1
|
Gerasimov E, Pchitskaya E, Vlasova O, Bezprozvanny I. Dynamic changes in the hippocampal neuronal circuits activity following acute stress revealed by miniature fluorescence microscopy imaging. Mol Brain 2024; 17:92. [PMID: 39695833 DOI: 10.1186/s13041-024-01168-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
Coordinated activity of neuronal ensembles is a basis for information processing in the brain. Recent development of miniscope imaging technology enabled recordings of neuronal circuits activity in vivo in freely behaving animals. Acute stress is believed to affect various hippocampal functions, especially memory. In the current study, we utilized miniscope imaging to investigate the hippocampal neuronal circuits properties in a mouse as function of time and immediately in response to an acute stress, induced by passive restraint, 3 h and 10 days after. Comprehensive quantitative analysis of network activity changes at the neuronal ensembles level revealed highly stable neuronal activity parameters, which exhibited a rapid and robust shift in response to acute stress stimulation. This shift was accompanied by the restructuring of the pairwise-correlated neuronal pairs. Remarkably, we discovered that ensembles activity characteristics returned to the initial state following recovery period, demonstrating hippocampal homeostatic stability at the neuronal circuits level. Obtained results provide an evidence about hippocampal neuronal ensembles activity in response to acute stress over time.
Collapse
Affiliation(s)
- Evgenii Gerasimov
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya St. 29, 195220, St. Petersburg, Russia.
| | - Ekaterina Pchitskaya
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya St. 29, 195220, St. Petersburg, Russia
| | - Olga Vlasova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya St. 29, 195220, St. Petersburg, Russia
| | - Ilya Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya St. 29, 195220, St. Petersburg, Russia.
| |
Collapse
|
2
|
Gonzalez-Ramos A, Puigsasllosas-Pastor C, Arcas-Marquez A, Tornero D. Updated Toolbox for Assessing Neuronal Network Reconstruction after Cell Therapy. Bioengineering (Basel) 2024; 11:487. [PMID: 38790353 PMCID: PMC11118929 DOI: 10.3390/bioengineering11050487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Cell therapy has proven to be a promising treatment for a range of neurological disorders, including Parkinson Disease, drug-resistant epilepsy, and stroke, by restoring function after brain damage. Nevertheless, evaluating the true effectiveness of these therapeutic interventions requires a deep understanding of the functional integration of grafted cells into existing neural networks. This review explores a powerful arsenal of molecular techniques revolutionizing our ability to unveil functional integration of grafted cells within the host brain. From precise manipulation of neuronal activity to pinpoint the functional contribution of transplanted cells by using opto- and chemo-genetics, to real-time monitoring of neuronal dynamics shedding light on functional connectivity within the reconstructed circuits by using genetically encoded (calcium) indicators in vivo. Finally, structural reconstruction and mapping communication pathways between grafted and host neurons can be achieved by monosynaptic tracing with viral vectors. The cutting-edge toolbox presented here holds immense promise for elucidating the impact of cell therapy on neural circuitry and guiding the development of more effective treatments for neurological disorders.
Collapse
Affiliation(s)
- Ana Gonzalez-Ramos
- Stanley Center for Psychiatric Research at Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Claudia Puigsasllosas-Pastor
- Laboratory of Neural Stem Cells and Brain Damage, Department of Biomedical Sciences, Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Ainhoa Arcas-Marquez
- Laboratory of Neural Stem Cells and Brain Damage, Department of Biomedical Sciences, Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Daniel Tornero
- Laboratory of Neural Stem Cells and Brain Damage, Department of Biomedical Sciences, Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28029 Madrid, Spain
| |
Collapse
|
3
|
Tabourin L, Bretzner F, Galstian T. Towards a mini-endoscope design with spatially selective excitation and imaging. BIOMEDICAL OPTICS EXPRESS 2024; 15:1750-1760. [PMID: 38495724 PMCID: PMC10942686 DOI: 10.1364/boe.512124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 03/19/2024]
Abstract
We describe a mini-endoscope design that uses a new type of electrically tunable liquid crystal lens array enabling the dynamic increase of spatial resolution by adjusting the working distance in various zones of interest over a relatively large field of view (FoV) without mechanical movement. The characterization of the system is performed by using uniform fluorescent films, fluorescent micro spheres and a tissue sample expressing the fluorescent calcium indicator GCaMP6s. Lateral resolution of up to 2 µm over the FoV between 300 µm - 400 µm is experimentally demonstrated.
Collapse
Affiliation(s)
- Loïc Tabourin
- Center for Optics, Photonics and Lasers (COPL), Faculty of Science and Engineering, Department of Physics, Engineering Physics and Optics, Université Laval, Québec, QC G1V 0A6, Canada
- Centre de Recherche du CHU de Québec, CHUL-Neurosciences, 2705 Boul. Laurier, Québec, QC G1V 4G2, Canada
| | - Frédéric Bretzner
- Centre de Recherche du CHU de Québec, CHUL-Neurosciences, 2705 Boul. Laurier, Québec, QC G1V 4G2, Canada
- Faculty of Medicine, Department of Psychiatry and Neurosciences, Université Laval, Québec, QC G1V 0A6, Canada
| | - Tigran Galstian
- Center for Optics, Photonics and Lasers (COPL), Faculty of Science and Engineering, Department of Physics, Engineering Physics and Optics, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
4
|
Bhatt V, Tiwari AK. Sirtuins, a key regulator of ageing and age-related neurodegenerative diseases. Int J Neurosci 2023; 133:1167-1192. [PMID: 35549800 DOI: 10.1080/00207454.2022.2057849] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 03/15/2022] [Indexed: 10/18/2022]
Abstract
Sirtuins are Nicotinamide Adenine Dinucleotide (NAD+) dependent class ІΙΙ histone deacetylases enzymes (HDACs) present from lower to higher organisms such as bacteria (Sulfolobus solfataricus L. major), yeasts (Saccharomyces cerevisiae), nematodes (Caenorhabditis elegans), fruit flies (Drosophila melanogaster), humans (Homo sapiens sapiens), even in plants such as rice (Oryza sativa), thale cress (Arabidopsis thaliana), vine (Vitis vinifera L.) tomato (Solanum lycopersicum). Sirtuins play an important role in the regulation of various vital cellular functions during metabolism and ageing. It also plays a neuroprotective role by modulating several biological pathways such as apoptosis, DNA repair, protein aggregation, and inflammatory processes associated with ageing and neurodegenerative diseases. In this review, we have presented an updated Sirtuins and its role in ageing and age-related neurodegenerative diseases (NDDs). Further, this review also describes the therapeutic potential of Sirtuins and the use of Sirtuins inhibitor/activator for altering the NDDs disease pathology.
Collapse
Affiliation(s)
- Vidhi Bhatt
- Department of Biological Sciences & Biotechnology, Institute of Advanced Research, Koba, Gandhinagar, Gujarat, India
| | - Anand Krishna Tiwari
- Department of Biological Sciences & Biotechnology, Institute of Advanced Research, Koba, Gandhinagar, Gujarat, India
| |
Collapse
|
5
|
Kujawska M, Kaushik A. Exploring magneto-electric nanoparticles (MENPs): a platform for implanted deep brain stimulation. Neural Regen Res 2023; 18:129-130. [PMID: 35799528 PMCID: PMC9241387 DOI: 10.4103/1673-5374.340411] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
6
|
Barry J, Peng A, Levine MS, Cepeda C. Calcium imaging: A versatile tool to examine Huntington's disease mechanisms and progression. Front Neurosci 2022; 16:1040113. [PMID: 36408400 PMCID: PMC9669372 DOI: 10.3389/fnins.2022.1040113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Huntington's disease (HD) is a fatal, hereditary neurodegenerative disorder that causes chorea, cognitive deficits, and psychiatric symptoms. It is characterized by accumulation of mutant Htt protein, which primarily impacts striatal medium-sized spiny neurons (MSNs), as well as cortical pyramidal neurons (CPNs), causing synapse loss and eventually cell death. Perturbed Ca2+ homeostasis is believed to play a major role in HD, as altered Ca2+ homeostasis often precedes striatal dysfunction and manifestation of HD symptoms. In addition, dysregulation of Ca2+ can cause morphological and functional changes in MSNs and CPNs. Therefore, Ca2+ imaging techniques have the potential of visualizing changes in Ca2+ dynamics and neuronal activity in HD animal models. This minireview focuses on studies using diverse Ca2+ imaging techniques, including two-photon microscopy, fiber photometry, and miniscopes, in combination of Ca2+ indicators to monitor activity of neurons in HD models as the disease progresses. We then discuss the future applications of Ca2+ imaging to visualize disease mechanisms and alterations associated with HD, as well as studies showing how, as a proof-of-concept, Ca2+imaging using miniscopes in freely-behaving animals can help elucidate the differential role of direct and indirect pathway MSNs in HD symptoms.
Collapse
Affiliation(s)
| | | | | | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center (IDDRC), Semel Institute for Neuroscience and Human Behavior, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
7
|
Chen K, Tian Z, Kong L. Advances of optical miniscopes for in vivo imaging of neural activity in freely moving animals. Front Neurosci 2022; 16:994079. [PMID: 36161177 PMCID: PMC9490007 DOI: 10.3389/fnins.2022.994079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/17/2022] [Indexed: 01/09/2023] Open
Abstract
To study neural mechanisms of ethologically relevant behaviors including many social behaviors and navigations, optical miniscopes, which can be carried by the model animals, are indispensable. Recently, a variety of optical miniscopes have been developed to meet this urgent requirement, and successfully applied in the study of neural network activity in free-moving mice, rats, and bats, etc. Generally, miniature fluorescence microscopes can be classified into single-photon and multi-photon fluorescence miniscopes, considering their differences in imaging mechanisms and hardware setups. In this review, we introduce their fundamental principles and system structures, summarize technical advances, and discuss limitations and future trends, for in vivo imaging of neural activity in freely moving animals.
Collapse
Affiliation(s)
- Kunpeng Chen
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, China
- Weiyang College, Tsinghua University, Beijing, China
| | - Zhaoshi Tian
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, China
- Weiyang College, Tsinghua University, Beijing, China
| | - Lingjie Kong
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, China
- Tsinghua-IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| |
Collapse
|
8
|
Vickstrom CR, Snarrenberg ST, Friedman V, Liu QS. Application of optogenetics and in vivo imaging approaches for elucidating the neurobiology of addiction. Mol Psychiatry 2022; 27:640-651. [PMID: 34145393 PMCID: PMC9190069 DOI: 10.1038/s41380-021-01181-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/26/2021] [Indexed: 02/05/2023]
Abstract
The neurobiology of addiction has been an intense topic of investigation for more than 50 years. Over this time, technological innovation in methods for studying brain function rapidly progressed, leading to increasingly sophisticated experimental approaches. To understand how specific brain regions, cell types, and circuits are affected by drugs of abuse and drive behaviors characteristic of addiction, it is necessary both to observe and manipulate neural activity in addiction-related behavioral paradigms. In pursuit of this goal, there have been several key technological advancements in in vivo imaging and neural circuit modulation in recent years, which have shed light on the cellular and circuit mechanisms of addiction. Here we discuss some of these key technologies, including circuit modulation with optogenetics, in vivo imaging with miniaturized single-photon microscopy (miniscope) and fiber photometry, and how the application of these technologies has garnered novel insights into the neurobiology of addiction.
Collapse
|
9
|
Chen K, Stieger KC, Kozai TD. Challenges and opportunities of advanced gliomodulation technologies for excitation-inhibition balance of brain networks. Curr Opin Biotechnol 2021; 72:112-120. [PMID: 34773740 PMCID: PMC8671375 DOI: 10.1016/j.copbio.2021.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/02/2021] [Accepted: 10/16/2021] [Indexed: 12/13/2022]
Abstract
Recent neuroscience studies have highlighted the critical role of glial cells in information processing. This has increased the demand for technologies that selectively modulate glial cells that regulate the excitation-inhibition balance of neural network function. Engineered technologies that modulate glial activity may be necessary for precise tuning of neural network activity in higher-order brain function. This perspective summarizes how glial cells regulate excitation and inhibition of neural circuits, highlights available technologies for glial modulation, and discusses current challenges and potential opportunities for glial engineering technologies.
Collapse
Affiliation(s)
- Keying Chen
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kevin C Stieger
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Takashi Dy Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA.
| |
Collapse
|
10
|
Beacher NJ, Washington KA, Werner CT, Zhang Y, Barbera G, Li Y, Lin DT. Circuit Investigation of Social Interaction and Substance Use Disorder Using Miniscopes. Front Neural Circuits 2021; 15:762441. [PMID: 34675782 PMCID: PMC8523886 DOI: 10.3389/fncir.2021.762441] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 09/16/2021] [Indexed: 12/02/2022] Open
Abstract
Substance use disorder (SUD) is comorbid with devastating health issues, social withdrawal, and isolation. Successful clinical treatments for SUD have used social interventions. Neurons can encode drug cues, and drug cues can trigger relapse. It is important to study how the activity in circuits and embedded cell types that encode drug cues develop in SUD. Exploring shared neurobiology between social interaction (SI) and SUD may explain why humans with access to social treatments still experience relapse. However, circuitry remains poorly characterized due to technical challenges in studying the complicated nature of SI and SUD. To understand the neural correlates of SI and SUD, it is important to: (1) identify cell types and circuits associated with SI and SUD, (2) record and manipulate neural activity encoding drug and social rewards over time, (3) monitor unrestrained animal behavior that allows reliable drug self-administration (SA) and SI. Miniaturized fluorescence microscopes (miniscopes) are ideally suited to meet these requirements. They can be used with gradient index (GRIN) lenses to image from deep brain structures implicated in SUD. Miniscopes can be combined with genetically encoded reporters to extract cell-type specific information. In this mini-review, we explore how miniscopes can be leveraged to uncover neural components of SI and SUD and advance potential therapeutic interventions.
Collapse
Affiliation(s)
- Nicholas J. Beacher
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Kayden A. Washington
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Craig T. Werner
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
- Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, United States
| | - Yan Zhang
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Giovanni Barbera
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Yun Li
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, United States
| | - Da-Ting Lin
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
11
|
Calvo-Rodriguez M, Kharitonova EK, Bacskai BJ. In vivo brain imaging of mitochondrial Ca 2+ in neurodegenerative diseases with multiphoton microscopy. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2021; 1868:118998. [PMID: 33684410 PMCID: PMC8057769 DOI: 10.1016/j.bbamcr.2021.118998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/22/2021] [Indexed: 10/22/2022]
Abstract
Mitochondria are involved in a large number of essential roles related to neuronal function. Ca2+ handling by mitochondria is critical for many of these functions, including energy production and cellular fate. Conversely, mitochondrial Ca2+ mishandling has been related to a variety of neurodegenerative diseases. Investigating mitochondrial Ca2+ dynamics is essential for advancing our understanding of the role of intracellular mitochondrial Ca2+ signals in physiology and pathology. Improved Ca2+ indicators, and the ability to target them to different cells and compartments, have emerged as useful tools for analysis of Ca2+ signals in living organisms. Combined with state-of-the-art techniques such as multiphoton microscopy, they allow for the study of mitochondrial Ca2+ dynamics in vivo in mouse models of the disease. Here, we provide an overview of the Ca2+ transporters/ion channels in mitochondrial membranes, and the involvement of mitochondrial Ca2+ in neurodegenerative diseases followed by a summary of the main tools available to evaluate mitochondrial Ca2+ dynamics in vivo using the aforementioned technique.
Collapse
Affiliation(s)
- Maria Calvo-Rodriguez
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St, Charlestown, MA, 02129, USA.
| | - Elizabeth K Kharitonova
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St, Charlestown, MA, 02129, USA
| | - Brian J Bacskai
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St, Charlestown, MA, 02129, USA
| |
Collapse
|
12
|
Sullivan JA, Dumont JR, Memar S, Skirzewski M, Wan J, Mofrad MH, Ansari HZ, Li Y, Muller L, Prado VF, Prado MAM, Saksida LM, Bussey TJ. New frontiers in translational research: Touchscreens, open science, and the mouse translational research accelerator platform. GENES BRAIN AND BEHAVIOR 2020; 20:e12705. [PMID: 33009724 DOI: 10.1111/gbb.12705] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/03/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022]
Abstract
Many neurodegenerative and neuropsychiatric diseases and other brain disorders are accompanied by impairments in high-level cognitive functions including memory, attention, motivation, and decision-making. Despite several decades of extensive research, neuroscience is little closer to discovering new treatments. Key impediments include the absence of validated and robust cognitive assessment tools for facilitating translation from animal models to humans. In this review, we describe a state-of-the-art platform poised to overcome these impediments and improve the success of translational research, the Mouse Translational Research Accelerator Platform (MouseTRAP), which is centered on the touchscreen cognitive testing system for rodents. It integrates touchscreen-based tests of high-level cognitive assessment with state-of-the art neurotechnology to record and manipulate molecular and circuit level activity in vivo in animal models during human-relevant cognitive performance. The platform also is integrated with two Open Science platforms designed to facilitate knowledge and data-sharing practices within the rodent touchscreen community, touchscreencognition.org and mousebytes.ca. Touchscreencognition.org includes the Wall, showcasing touchscreen news and publications, the Forum, for community discussion, and Training, which includes courses, videos, SOPs, and symposia. To get started, interested researchers simply create user accounts. We describe the origins of the touchscreen testing system, the novel lines of research it has facilitated, and its increasingly widespread use in translational research, which is attributable in part to knowledge-sharing efforts over the past decade. We then identify the unique features of MouseTRAP that stand to potentially revolutionize translational research, and describe new initiatives to partner with similar platforms such as McGill's M3 platform (m3platform.org).
Collapse
Affiliation(s)
- Jacqueline A Sullivan
- Department of Philosophy, The University of Western Ontario, Ontario, Canada.,Rotman Institute of Philosophy, The University of Western Ontario, Ontario, Canada.,Brain and Mind Institute, The University of Western Ontario, Ontario, Canada
| | - Julie R Dumont
- BrainsCAN, The University of Western Ontario, Ontario, Canada.,Robarts Research Institute, The University of Western Ontario, Ontario, Canada
| | - Sara Memar
- Robarts Research Institute, The University of Western Ontario, Ontario, Canada
| | - Miguel Skirzewski
- BrainsCAN, The University of Western Ontario, Ontario, Canada.,Robarts Research Institute, The University of Western Ontario, Ontario, Canada
| | - Jinxia Wan
- Division of Sciences, State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China.,PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Maryam H Mofrad
- Brain and Mind Institute, The University of Western Ontario, Ontario, Canada.,Department of Applied Mathematics, The University of Western Ontario, Ontario, Canada
| | | | - Yulong Li
- Division of Sciences, State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China.,PKU-IDG/McGovern Institute for Brain Research, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Lyle Muller
- Brain and Mind Institute, The University of Western Ontario, Ontario, Canada.,Department of Applied Mathematics, The University of Western Ontario, Ontario, Canada
| | - Vania F Prado
- Robarts Research Institute, The University of Western Ontario, Ontario, Canada.,Department of Anatomy and Cell Biology, The University of Western Ontario, Ontario, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, Ontario, Canada
| | - Marco A M Prado
- Robarts Research Institute, The University of Western Ontario, Ontario, Canada.,Department of Anatomy and Cell Biology, The University of Western Ontario, Ontario, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, Ontario, Canada
| | - Lisa M Saksida
- Brain and Mind Institute, The University of Western Ontario, Ontario, Canada.,BrainsCAN, The University of Western Ontario, Ontario, Canada.,Robarts Research Institute, The University of Western Ontario, Ontario, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, Ontario, Canada
| | - Timothy J Bussey
- Brain and Mind Institute, The University of Western Ontario, Ontario, Canada.,BrainsCAN, The University of Western Ontario, Ontario, Canada.,Robarts Research Institute, The University of Western Ontario, Ontario, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, Ontario, Canada.,Department of Psychiatry, The University of Western Ontario, Ontario, Canada
| |
Collapse
|
13
|
Morrison KE. Animal models built for women's brain health: Progress and potential. Front Neuroendocrinol 2020; 59:100872. [PMID: 32961121 PMCID: PMC7669558 DOI: 10.1016/j.yfrne.2020.100872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/29/2020] [Accepted: 09/15/2020] [Indexed: 12/21/2022]
Abstract
Women and men have different levels of risk for a variety of brain disorders. Despite this well-known epidemiological finding, preclinical work utilizing animal models has historically only included male animals. The policies of funders to require consideration of sex as a biological variable has shifted the momentum to include female animals in preclinical neuroscience and to report findings by sex. However, there are many biological questions related to brain health that go beyond sex differences and are indeed specific to women. Here, the focus is on why animal models should be utilized in the pursuit of understanding women's brain health, a brief overview of what they have provided thus far, and why they still hold tremendous promise. This review concludes with a set of suggestions for how to begin to pursue translational animal models in a way that facilitates rapid success and harnesses the most powerful aspects of animal models.
Collapse
|
14
|
Bacmeister CM, Barr HJ, McClain CR, Thornton MA, Nettles D, Welle CG, Hughes EG. Motor learning promotes remyelination via new and surviving oligodendrocytes. Nat Neurosci 2020; 23:819-831. [PMID: 32424285 PMCID: PMC7329620 DOI: 10.1038/s41593-020-0637-3] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 04/07/2020] [Indexed: 11/24/2022]
Abstract
Oligodendrocyte loss in neurological disease leaves axons vulnerable to damage and degeneration, and activity-dependent myelination may represent an endogenous mechanism to improve remyelination following injury. Here, we report that while learning a forelimb reach task transiently suppresses oligodendrogenesis, it subsequently increases OPC differentiation, oligodendrocyte generation, and myelin sheath remodeling in the forelimb motor cortex. Immediately followingdemyelination, neurons exhibit hyperexcitability, learning is impaired, and behavioral intervention provides no benefit to remyelination. However, partial remyelination restores neuronal and behavioral function allowing learning to enhance oligodendrogenesis, remyelination of denuded axons, and the ability of surviving oligodendrocytes to generate new myelinsheaths. Previously considered controversial, we show that sheath generation by mature oligodendrocytes is not only possible but also increases myelin pattern preservation following demyelination, presenting a new target for therapeutic interventions. Together, our findings demonstrate that precisely-timed motor learning improves recovery from demyelinating injury via enhanced remyelination from new and surviving oligodendrocytes.
Collapse
Affiliation(s)
- Clara M Bacmeister
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Helena J Barr
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Crystal R McClain
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Michael A Thornton
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Dailey Nettles
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA.,Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, USA.,Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Cristin G Welle
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, USA.,Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ethan G Hughes
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
15
|
Vyas Y, Montgomery JM, Cheyne JE. Hippocampal Deficits in Amyloid-β-Related Rodent Models of Alzheimer's Disease. Front Neurosci 2020; 14:266. [PMID: 32317913 PMCID: PMC7154147 DOI: 10.3389/fnins.2020.00266] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/09/2020] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that is the most common cause of dementia. Symptoms of AD include memory loss, disorientation, mood and behavior changes, confusion, unfounded suspicions, and eventually, difficulty speaking, swallowing, and walking. These symptoms are caused by neuronal degeneration and cell loss that begins in the hippocampus, and later in disease progression spreading to the rest of the brain. While there are some medications that alleviate initial symptoms, there are currently no treatments that stop disease progression. Hippocampal deficits in amyloid-β-related rodent models of AD have revealed synaptic, behavioral and circuit-level defects. These changes in synaptic function, plasticity, neuronal excitability, brain connectivity, and excitation/inhibition imbalance all have profound effects on circuit function, which in turn could exacerbate disease progression. Despite, the wealth of studies on AD pathology we don't yet have a complete understanding of hippocampal deficits in AD. With the increasing development of in vivo recording techniques in awake and freely moving animals, future studies will extend our current knowledge of the mechanisms underpinning how hippocampal function is altered in AD, and aid in progression of treatment strategies that prevent and/or delay AD symptoms.
Collapse
Affiliation(s)
| | - Johanna M. Montgomery
- Department of Physiology, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Juliette E. Cheyne
- Department of Physiology, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
16
|
Blumenstock S, Dudanova I. Cortical and Striatal Circuits in Huntington's Disease. Front Neurosci 2020; 14:82. [PMID: 32116525 PMCID: PMC7025546 DOI: 10.3389/fnins.2020.00082] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/21/2020] [Indexed: 12/28/2022] Open
Abstract
Huntington's disease (HD) is a hereditary neurodegenerative disorder that typically manifests in midlife with motor, cognitive, and/or psychiatric symptoms. The disease is caused by a CAG triplet expansion in exon 1 of the huntingtin gene and leads to a severe neurodegeneration in the striatum and cortex. Classical electrophysiological studies in genetic HD mouse models provided important insights into the disbalance of excitatory, inhibitory and neuromodulatory inputs, as well as progressive disconnection between the cortex and striatum. However, the involvement of local cortical and striatal microcircuits still remains largely unexplored. Here we review the progress in understanding HD-related impairments in the cortical and basal ganglia circuits, and outline new opportunities that have opened with the development of modern circuit analysis methods. In particular, in vivo imaging studies in mouse HD models have demonstrated early structural and functional disturbances within the cortical network, and optogenetic manipulations of striatal cell types have started uncovering the causal roles of certain neuronal populations in disease pathogenesis. In addition, the important contribution of astrocytes to HD-related circuit defects has recently been recognized. In parallel, unbiased systems biology studies are providing insights into the possible molecular underpinnings of these functional defects at the level of synaptic signaling and neurotransmitter metabolism. With these approaches, we can now reach a deeper understanding of circuit-based HD mechanisms, which will be crucial for the development of effective and targeted therapeutic strategies.
Collapse
Affiliation(s)
- Sonja Blumenstock
- Department of Molecules – Signaling – Development, Max Planck Institute of Neurobiology, Martinsried, Germany
- Molecular Neurodegeneration Group, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Irina Dudanova
- Molecular Neurodegeneration Group, Max Planck Institute of Neurobiology, Martinsried, Germany
| |
Collapse
|