and two interneurons, expressing ChR2(H134R) is investigated. Results and discussion The results demonstrate that confining the opsin to specific neuronal membrane compartments significantly improves excitability. An improvement is also achieved by focusing the light beam on the most excitable cell region. Moreover, the perpendicular orientation of the optical fiber relative to the somato-dendritic axis yields superior results. Inter-cell variability is observed, highlighting the importance of considering neuron degeneracy when designing optogenetic tools. Opsin confinement to the basal dendrites of the pyramidal cells renders the neuron the most excitable. A global sensitivity analysis identified opsin location and expression level as having the greatest impact on simulation outcomes. The error reduction of simulation outcome due to coupling of neuron modeling with light propagation is shown. The results promote spatial confinement and increased opsin expression levels as important improvement strategies. On the other hand, uncertainties in these parameters limit precise determination of the irradiance thresholds. This study provides valuable insights on optogenetic excitability of CA1 cells useful for the development of improved optogenetic stimulation protocols for, for instance, TLE treatment.
Collapse
Affiliation(s)
- Ruben Schoeters
- WAVES, Department of Information Technology (INTEC), Ghent University/IMEC, Ghent, Belgium
- 4BRAIN, Department of Neurology, Institute for Neuroscience, Ghent University, Ghent, Belgium
| | - Thomas Tarnaud
- WAVES, Department of Information Technology (INTEC), Ghent University/IMEC, Ghent, Belgium
| | - Laila Weyn
- WAVES, Department of Information Technology (INTEC), Ghent University/IMEC, Ghent, Belgium
- 4BRAIN, Department of Neurology, Institute for Neuroscience, Ghent University, Ghent, Belgium
| | - Wout Joseph
- WAVES, Department of Information Technology (INTEC), Ghent University/IMEC, Ghent, Belgium
| | - Robrecht Raedt
- 4BRAIN, Department of Neurology, Institute for Neuroscience, Ghent University, Ghent, Belgium
| | - Emmeric Tanghe
- WAVES, Department of Information Technology (INTEC), Ghent University/IMEC, Ghent, Belgium
| |
Collapse
|
6
|
Zhou Z, Wang X, Li X, Liao L. A bibliometric profile of optogenetics: quantitative and qualitative analyses. Front Neurosci 2023; 17:1221316. [PMID: 37424998 PMCID: PMC10323434 DOI: 10.3389/fnins.2023.1221316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Optogenetics is a rapidly developing field combining optics and genetics, with promising applications in neuroscience and beyond. However, there is currently a lack of bibliometric analyses examining publications in this area. Method Publications on optogenetics were gathered from the Web of Science Core Collection Database. A quantitative analysis was conducted to gain insights into the annual scientific output, and distribution of authors, journals, subject categories, countries, and institutions. Additionally, qualitative analysis, such as co-occurrence network analysis, thematic analysis, and theme evolution, were performed to identify the main areas and trends of optogenetics articles. Results A total of 6,824 publications were included for analysis. The number of articles has rapidly grown since 2010, with an annual growth rate of 52.82%. Deisseroth K, Boyden ES, and Hegemann P were the most prolific contributors to the field. The United States contributed the most articles (3,051 articles), followed by China (623 articles). A majority of optogenetics-related articles are published in high-quality journals, including NATURE, SCIENCE, and CELL. These articles mainly belong to four subjects: neurosciences, biochemistry and molecular biology, neuroimaging, and materials science. Co-occurrence keyword network analysis identified three clusters: optogenetic components and techniques, optogenetics and neural circuitry, optogenetics and disease. Conclusion The results suggest that optogenetics research is flourishing, focusing on optogenetic techniques and their applications in neural circuitry exploration and disease intervention. Optogenetics is expected to remain a hot topic in various fields in the future.
Collapse
Affiliation(s)
- Zhonghan Zhou
- Shandong University, Jinan, Shandong, China
- Department of Urology, China Rehabilitation Research Center, Beijing, China
- University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Xuesheng Wang
- Department of Urology, China Rehabilitation Research Center, Beijing, China
- University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- School of Rehabilitation, Capital Medical University, Beijing, China
| | - Xunhua Li
- Department of Urology, China Rehabilitation Research Center, Beijing, China
- University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- School of Rehabilitation, Capital Medical University, Beijing, China
| | - Limin Liao
- Shandong University, Jinan, Shandong, China
- Department of Urology, China Rehabilitation Research Center, Beijing, China
- University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- School of Rehabilitation, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Froula JM, Hastings SD, Krook-Magnuson E. The little brain and the seahorse: Cerebellar-hippocampal interactions. Front Syst Neurosci 2023; 17:1158492. [PMID: 37034014 PMCID: PMC10076554 DOI: 10.3389/fnsys.2023.1158492] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
There is a growing appreciation for the cerebellum beyond its role in motor function and accumulating evidence that the cerebellum and hippocampus interact across a range of brain states and behaviors. Acute and chronic manipulations, simultaneous recordings, and imaging studies together indicate coordinated coactivation and a bidirectional functional connectivity relevant for various physiological functions, including spatiotemporal processing. This bidirectional functional connectivity is likely supported by multiple circuit paths. It is also important in temporal lobe epilepsy: the cerebellum is impacted by seizures and epilepsy, and modulation of cerebellar circuitry can be an effective strategy to inhibit hippocampal seizures. This review highlights some of the recent key hippobellum literature.
Collapse
Affiliation(s)
- Jessica M. Froula
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | | | | |
Collapse
|
8
|
Stieve BJ, Smith MM, Krook-Magnuson E. LINCs Are Vulnerable to Epileptic Insult and Fail to Provide Seizure Control via On-Demand Activation. eNeuro 2023; 10:ENEURO.0195-22.2022. [PMID: 36725340 PMCID: PMC9933934 DOI: 10.1523/eneuro.0195-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 02/03/2023] Open
Abstract
Temporal lobe epilepsy (TLE) is notoriously pharmacoresistant, and identifying novel therapeutic targets for controlling seizures is crucial. Long-range inhibitory neuronal nitric oxide synthase-expressing cells (LINCs), a population of hippocampal neurons, were recently identified as a unique source of widespread inhibition in CA1, able to elicit both GABAA-mediated and GABAB-mediated postsynaptic inhibition. We therefore hypothesized that LINCs could be an effective target for seizure control. LINCs were optogenetically activated for on-demand seizure intervention in the intrahippocampal kainate (KA) mouse model of chronic TLE. Unexpectedly, LINC activation at 1 month post-KA did not substantially reduce seizure duration in either male or female mice. We tested two different sets of stimulation parameters, both previously found to be effective with on-demand optogenetic approaches, but neither was successful. Quantification of LINCs following intervention revealed a substantial reduction of LINC numbers compared with saline-injected controls. We also observed a decreased number of LINCs when the site of initial insult (i.e., KA injection) was moved to the amygdala [basolateral amygdala (BLA)-KA], and correspondingly, no effect of light delivery on BLA-KA seizures. This indicates that LINCs may be a vulnerable population in TLE, regardless of the site of initial insult. To determine whether long-term circuitry changes could influence outcomes, we continued testing once a month for up to 6 months post-KA. However, at no time point did LINC activation provide meaningful seizure suppression. Altogether, our results suggest that LINCs are not a promising target for seizure inhibition in TLE.
Collapse
Affiliation(s)
- Bethany J Stieve
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Madison M Smith
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Esther Krook-Magnuson
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
9
|
McFarlan AR, Chou CYC, Watanabe A, Cherepacha N, Haddad M, Owens H, Sjöström PJ. The plasticitome of cortical interneurons. Nat Rev Neurosci 2023; 24:80-97. [PMID: 36585520 DOI: 10.1038/s41583-022-00663-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2022] [Indexed: 12/31/2022]
Abstract
Hebb postulated that, to store information in the brain, assemblies of excitatory neurons coding for a percept are bound together via associative long-term synaptic plasticity. In this view, it is unclear what role, if any, is carried out by inhibitory interneurons. Indeed, some have argued that inhibitory interneurons are not plastic. Yet numerous recent studies have demonstrated that, similar to excitatory neurons, inhibitory interneurons also undergo long-term plasticity. Here, we discuss the many diverse forms of long-term plasticity that are found at inputs to and outputs from several types of cortical inhibitory interneuron, including their plasticity of intrinsic excitability and their homeostatic plasticity. We explain key plasticity terminology, highlight key interneuron plasticity mechanisms, extract overarching principles and point out implications for healthy brain functionality as well as for neuropathology. We introduce the concept of the plasticitome - the synaptic plasticity counterpart to the genome or the connectome - as well as nomenclature and definitions for dealing with this rich diversity of plasticity. We argue that the great diversity of interneuron plasticity rules is best understood at the circuit level, for example as a way of elucidating how the credit-assignment problem is solved in deep biological neural networks.
Collapse
Affiliation(s)
- Amanda R McFarlan
- Centre for Research in Neuroscience, Department of Medicine, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
| | - Christina Y C Chou
- Centre for Research in Neuroscience, Department of Medicine, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
| | - Airi Watanabe
- Centre for Research in Neuroscience, Department of Medicine, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
| | - Nicole Cherepacha
- Centre for Research in Neuroscience, Department of Medicine, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Maria Haddad
- Centre for Research in Neuroscience, Department of Medicine, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
| | - Hannah Owens
- Centre for Research in Neuroscience, Department of Medicine, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
| | - P Jesper Sjöström
- Centre for Research in Neuroscience, Department of Medicine, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
| |
Collapse
|
10
|
Bauer J, Devinsky O, Rothermel M, Koch H. Autonomic dysfunction in epilepsy mouse models with implications for SUDEP research. Front Neurol 2023; 13:1040648. [PMID: 36686527 PMCID: PMC9853197 DOI: 10.3389/fneur.2022.1040648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/12/2022] [Indexed: 01/09/2023] Open
Abstract
Epilepsy has a high prevalence and can severely impair quality of life and increase the risk of premature death. Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death in drug-resistant epilepsy and most often results from respiratory and cardiac impairments due to brainstem dysfunction. Epileptic activity can spread widely, influencing neuronal activity in regions outside the epileptic network. The brainstem controls cardiorespiratory activity and arousal and reciprocally connects to cortical, diencephalic, and spinal cord areas. Epileptic activity can propagate trans-synaptically or via spreading depression (SD) to alter brainstem functions and cause cardiorespiratory dysfunction. The mechanisms by which seizures propagate to or otherwise impair brainstem function and trigger the cascading effects that cause SUDEP are poorly understood. We review insights from mouse models combined with new techniques to understand the pathophysiology of epilepsy and SUDEP. These techniques include in vivo, ex vivo, invasive and non-invasive methods in anesthetized and awake mice. Optogenetics combined with electrophysiological and optical manipulation and recording methods offer unique opportunities to study neuronal mechanisms under normal conditions, during and after non-fatal seizures, and in SUDEP. These combined approaches can advance our understanding of brainstem pathophysiology associated with seizures and SUDEP and may suggest strategies to prevent SUDEP.
Collapse
Affiliation(s)
- Jennifer Bauer
- Department of Epileptology and Neurology, RWTH Aachen University, Aachen, Germany,Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Orrin Devinsky
- Departments of Neurology, Neurosurgery and Psychiatry, NYU Langone School of Medicine, New York, NY, United States
| | - Markus Rothermel
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Henner Koch
- Department of Epileptology and Neurology, RWTH Aachen University, Aachen, Germany,*Correspondence: Henner Koch ✉
| |
Collapse
|
11
|
Wheless JW, Friedman D, Krauss GL, Rao VR, Sperling MR, Carrazana E, Rabinowicz AL. Future Opportunities for Research in Rescue Treatments. Epilepsia 2022; 63 Suppl 1:S55-S68. [PMID: 35822912 PMCID: PMC9541657 DOI: 10.1111/epi.17363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/16/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022]
Abstract
Clinical studies of rescue medications for seizure clusters are limited and are designed to satisfy regulatory requirements, which may not fully consider the needs of the diverse patient population that experiences seizure clusters or utilize rescue medication. The purpose of this narrative review is to examine the factors that contribute to, or may influence the quality of, seizure cluster research with a goal of improving clinical practice. We address five areas of unmet needs and provide advice for how they could enhance future trials of seizure cluster treatments. The topics addressed in this article are: (1) unaddressed end points to pursue in future studies, (2) roles for devices to enhance rescue medication clinical development programs, (3) tools to study seizure cluster prediction and prevention, (4) the value of other designs for seizure cluster studies, and (5) unique challenges of future trial paradigms for seizure clusters. By focusing on novel end points and technologies with value to patients, caregivers, and clinicians, data obtained from future studies can benefit the diverse patient population that experiences seizure clusters, providing more effective, appropriate care as well as alleviating demands on health care resources.
Collapse
Affiliation(s)
- James W Wheless
- Le Bonheur Children's Hospital, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Daniel Friedman
- New York University Grossman School of Medicine, New York, New York, USA
| | - Gregory L Krauss
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vikram R Rao
- University of California, San Francisco, California, USA
| | | | - Enrique Carrazana
- Neurelis, San Diego, California, USA.,John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | | |
Collapse
|
12
|
Buchanan GF. Light, Kindling, Action! Brain-Wide Circuit Changes After Optogenetic Hippocampal Kindling Revealed by Functional Magnetic Resonance Imaging. Epilepsy Curr 2022; 22:190-191. [PMID: 36474835 PMCID: PMC9684594 DOI: 10.1177/15357597221083405] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Affiliation(s)
- Gordon F Buchanan
- University of Iowa Roy J and Lucille A Carver College of Medicine, USA
| |
Collapse
|
13
|
Mueller JS, Tescarollo FC, Sun H. DREADDs in Epilepsy Research: Network-Based Review. Front Mol Neurosci 2022; 15:863003. [PMID: 35465094 PMCID: PMC9021489 DOI: 10.3389/fnmol.2022.863003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
Epilepsy can be interpreted as altered brain rhythms from overexcitation or insufficient inhibition. Chemogenetic tools have revolutionized neuroscience research because they allow "on demand" excitation or inhibition of neurons with high cellular specificity. Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) are the most frequently used chemogenetic techniques in epilepsy research. These engineered muscarinic receptors allow researchers to excite or inhibit targeted neurons with exogenous ligands. As a result, DREADDs have been applied to investigate the underlying cellular and network mechanisms of epilepsy. Here, we review the existing literature that has applied DREADDs to understand the pathophysiology of epilepsy. The aim of this review is to provide a general introduction to DREADDs with a focus on summarizing the current main findings in experimental epilepsy research using these techniques. Furthermore, we explore how DREADDs may be applied therapeutically as highly innovative treatments for epilepsy.
Collapse
Affiliation(s)
| | | | - Hai Sun
- Department of Neurosurgery, Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| |
Collapse
|
14
|
Yousfan A, Rubio N, Al-Ali M, Nattouf AH, Kafa H. Intranasal delivery of phenytoin-loaded nanoparticles to the brain suppresses pentylenetetrazol-induced generalized tonic clonic seizures in an epilepsy mouse model. Biomater Sci 2021; 9:7547-7564. [PMID: 34652351 DOI: 10.1039/d1bm01251g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work we describe the preparation and characterization of lecithin-chitosan nanoparticles (L10Ci+), and investigate their ability to deliver the anti-epileptic drug phenytoin (PHT) to mouse brain following intranasal (IN) administration. L10Ci+ were retained in the nasal cavity compared to PHT in PEG200 solution (PHT/PEG), which suffered immediate nasal drainage. PHT was detected in the brain after 5 min of IN administration reaching a maximum of 11.84 ± 2.31 %ID g-1 after 48 hours. L10Ci+ were associated with a higher brain/plasma ratio (Cb/p) compared to the experimental control comprising free PHT injected via the intraperitoneal route (PHT-IP) across all tested time points. Additionally, L10Ci+ led to lower PHT accumulation in the liver and spleen compared to PHT-IP, which is vital for lowering the systemic side effects of PHT. The relatively high drug targeting efficiency (DTE%) of 315.46% and the drug targeting percentage (DTP%) of 68.29%, combined with the increasing anterior-to-posterior gradient of PHT in the brain confirmed the direct nose-to-brain transport of PHT from L10Ci+. Electroencephalogram (EEG) analysis was used to monitor seizure progression. L10Ci+ resulted in a complete seizure suppression after 4 hours of administration, and this inhibition persisted even with an 8-fold reduction of the encapsulated dose compared to the required PHT-IP dose to achieve a similar inhibitory effect due to systemic loss. The presented findings confirm the possibility of using L10Ci+ as a non-invasive delivery system of PHT for the management of epilepsy using reduced doses of PHT.
Collapse
Affiliation(s)
- Amal Yousfan
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Damascus University, Syria
| | - Noelia Rubio
- Department of Chemistry and Materials, Imperial College London, SW7 2AZ, UK
| | - Mohammad Al-Ali
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria, Damascus, Syria.
| | - Abdul Hakim Nattouf
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Damascus University, Syria
| | - Houmam Kafa
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria, Damascus, Syria.
| |
Collapse
|
15
|
Sjöström PJ. Grand Challenge at the Frontiers of Synaptic Neuroscience. Front Synaptic Neurosci 2021; 13:748937. [PMID: 34759809 PMCID: PMC8575031 DOI: 10.3389/fnsyn.2021.748937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/22/2021] [Indexed: 11/24/2022] Open
Affiliation(s)
- P. Jesper Sjöström
- Department of Medicine, Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| |
Collapse
|
16
|
Keshmiri Neghab H, Soheilifar MH, Grusch M, Ortega MM, Esmaeeli Djavid G, Saboury AA, Goliaei B. The state of the art of biomedical applications of optogenetics. Lasers Surg Med 2021; 54:202-216. [PMID: 34363230 DOI: 10.1002/lsm.23463] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 07/08/2021] [Accepted: 07/23/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND OBJECTIVE Optogenetics has opened new insights into biomedical research with the ability to manipulate and control cellular activity using light in combination with genetically engineered photosensitive proteins. By stimulating with light, this method provides high spatiotemporal and high specificity resolution, which is in contrast to conventional pharmacological or electrical stimulation. Optogenetics was initially introduced to control neural activities but was gradually extended to other biomedical fields. STUDY DESIGN In this paper, firstly, we summarize the current optogenetic tools stimulated by different light sources, including lasers, light-emitting diodes, and laser diodes. Second, we outline the variety of biomedical applications of optogenetics not only for neuronal circuits but also for various kinds of cells and tissues from cardiomyocytes to ganglion cells. Furthermore, we highlight the potential of this technique for treating neurological disorders, cardiac arrhythmia, visual impairment, hearing loss, and urinary bladder diseases as well as clarify the mechanisms underlying cancer progression and control of stem cell differentiation. CONCLUSION We sought to summarize the various types of promising applications of optogenetics to treat a broad spectrum of disorders. It is conceivable to expect that optogenetics profits a growing number of patients suffering from a range of different diseases in the near future.
Collapse
Affiliation(s)
- Hoda Keshmiri Neghab
- Department of Photo Healing and Regeneration, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | | | - Michael Grusch
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Manoela Marques Ortega
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University, Bragança Paulista, São Paulo, Brazil
| | - Gholamreza Esmaeeli Djavid
- Department of Photo Healing and Regeneration, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Ali Akbar Saboury
- Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Bahram Goliaei
- Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
17
|
Karapinar R, Schwitalla JC, Eickelbeck D, Pakusch J, Mücher B, Grömmke M, Surdin T, Knöpfel T, Mark MD, Siveke I, Herlitze S. Reverse optogenetics of G protein signaling by zebrafish non-visual opsin Opn7b for synchronization of neuronal networks. Nat Commun 2021; 12:4488. [PMID: 34301944 PMCID: PMC8302595 DOI: 10.1038/s41467-021-24718-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/24/2021] [Indexed: 01/15/2023] Open
Abstract
Opn7b is a non-visual G protein-coupled receptor expressed in zebrafish. Here we find that Opn7b expressed in HEK cells constitutively activates the Gi/o pathway and illumination with blue/green light inactivates G protein-coupled inwardly rectifying potassium channels. This suggests that light acts as an inverse agonist for Opn7b and can be used as an optogenetic tool to inhibit neuronal networks in the dark and interrupt constitutive inhibition in the light. Consistent with this prediction, illumination of recombinant expressed Opn7b in cortical pyramidal cells results in increased neuronal activity. In awake mice, light stimulation of Opn7b expressed in pyramidal cells of somatosensory cortex reliably induces generalized epileptiform activity within a short (<10 s) delay after onset of stimulation. Our study demonstrates a reversed mechanism for G protein-coupled receptor control and Opn7b as a tool for controlling neural circuit properties.
Collapse
Affiliation(s)
- Raziye Karapinar
- Department of Zoology and Neurobiology, Ruhr-University Bochum, Bochum, Germany
- Laboratory of Optogenetics and Circuit Neuroscience, Imperial College London, London, UK
- The Francis Crick Institute, London, UK
| | | | - Dennis Eickelbeck
- Department of Zoology and Neurobiology, Ruhr-University Bochum, Bochum, Germany
- Laboratory of Optogenetics and Circuit Neuroscience, Imperial College London, London, UK
- The Francis Crick Institute, London, UK
| | - Johanna Pakusch
- Behavioral Neuroscience, Ruhr-University Bochum, Bochum, Germany
| | - Brix Mücher
- Department of Zoology and Neurobiology, Ruhr-University Bochum, Bochum, Germany
| | - Michelle Grömmke
- Behavioral Neuroscience, Ruhr-University Bochum, Bochum, Germany
| | - Tatjana Surdin
- Department of Zoology and Neurobiology, Ruhr-University Bochum, Bochum, Germany
| | - Thomas Knöpfel
- Laboratory of Optogenetics and Circuit Neuroscience, Imperial College London, London, UK
| | - Melanie D Mark
- Behavioral Neuroscience, Ruhr-University Bochum, Bochum, Germany.
| | - Ida Siveke
- Department of Zoology and Neurobiology, Ruhr-University Bochum, Bochum, Germany
- German Cancer Consortium (DKTK/DKFZ), West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Stefan Herlitze
- Department of Zoology and Neurobiology, Ruhr-University Bochum, Bochum, Germany.
| |
Collapse
|
18
|
Rasia-Filho AA, Guerra KTK, Vásquez CE, Dall’Oglio A, Reberger R, Jung CR, Calcagnotto ME. The Subcortical-Allocortical- Neocortical continuum for the Emergence and Morphological Heterogeneity of Pyramidal Neurons in the Human Brain. Front Synaptic Neurosci 2021; 13:616607. [PMID: 33776739 PMCID: PMC7991104 DOI: 10.3389/fnsyn.2021.616607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
Human cortical and subcortical areas integrate emotion, memory, and cognition when interpreting various environmental stimuli for the elaboration of complex, evolved social behaviors. Pyramidal neurons occur in developed phylogenetic areas advancing along with the allocortex to represent 70-85% of the neocortical gray matter. Here, we illustrate and discuss morphological features of heterogeneous spiny pyramidal neurons emerging from specific amygdaloid nuclei, in CA3 and CA1 hippocampal regions, and in neocortical layers II/III and V of the anterolateral temporal lobe in humans. Three-dimensional images of Golgi-impregnated neurons were obtained using an algorithm for the visualization of the cell body, dendritic length, branching pattern, and pleomorphic dendritic spines, which are specialized plastic postsynaptic units for most excitatory inputs. We demonstrate the emergence and development of human pyramidal neurons in the cortical and basomedial (but not the medial, MeA) nuclei of the amygdala with cells showing a triangular cell body shape, basal branched dendrites, and a short apical shaft with proximal ramifications as "pyramidal-like" neurons. Basomedial neurons also have a long and distally ramified apical dendrite not oriented to the pial surface. These neurons are at the beginning of the allocortex and the limbic lobe. "Pyramidal-like" to "classic" pyramidal neurons with laminar organization advance from the CA3 to the CA1 hippocampal regions. These cells have basal and apical dendrites with specific receptive synaptic domains and several spines. Neocortical pyramidal neurons in layers II/III and V display heterogeneous dendritic branching patterns adapted to the space available and the afferent inputs of each brain area. Dendritic spines vary in their distribution, density, shapes, and sizes (classified as stubby/wide, thin, mushroom-like, ramified, transitional forms, "atypical" or complex forms, such as thorny excrescences in the MeA and CA3 hippocampal region). Spines were found isolated or intermingled, with evident particularities (e.g., an extraordinary density in long, deep CA1 pyramidal neurons), and some showing a spinule. We describe spiny pyramidal neurons considerably improving the connectional and processing complexity of the brain circuits. On the other hand, these cells have some vulnerabilities, as found in neurodegenerative Alzheimer's disease and in temporal lobe epilepsy.
Collapse
Affiliation(s)
- Alberto A. Rasia-Filho
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Kétlyn T. Knak Guerra
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carlos Escobar Vásquez
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Aline Dall’Oglio
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Roman Reberger
- Medical Engineering Program, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Cláudio R. Jung
- Institute of Informatics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Maria Elisa Calcagnotto
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry and Biochemistry Graduate Program, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
19
|
Hannan S, Faulkner M, Aristovich K, Avery J, Walker MC, Holder DS. Optimised induction of on-demand focal hippocampal and neocortical seizures by electrical stimulation. J Neurosci Methods 2020; 346:108911. [DOI: 10.1016/j.jneumeth.2020.108911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 11/25/2022]
|
20
|
Won SM, Song E, Reeder JT, Rogers JA. Emerging Modalities and Implantable Technologies for Neuromodulation. Cell 2020; 181:115-135. [DOI: 10.1016/j.cell.2020.02.054] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/23/2020] [Accepted: 02/25/2020] [Indexed: 02/08/2023]
|
21
|
Cela E, Sjöström PJ. A Step-by-Step Protocol for Optogenetic Kindling. Front Neural Circuits 2020; 14:3. [PMID: 32116570 PMCID: PMC7025532 DOI: 10.3389/fncir.2020.00003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/10/2020] [Indexed: 11/13/2022] Open
Abstract
Electrical kindling, repeated brain stimulation eventually resulting in seizures, is widely used as an animal model of epileptogenesis and epilepsy. However, the stimulation electrode used for electric kindling targets unknown neuronal populations and may introduce tissue damage and inflammation. Optogenetics can be used to circumvent these shortcomings by permitting millisecond control of activity in genetically defined neurons without gross injury or inflammation. Here we describe an easy step-by-step protocol for optogenetic kindling - optokindling - by which seizures are eventually elicited in initially healthy mice through repeated light stimulation of neurons expressing Channelrhodopsin-2 (ChR2). Chronic EEG recordings may be performed over large time scales to monitor activity while video camera monitoring may be used to assess the behavioral severity of seizures. In conclusion, with optokindling, neuroscientists can elucidate the circuit changes that underpin epilepsy while minimizing the contribution of confounding factors such as brain damage and inflammation.
Collapse
Affiliation(s)
- Elvis Cela
- Brain Repair and Integrative Neuroscience Program, Centre for Research in Neuroscience, Department of Medicine, Department of Neurology and Neurosurgery, Montreal General Hospital, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - P Jesper Sjöström
- Brain Repair and Integrative Neuroscience Program, Centre for Research in Neuroscience, Department of Medicine, Department of Neurology and Neurosurgery, Montreal General Hospital, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
22
|
Two-Photon Excitation of Azobenzene Photoswitches for Synthetic Optogenetics. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10030805] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Synthetic optogenetics is an emerging optical technique that enables users to photocontrol molecules, proteins, and cells in vitro and in vivo. This is achieved by use of synthetic chromophores—denoted photoswitches—that undergo light-dependent changes (e.g., isomerization), which are meticulously designed to interact with unique cellular targets, notably proteins. Following light illumination, the changes adopted by photoswitches are harnessed to affect the function of nearby proteins. In most instances, photoswitches absorb visible light, wavelengths of poor tissue penetration, and excessive scatter. These shortcomings impede their use in vivo. To overcome these challenges, photoswitches of red-shifted absorbance have been developed. Notably, this shift in absorbance also increases their compatibility with two-photon excitation (2PE) methods. Here, we provide an overview of recent efforts devoted towards optimizing azobenzene-based photoswitches for 2PE and their current applications.
Collapse
|