1
|
Ma XY, Qi CY, Xu XY, Li H, Liu CD, Wen XR, Fu YY, Liu Y, Liang J, Huang CY, Li DD, Li Y, Shen QC, Qi QZ, Zhu G, Wang N, Zhou XY, Song YJ. PRDX1 Interfering Peptide Disrupts Amino Acids 70-90 of PRDX1 to Inhibit the TLR4/NF-κB Signaling Pathway and Attenuate Neuroinflammation and Ischemic Brain Injury. Mol Neurobiol 2024; 61:10705-10721. [PMID: 38780721 DOI: 10.1007/s12035-024-04247-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Ischemic stroke ranks among the leading causes of death and disability in humans and is accompanied by motor and cognitive impairment. However, the precise mechanisms underlying injury after stroke and effective treatment strategies require further investigation. Peroxiredoxin-1 (PRDX1) triggers an extensive inflammatory cascade that plays a pivotal role in the pathology of ischemic stroke, resulting in severe brain damage from activated microglia. In the present study, we used molecular dynamics simulation and nuclear magnetic resonance to detect the interaction between PRDX1 and a specific interfering peptide. We used behavioral, morphological, and molecular experimental methods to demonstrate the effect of PRDX1-peptide on cerebral ischemia-reperfusion (I/R) in mice and to investigate the related mechanism. We found that PRDX1-peptide bound specifically to PRDX1 and improved motor and cognitive functions in I/R mice. In addition, pretreatment with PRDX1-peptide reduced the infarct area and decreased the number of apoptotic cells in the penumbra. Furthermore, PRDX1-peptide inhibited microglial activation and downregulated proinflammatory cytokines including IL-1β, IL-6, and TNF-α through inhibition of the TLR4/NF-κB signaling pathway, thereby attenuating ischemic brain injury. Our findings clarify the precise mechanism underlying PRDX1-induced inflammation after ischemic stroke and suggest that the PRDX1-peptide can significantly alleviate the postischemic inflammatory response by interfering with PRDX1 amino acids 70-90 and thereby inhibiting the TLR4/NF-κB signaling pathway. Our study provides a theoretical basis for a new therapeutic strategy to treat ischemic stroke.
Collapse
Affiliation(s)
- Xiang-Yu Ma
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, 221004, China
| | - Cheng-Yu Qi
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xing-Yi Xu
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, 221004, China
| | - Hui Li
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, 221004, China
| | - Chang-Dong Liu
- State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 00000, Hong Kong SAR, China
| | - Xiang-Ru Wen
- Department of Chemistry, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yan-Yan Fu
- Department of Cell Biology and Neurobiology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yan Liu
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jia Liang
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, 221004, China
| | - Cheng-Yu Huang
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, 221004, China
| | - Dan-Dan Li
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yan Li
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, 221004, China
| | - Qian-Cheng Shen
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, 221004, China
| | - Qian-Zhi Qi
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, 221004, China
| | - Guang Zhu
- State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 00000, Hong Kong SAR, China
| | - Nan Wang
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| | - Xiao-Yan Zhou
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Yuan-Jian Song
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, 221004, China.
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
2
|
Pan X, Ouyang H, Xiao X, Zhou X, Lai L. Analysis of different expression RNA binding protein genes in mouse microglia cell from the brains of mice 72 h after subarachnoid hemorrhage or sham operation. BMC Med Genomics 2024; 17:194. [PMID: 39095742 PMCID: PMC11295691 DOI: 10.1186/s12920-024-01972-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 07/28/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND The prognosis of brain injury caused by subarachnoid hemorrhage (SAH) is poor. Previous studies showed that abnormal function of RBPs might be involved in brain injury, neuroinflammation and further affect microglia homeostasis. However, no studies have systematically analyzed the genome-wide abnormal expression of RBPs genes in microglia during SAH. METHODS RNA-seq data of microglia from the SAH mouse group (SAH) and control sham-operated mouse group (sham) were downloaded from the GEO database in GSE167957, including four samples from the sham group and four samples from the SAH group for subsequent analysis.Utilizing GO and KEGG functional enrichment analyses, we conducted a comprehensive study of differentially expressed genes (DEGs), alternative splicing patterns, and co-expression networks to gain deeper insights into the differential expression of RNA-binding proteins (RBPs) and differential alternative splicing events (ASEs) between the SAH (subarachnoid hemorrhage) and sham groups. This analysis aimed to elucidate the potential mechanisms underlying the aberrant expression of RBPs in microglia during brain injury caused by SAH. RESULTS ASEs and co-expression analyses of differentially expressed RBPs and differential ASEs were carried out in microglia in terms of gene expression. GO and KEGG functional enrichment analysis showed that aberrantly expressed RBPs such as Mcm7, Mtdh, SRSF3, and Hnrnpa2b1 may affect and regulate downstream Csnk1d, Uckl1 and other protein phosphorylation-related genes by alterative splicing. CONCLUSION RBPs were aberrantly expressed in microglia during the development of brain injury secondary to SAH, regulating alterative splicing of downstream genes and influencing the progression of SAH brain injury in this study. This implies that RBPs are important for the identification of new therapeutic targets for brain injury after SAH.
Collapse
Affiliation(s)
- Xinyi Pan
- Jiangxi Medical College, Huan kui Academy, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Hengyang Ouyang
- Jiangxi Medical College, Huan kui Academy, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Xue Xiao
- Jiangxi Medical College, Huan kui Academy, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Xiaobing Zhou
- Department of Neurosurgery, The first affiliated hospital,Jiangxi Medical college,Nanchang University, Nanchang, Jiangxi, China
| | - Lingfeng Lai
- Department of Neurosurgery, The first affiliated hospital,Jiangxi Medical college,Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
3
|
Park J, Won J, Yang E, Seo J, Cho J, Seong JB, Yeo HG, Kim K, Kim YG, Kim M, Jeon CY, Lim KS, Lee DS, Lee Y. Peroxiredoxin 1 inhibits streptozotocin-induced Alzheimer's disease-like pathology in hippocampal neuronal cells via the blocking of Ca 2+/Calpain/Cdk5-mediated mitochondrial fragmentation. Sci Rep 2024; 14:15642. [PMID: 38977865 PMCID: PMC11231305 DOI: 10.1038/s41598-024-66256-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024] Open
Abstract
Oxidative stress plays an essential role in the progression of Alzheimer's disease (AD), the most common age-related neurodegenerative disorder. Streptozotocin (STZ)-induced abnormal brain insulin signaling and oxidative stress play crucial roles in the progression of Alzheimer's disease (AD)-like pathology. Peroxiredoxins (Prxs) are associated with protection from neuronal death induced by oxidative stress. However, the molecular mechanisms underlying Prxs on STZ-induced progression of AD in the hippocampal neurons are not yet fully understood. Here, we evaluated whether Peroxiredoxin 1 (Prx1) affects STZ-induced AD-like pathology and cellular toxicity. Prx1 expression was increased by STZ treatment in the hippocampus cell line, HT-22 cells. We evaluated whether Prx1 affects STZ-induced HT-22 cells using overexpression. Prx1 successfully protected the forms of STZ-induced AD-like pathology, such as neuronal apoptosis, synaptic loss, and tau phosphorylation. Moreover, Prx1 suppressed the STZ-induced increase of mitochondrial dysfunction and fragmentation by down-regulating Drp1 phosphorylation and mitochondrial location. Prx1 plays a role in an upstream signal pathway of Drp1 phosphorylation, cyclin-dependent kinase 5 (Cdk5) by inhibiting the STZ-induced conversion of p35 to p25. We found that STZ-induced of intracellular Ca2+ accumulation was an important modulator of AD-like pathology progression by regulating Ca2+-mediated Calpain activation, and Prx1 down-regulated STZ-induced intracellular Ca2+ accumulation and Ca2+-mediated Calpain activation. Finally, we identified that Prx1 antioxidant capacity affected Ca2+/Calpain/Cdk5-mediated AD-like pathology progress. Therefore, these findings demonstrated that Prx1 is a key factor in STZ-induced hippocampal neuronal death through inhibition of Ca2+/Calpain/Cdk5-mediated mitochondrial dysfunction by protecting against oxidative stress.
Collapse
Affiliation(s)
- Junghyung Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Jinyoung Won
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Eunyeoung Yang
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
- Department of Life Science, University of Seoul, Seoul, Republic of Korea
| | - Jincheol Seo
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Jiyeon Cho
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Jung Bae Seong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Hyeon-Gu Yeo
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Keonwoo Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Yu Gyeong Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Minji Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Chang-Yeop Jeon
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Kyung Seob Lim
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Dong-Seok Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea.
| | - Youngjeon Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea.
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea.
| |
Collapse
|
4
|
Bae M, Ngo H, Kang YJ, Lee SJ, Park W, Jo Y, Choi YM, Kim JJ, Yi HG, Kim HS, Jang J, Cho DW, Cho H. Laminin-Augmented Decellularized Extracellular Matrix Ameliorating Neural Differentiation and Neuroinflammation in Human Mini-Brains. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308815. [PMID: 38161254 DOI: 10.1002/smll.202308815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/21/2023] [Indexed: 01/03/2024]
Abstract
Non-neural extracellular matrix (ECM) has limited application in humanized physiological neural modeling due to insufficient brain-specificity and safety concerns. Although brain-derived ECM contains enriched neural components, certain essential components are partially lost during the decellularization process, necessitating augmentation. Here, it is demonstrated that the laminin-augmented porcine brain-decellularized ECM (P-BdECM) is xenogeneic factor-depleted as well as favorable for the regulation of human neurons, astrocytes, and microglia. P-BdECM composition is comparable to human BdECM regarding brain-specificity through the matrisome and gene ontology-biological process analysis. As augmenting strategy, laminin 111 supplement promotes neural function by synergic effect with laminin 521 in P-BdECM. Annexin A1(ANXA1) and Peroxiredoxin(PRDX) in P-BdECM stabilized microglial and astrocytic behavior under normal while promoting active neuroinflammation in response to neuropathological factors. Further, supplementation of the brain-specific molecule to non-neural matrix also ameliorated glial cell inflammation as in P-BdECM. In conclusion, P-BdECM-augmentation strategy can be used to recapitulate humanized pathophysiological cerebral environments for neurological study.
Collapse
Affiliation(s)
- Mihyeon Bae
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk, 37673, South Korea
| | - Huyen Ngo
- Department of Biophysics, Institute of Quantum Biophysics, Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Gyeonggi, 16419, South Korea
| | - You Jung Kang
- Department of Biophysics, Institute of Quantum Biophysics, Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Gyeonggi, 16419, South Korea
| | - Su-Jin Lee
- Biomedical Research Institute, Chonnam National University Hospital, Gwangju, 61469, South Korea
| | - Wonbin Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk, 37673, South Korea
| | - Yeonggwon Jo
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk, 37673, South Korea
| | - Yoo-Mi Choi
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk, 37673, South Korea
| | - Joeng Ju Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk, 37673, South Korea
| | - Hee-Gyeong Yi
- Department of Convergence Biosystems Engineering, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, South Korea
| | - Hyung-Seok Kim
- Department of Forensic medicine, Chonnam National University Medical School & Research Institute of Medical Sciences, Gwangju, 61469, South Korea
| | - Jinah Jang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk, 37673, South Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk, 37673, South Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk, 37673, South Korea
| | - Hansang Cho
- Department of Biophysics, Institute of Quantum Biophysics, Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Gyeonggi, 16419, South Korea
| |
Collapse
|
5
|
Chen R, Xie Q, Xie L, Huang J, Hu L, Lu H, Shi P, He Q, Zhang Q, Gong C, Zhang S, Wang B, Yang G, Yang Q. Thioredoxin1 Binding Metastasis-Associated Lung Adenocarcinoma Transcript 1 Attenuates Inflammation and Apoptosis after Intracerebral Hemorrhage. Aging Dis 2024; 15:1384-1397. [PMID: 37196136 PMCID: PMC11081159 DOI: 10.14336/ad.2023.0507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/07/2023] [Indexed: 05/19/2023] Open
Abstract
Post-transcriptional regulation and RNA-binding proteins (RBPs) play vital roles in the occurrence of secondary injury after intracerebral hemorrhage (ICH). Therefore, we identified RBPs distinctively expressed after ICH by screening and determined thioredoxin1 (Txn1) as one of the most distinctive RBPs. We employed an ICH model and in vitro experiments to investigate the role of Txn1 in ICH. Firstly, we found that Txn1 was mainly expressed in microglia and neurons in the central nervous system, and its expression was significantly reduced in perihematomal tissue. Additionally, adeno-associated virus (AAV) carrying Txn1 was injected into the ICH rat model. Our results showed that overexpression of Txn1 reduced secondary injury and improved outcome in the ICH rat model. Moreover, to understand the therapeutic mechanism of Txn1 after ICH, we performed RNA immunoprecipitation combined with high-throughput sequencing. The results showed that Txn1 binds to inflammation- and apoptosis-related mRNAs and affects gene expression through RNA splicing and translation. Finally, RNA pull-down assays and in vitro experiments confirmed that Txn1 binds to metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), leading to reduced inflammation and apoptosis. Our study suggests that Txn1 is a potential therapeutic target for alleviating ICH-induced brain injury.
Collapse
Affiliation(s)
- Ru Chen
- Department of Neurology, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Qi Xie
- Department of Neurology, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Lexing Xie
- Department of Neurology, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Jiacheng Huang
- Department of Neurology, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Linlin Hu
- Department of Neurology, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Hui Lu
- Department of Neurology, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Peixia Shi
- Department of Neurology, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Qian He
- Department of Neurology, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Qin Zhang
- Department of Neurology, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Changxiong Gong
- Department of Neurology, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Shuang Zhang
- Department of Neurology, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Bingqiao Wang
- Department of Neurology, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Guoqiang Yang
- Department of Neurology, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Qingwu Yang
- Department of Neurology, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| |
Collapse
|
6
|
Abudurexiti M, Xue J, Li X, Zhang X, Qiu Y, Xiong S, Liu G, Yuan S, Tang R. Curcumin/TGF-β1 siRNA loaded solid lipid nanoparticles alleviate cerebral injury after intracerebral hemorrhage by transnasal brain targeting. Colloids Surf B Biointerfaces 2024; 237:113857. [PMID: 38552289 DOI: 10.1016/j.colsurfb.2024.113857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/28/2024] [Accepted: 03/17/2024] [Indexed: 04/08/2024]
Abstract
Intracerebral hemorrhage (ICH) is a prevalent cerebrovascular disorder. The inflammation induced by cerebral hemorrhage plays a crucial role in the secondary injury of ICH and often accompanied by a poor prognosis, leading to disease exacerbation. However, blood-brain barrier (BBB) limiting the penetration of therapeutic drugs to the brain. In this paper, our primary objective is to develop an innovative, non-invasive, safe, and targeted formulation. This novel approach aims to synergistically harness the combined therapeutic effects of drugs to intervene in inflammation via a non-injectable route, thereby significantly mitigating the secondary damage precipitated by inflammation following ICH. Thus, a novel "anti-inflammatory" cationic solid lipid nanoparticles (SLN) with targeting ability were constructed, which can enhance the stability of curcumin(CUR) and siRNA. We successfully developed SLN loaded with TGF-β1 siRNA and CUR (siRNA/CUR@SLN) that adhere to the requirements of drug delivery system by transnasal brain targeting. Through the characterization of nanoparticle properties, cytotoxicity assessment, in vitro pharmacological evaluation, and brain-targeting evaluation after nasal administration, siRNA/CUR@SLN exhibited a nearly spherical structure with a particle size of 125.0±1.93 nm, low cytotoxicity, high drug loading capacity, good sustained release function and good stability. In vitro anti-inflammatory results showcasing its remarkable anti-inflammatory activity. Moreover, in vivo pharmacological studies revealed that siRNA/CUR@SLN can be successfully delivered to brain tissue. Furthermore, it also elicited an effective anti-inflammatory response, alleviating brain inflammation. These results indicated that favorable brain-targeting ability and anti-inflammatory effects of siRNA/CUR@SLN in ICH model mice. In conclusion, our designed siRNA/CUR@SLN showed good brain targeting and anti-inflammatory effect ability after nasal administration, which lays the foundation for the treatment of inflammation caused by ICH and offers a novel approach for brain-targeted drug delivery and brings new hope.
Collapse
Affiliation(s)
- Munire Abudurexiti
- Department of Neurosurgery, University-Town Hospital of Chongqing Medical University, Chongqing, China; College of Pharmacy, Southwest Minzu University, Chendu 610041, China
| | - Jun Xue
- Department of Neurosurgery Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Xianzhe Li
- College of Pharmacy, Southwest Minzu University, Chendu 610041, China
| | - Xiaofeng Zhang
- Department of Neurosurgery, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Yongyi Qiu
- Department of Neurosurgery, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Senjie Xiong
- Department of Neurosurgery, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Guojing Liu
- Department of Neurosurgery, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Sangui Yuan
- Department of Neurosurgery, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Rongrui Tang
- Department of Neurosurgery, University-Town Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
7
|
Dong H, Wen X, Zhang BW, Wu Z, Zou W. Astrocytes in intracerebral hemorrhage: impact and therapeutic objectives. Front Mol Neurosci 2024; 17:1327472. [PMID: 38419793 PMCID: PMC10899346 DOI: 10.3389/fnmol.2024.1327472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/25/2024] [Indexed: 03/02/2024] Open
Abstract
Intracerebral hemorrhage (ICH) manifests precipitously and profoundly impairs the neurological function in patients who are affected. The etiology of subsequent injury post-ICH is multifaceted, characterized by the intricate interplay of various factors, rendering therapeutic interventions challenging. Astrocytes, a distinct class of glial cells, interact with neurons and microglia, and are implicated in a series of pathophysiological alterations following ICH. A comprehensive examination of the functions and mechanisms associated with astrocytic proteins may shed light on the role of astrocytes in ICH pathology and proffer innovative therapeutic avenues for ICH management.
Collapse
Affiliation(s)
- Hao Dong
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xin Wen
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Bai-Wen Zhang
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhe Wu
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei Zou
- The Third Department of Acupuncture and Moxibustion, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
8
|
Su AL, Loch-Caruso R. Apoptotic responses stimulated by the trichloroethylene metabolite S-(1,2-dichlorovinyl)-L-cysteine depend on cell differentiation state in BeWo human trophoblast cells. Toxicol In Vitro 2023; 86:105514. [PMID: 36336211 PMCID: PMC9949904 DOI: 10.1016/j.tiv.2022.105514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/23/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
During pregnancy, the placental villous cytotrophoblasts differentiate via cell fusion and multinucleation to create syncytiotrophoblasts, a cell type at the maternal-fetal interface. Apoptosis of syncytiotrophoblasts is associated with adverse pregnancy outcomes. The human trophoblast BeWo cell line has been used as an in vitro model for this differentiation process, also known as syncytialization. In the current study, we exposed unsyncytialized BeWo cells, BeWo cells undergoing syncytialization, and syncytialized BeWo cells to S-(1,2-dichlorovinyl)-L-cysteine (DCVC), a metabolite of the industrial chemical trichloroethylene (TCE). DCVC exposure at 50 μM for 48 h decreased cell viability, increased cytotoxicity, increased caspase 3/7 activity, and increased nuclear condensation or fragmentation in BeWo cells regardless of their differentiation status. Investigating mechanisms of apoptosis, DCVC increased H2O2 abundance and decreased PRDX2 mRNA in all three BeWo cell models. DCVC decreased tumor necrosis factor-receptor 1 (TNF-R1) concentration in media and decreased NFKB1 and PRDX1 mRNA expression in syncytialized BeWo cells only. DCVC decreased BCL2 mRNA expression in syncytializing BeWo cells and in syncytialized BeWo cells only. Decreased LGALS3 mRNA was seen in unsyncytialized BeWo cells only. Together, these data suggest roles for oxidative stress and pro-inflammatory mechanisms underlying apoptosis in BeWo cells with differences depending on differentiation state.
Collapse
Affiliation(s)
- Anthony L Su
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029, USA.
| | - Rita Loch-Caruso
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029, USA.
| |
Collapse
|
9
|
Yuan Y, Tan H, Chen H, Zhang J, Shi F, Wang M, Zhang G, Wang H, Dong R. Peroxiredoxin 1 alleviates oxygen-glucose deprivation/ reoxygenation injury in N2a cells via suppressing the JNK/caspase-3 pathway. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:1305-1312. [PMID: 37886002 PMCID: PMC10598809 DOI: 10.22038/ijbms.2023.71390.15528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/30/2023] [Indexed: 10/28/2023]
Abstract
Objectives Cerebral ischemia/reperfusion (I/R) injury inevitably aggravates the initial cerebral tissue damage following a stroke. Peroxiredoxin 1 (Prdx1) is a representative protein of the endogenous antioxidant enzyme family that regulates several reactive oxygen species (ROS)-dependent signaling pathways, whereas the JNK/caspase-3 proapoptotic pathway has a prominent role during cerebral I/R injury. This study aimed to examine the potential mechanism of Prdx1 in Neuro 2A (N2a) cells following oxygen-glucose deprivation and reoxygenation (OGD/R) injury. Materials and Methods N2a cells were exposed to OGD/R to simulate cerebral I/R injury. Prdx1 siRNA transfection and the JNK inhibitor (SP600125) were used to interfere with their relative expressions. CCK-8 assay, flow cytometry, and lactate dehydrogenase (LDH) assay were employed to determine the viability and apoptosis of N2a cells. The intracellular ROS content was assessed using ROS Assay Kit. Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot analyses were conducted to detect the expression levels of Prdx1, JNK, phosphorylated JNK (p-JNK), and cleaved caspase-3. Results Firstly, Prdx1, p-JNK, and cleaved caspase-3 expression were significantly induced in OGD/R-exposed N2a cells. Secondly, the knockdown of Prdx1 inhibited cell viability and increased apoptosis rate, expression of p-JNK, and cleaved caspase-3 expression. Thirdly, SP600125 inhibited the JNK/caspase-3 signaling pathway and mitigated cell injury following OGD/R. Finally, SP600125 partially reversed Prdx1 down-regulation-mediated cleaved caspase-3 activation and OGD/R damage in N2a cells. Conclusion Prdx1 alleviates the injury to N2a cells induced by OGD/R via suppressing JNK/caspase-3 pathway, showing promise as a potential therapeutic for cerebral I/R injury.
Collapse
Affiliation(s)
- Yang Yuan
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Hongchen Tan
- Malvern College Qingdao, Qingdao, Shandong, China
| | - Huailong Chen
- Department of Anesthesiology, Qingdao Eight People’s Hospital, Qingdao, Shandong, China
| | - Jiawen Zhang
- Department of Anesthesiology, Qingdao Clinical College Affiliated to Nanjing Medical University, Qingdao, Shandong, China
| | - Fei Shi
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Mingshan Wang
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Gaofeng Zhang
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Haipeng Wang
- Department of Anesthesiology, Weifang No.2 People’s Hospital, Weifang, Shandong, China
| | - Rui Dong
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao, Shandong, China
| |
Collapse
|
10
|
Adhikari UK, Khan R, Mikhael M, Balez R, David MA, Mahns D, Hardy J, Tayebi M. Therapeutic anti-amyloid β antibodies cause neuronal disturbances. Alzheimers Dement 2022. [PMID: 36515320 DOI: 10.1002/alz.12833] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/07/2022] [Accepted: 09/19/2022] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Recent published clinical trial safety data showed that 41% of Alzheimer patients experienced amyloid-related imaging abnormalities (ARIA), marks of microhemorrhages and edema in the brain, following administration of Biogen's Aduhelm/aducanumab (amino acids 3-7 of the Aβ peptide). Similarly, Janssen/Pfizer's Bapineuzumab (amino acids 1-5 of the Aβ peptide) and Roche's Gantenerumab (amino acids 2-11/18-27 of the Aβ peptide) also displayed ARIA in clinical trials, including microhemorrhage and focal areas of inflammation or vasogenic edema, respectively. The molecular mechanisms underlying ARIA caused by therapeutic anti-Aβ antibodies remain largely unknown, however, recent reports demonstrated that therapeutic anti-prion antibodies activate neuronal allergenic proteomes following cross-linking cellular prion protein. METHODS Here, we report that treatment of human induced pluripotent stem cells- derived neurons (HSCN) from a non-demented donor, co-cultured with human primary microglia with anti-Aβ1-6, or anti-Aβ17-23 antibodies activate a significant number of allergenic-related proteins as assessed by mass spectrometry. RESULTS Interestingly, a large proportion of the identified proteins included cytokines such as interleukin (IL)-4, IL-12, and IL-13 suggesting a type-1 hypersensitivity response. Following flow cytometry analysis, several proinflammatory cytokines were significantly elevated following anti-Aβ1-6, or anti-Aβ17-23 antibody treatment. DISCUSSION These results justify further and more robust investigation of the molecular mechanisms of ARIA during immunotherapy study trials of AD. HIGHLIGHTS Allergenic-related proteins are often linked with Alzheimer's disease (AD). We investigated the effects of amyloid beta (Aβ) immunotherapy on stem cell derived neurons and primary neuronal cells co-cultured with microglia. Anti-Aβ antibody treatment of neurons or neurons co-cultured with microglia led to activation of a substantial number of allergenic-related genes. These allergenic-related genes are associated with endothelial dysfunction possibly responsible for ARIA.
Collapse
Affiliation(s)
- Utpal Kumar Adhikari
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Rizwan Khan
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Meena Mikhael
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Rachelle Balez
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, New South Wales, Australia
| | | | - David Mahns
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - John Hardy
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
| | - Mourad Tayebi
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| |
Collapse
|
11
|
Zou G, Wan J, Balupillai A, David E, Ranganathan B, Saravanan K. Geraniol enhances peroxiredoxin-1, and prevents isoproterenol-induced oxidative stress and inflammation associated with myocardial infarction in experimental animal models. J Biochem Mol Toxicol 2022; 36:e23098. [PMID: 35608392 DOI: 10.1002/jbt.23098] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/08/2022] [Accepted: 05/09/2022] [Indexed: 01/08/2023]
Abstract
This study has explored the fact that geraniol prevents isoproterenol (ISO)-induced oxidative stress and inflammation-mediated myocardial infarction (MI) through enhanced expression of peroxiredoxin-1 (Prdx-1) in experimental animal models. The experimental strategies of MI were stimulated through the subcutaneous direction of ISO (85 mg/kg body weight) for 14 days. ISO-directed models showed elevated heart rate levels and cardiac markers (serum creatine kinase [CK], serum CK-myocardial band, serum C-reactive proteins, and plasma homocysteine); increased cardiac-troponins-T, and troponin-I levels in both serum and myocardium. Moreover, we perceived that a higher level of lipid peroxidation molecules (thiobarbituric acid reactive substances and lipid hydroperoxides) reduced the antioxidant enzyme levels in plasma and heart tissue of ISO-directed rats. However, geraniol treatment prevents ISO-directed enhancement of the heart rate, cardiac and lipid peroxidative genes; reverted the blood pressure, and antioxidant status in ISO-directed rats. Furthermore, gene expression results revealed that geraniol treatment inhibited the mitogen-activated protein kinase (MAPK) proteins, inflammatory responder (tumor necrosis factor-α, interleukin 6, nuclear factor-κB), and cardiac fibrotic proteins (matrix metalloproteinase-2[MMP-2], MMP-9) in ISO directed rats. Prdx-1 is an antioxidant response element, and it can regulate all the antioxidant proteins and it scavenges harmful radicals. Therefore, enhanced Prdx-1 expression is considered to have a pivotal role in preventing cardiac infarction. In this study, an elevated expression of Prdx1 was noticed in geraniol treated with ISO-directed rats. Hence, we concluded that geraniol is considered a potential phytodrug, and it prevents ISO-directed MAPKs, inflammation, and cardiac markers by enhancing the expression of Prdx1.
Collapse
Affiliation(s)
- Gangqiang Zou
- Department of Macrovascular Surgery, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, China
| | - Jia Wan
- Department of Vascular Surgery, The Second People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Agilan Balupillai
- Department of Biotechnology, Thiruvalluvar University, Vellore, Tamil Nadu, India
| | - Ernest David
- Department of Biotechnology, Thiruvalluvar University, Vellore, Tamil Nadu, India
| | | | - Kalaimani Saravanan
- Department of Biotechnology, Thiruvalluvar University, Vellore, Tamil Nadu, India
| |
Collapse
|
12
|
Kim S, Lee W, Jo H, Sonn SK, Jeong SJ, Seo S, Suh J, Jin J, Kweon HY, Kim TK, Moon SH, Jeon S, Kim JW, Kim YR, Lee EW, Shin HK, Park SH, Oh GT. The antioxidant enzyme Peroxiredoxin-1 controls stroke-associated microglia against acute ischemic stroke. Redox Biol 2022; 54:102347. [PMID: 35688114 PMCID: PMC9184746 DOI: 10.1016/j.redox.2022.102347] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 01/04/2023] Open
Affiliation(s)
- Sinai Kim
- Heart-Immune-Brain Network Research Center, Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Wonhyo Lee
- Department of Biological Sciences, Ulsan National Institute of Science & Technology (UNIST), Ulsan, South Korea
| | - Huiju Jo
- Heart-Immune-Brain Network Research Center, Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Seong-Keun Sonn
- Heart-Immune-Brain Network Research Center, Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Se-Jin Jeong
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Seungwoon Seo
- Heart-Immune-Brain Network Research Center, Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Joowon Suh
- Heart-Immune-Brain Network Research Center, Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jing Jin
- Heart-Immune-Brain Network Research Center, Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Hyae Yon Kweon
- Heart-Immune-Brain Network Research Center, Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Tae Kyeong Kim
- Heart-Immune-Brain Network Research Center, Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Shin Hye Moon
- Heart-Immune-Brain Network Research Center, Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Sejin Jeon
- Department of Biological Sciences and Biotechnology Major in Bio-Vaccine Engineering Andong National University, Andong, South Korea
| | - Jong Woo Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea; Department of Functional Genomics, University of Science and Technology (UST), Daejeon, South Korea
| | - Yu Ri Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine 1672, Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea; Department of Functional Genomics, University of Science and Technology (UST), Daejeon, South Korea
| | - Hwa Kyoung Shin
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
| | - Sung Ho Park
- Department of Biological Sciences, Ulsan National Institute of Science & Technology (UNIST), Ulsan, South Korea.
| | - Goo Taeg Oh
- Heart-Immune-Brain Network Research Center, Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
13
|
Ou M, Jiang Y, Ji Y, Zhou Q, Du Z, Zhu H, Zhou Z. Role and Mechanism of Ferroptosis in Neurological Diseases. Mol Metab 2022; 61:101502. [PMID: 35447365 PMCID: PMC9170779 DOI: 10.1016/j.molmet.2022.101502] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 02/08/2023] Open
Abstract
Background Ferroptosis, as a new form of cell death, is different from other cell deaths such as autophagy or senescence. Ferroptosis involves in the pathophysiological progress of several diseases, including cancers, cardiovascular diseases, nervous system diseases, and kidney damage. Since oxidative stress and iron deposition are the broad pathological features of neurological diseases, the role of ferroptosis in neurological diseases has been widely explored. Scope of review Ferroptosis is mainly characterized by changes in iron homeostasis, iron-dependent lipid peroxidation, and glutamate toxicity accumulation, of which can be specifically reversed by ferroptosis inducers or inhibitors. The ferroptosis is mainly regulated by the metabolism of iron, lipids and amino acids through System Xc−, voltage-dependent anion channels, p53, p62-Keap1-Nrf2, mevalonate and other pathways. This review also focus on the regulatory pathways of ferroptosis and its research progress in neurological diseases. Major conclusions The current researches of ferroptosis in neurological diseases mostly focus on the key pathways of ferroptosis. At the same time, ferroptosis was found playing a bidirectional regulation role in neurological diseases. Therefore, the specific regulatory mechanisms of ferroptosis in neurological diseases still need to be further explored to provide new perspectives for the application of ferroptosis in the treatment of neurological diseases.
Collapse
Affiliation(s)
- Mengmeng Ou
- The affiliated Wuxi Mental Health Center of JiangNan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China
| | - Ying Jiang
- The affiliated Wuxi Mental Health Center of JiangNan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China
| | - Yingying Ji
- The affiliated Wuxi Mental Health Center of JiangNan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China
| | - Qin Zhou
- The affiliated Wuxi Mental Health Center of JiangNan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China
| | - Zhiqiang Du
- The affiliated Wuxi Mental Health Center of JiangNan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China
| | - Haohao Zhu
- The affiliated Wuxi Mental Health Center of JiangNan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China.
| | - Zhenhe Zhou
- The affiliated Wuxi Mental Health Center of JiangNan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China.
| |
Collapse
|
14
|
Yao X, Song Y, Wang Z, Bai S, Yu H, Wang Y, Guan Y. Proteinase-activated receptor-1 antagonist attenuates brain injury via regulation of FGL2 and TLR4 after intracerebral hemorrhage in mice. Neuroscience 2022; 490:193-205. [PMID: 35182700 DOI: 10.1016/j.neuroscience.2022.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 11/25/2022]
Abstract
Proteinase-activated receptor-1 (PAR1) antagonist plays a protective effect in brain injury. We investigated the potential function and mechanisms of PAR1 antagonist in ICH-induced brain injury. Results showed that PAR1 antagonist protected against neurobehavior deficits, brain edema and BBB integrity in ICH mice via activating JNK/ERK/p38 MAPK signaling pathway at 24h after ICH. In addition, ICH resulted in the increase of FGL2 and TLR4 expression over time, and phosphorylated JNK, ERK and p38 MAPK expression. Suppression of FGL2 and TLR4 alleviated brain injury and decreased the expression of p-JNK, p-ERK, p-p38 MAPK and p-IKKα at 24 h after ICH; while overexpression of them showed the opposite result. Moreover, the protective effect of PAR1 antagonist on ICH-induced brain injury was blocked by FGL2 or TLR4 overexpression, and the levels of p-JNK, p-ERK and p-p38 MAPK were inhibited. Furthermore, PAR1 antagonist combined with TLR4 antagonist markedly alleviated brain injury after ICH at 72h. Overall, PAR1 antagonist protected against short-term brain injury, and the effect of PAR1 antagonist on ICH-induced brain injury was mediated by FGL2 or TLR4.
Collapse
Affiliation(s)
- Xiaoying Yao
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yaying Song
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ze Wang
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Shuwei Bai
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Haojun Yu
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yishu Wang
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yangtai Guan
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
15
|
Almarghalani DA, Boddu SHS, Ali M, Kondaka A, Ta D, Shah RA, Shah ZA. Small interfering RNAs based therapies for intracerebral hemorrhage: challenges and progress in drug delivery systems. Neural Regen Res 2022; 17:1717-1725. [PMID: 35017419 PMCID: PMC8820693 DOI: 10.4103/1673-5374.332129] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a subtype of stroke associated with higher rates of mortality. Currently, no effective drug treatment is available for ICH. The molecular pathways following ICH are complicated and diverse. Nucleic acid therapeutics such as gene knockdown by small interfering RNAs (siRNAs) have been developed in recent years to modulate ICH’s destructive pathways and mitigate its outcomes. However, siRNAs delivery to the central nervous system is challenging and faces many roadblocks. Existing barriers to systemic delivery of siRNA limit the use of naked siRNA; therefore, siRNA-vectors developed to protect and deliver these therapies into the specific-target areas of the brain, or cell types seem quite promising. Efficient delivery of siRNA via nanoparticles emerged as a viable and effective alternative therapeutic tool for central nervous system-related diseases. This review discusses the obstacles to siRNA delivery, including the advantages and disadvantages of viral and nonviral vectors. Additionally, we provide a comprehensive overview of recent progress in nanotherapeutics areas, primarily focusing on the delivery system of siRNA for ICH treatment.
Collapse
Affiliation(s)
- Daniyah A Almarghalani
- Department of Pharmacology and Experimental Therapeutics; Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Sai H S Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Mohammad Ali
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Akhila Kondaka
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Devin Ta
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Rayyan A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| |
Collapse
|
16
|
Wu N, Du X, Peng Z, Zhang Z, Cui L, Li D, Wang R, Ma M. Silencing of peroxiredoxin 1 expression ameliorates ulcerative colitis in a rat model. J Int Med Res 2021; 49:300060520986313. [PMID: 33682513 PMCID: PMC7944532 DOI: 10.1177/0300060520986313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background Peroxiredoxin 1 (PRDX1), a protein with anti-inflammatory and anti-apoptotic properties, shows elevated expression in ulcerative colitis (UC). However, PRDX1's specific role in UC is poorly understood. Methods UC was induced in rats using dextran sulfate sodium (DSS). In vivo RNA interference was used to silence the PRDX1 expression. PRDX1 expression levels and the inflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, transforming growth factor (TGF)-β and interferon (IFN)-γ in tissues were assessed by real-time quantitative polymerase chain reaction and western blotting. Colonic injury was assessed by hematoxylin–eosin staining. ELISA was used to assess levels of the inflammatory cytokines TNF-α, IL-1β and IL-6 in colon tissues. Apoptosis of intestinal epithelial cells was assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling, and expression of the apoptotic proteins bcl-2, Bax, cleaved caspase-3 and caspase-3 was assessed by western blotting. Results PRDX1 expression was significantly increased in rats with DSS-induced UC. Silencing of PRDX1 expression improved colon injury in rats with DSS-induced UC. In addition, silencing of PRDX1 expression inhibited inflammatory responses and apoptosis of intestinal epithelial cells in rats with DSS-induced UC. Conclusions Silencing of PRDX1 expression can ameliorate colon injury in rats with DSS-induced UC.
Collapse
Affiliation(s)
- Na Wu
- Department of Gastroenterology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Xinchong Du
- Department of Gastroenterology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Zhao Peng
- Department of Gastroenterology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Zetian Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Lijun Cui
- Department of Gastroenterology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Duo Li
- Department of Gastroenterology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Rui Wang
- Department of Gastroenterology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Maoyuan Ma
- Department of Gastroenterology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| |
Collapse
|
17
|
Zhi C, Zeng S, Chen Y, Liao D, Lai M, Wang Z, Wang Y, Xiao S. Clemastine promotes recovery of neural function and suppresses neuronal apoptosis by restoring balance of pro-inflammatory mediators in an experimental model of intracerebral hemorrhage. Int J Med Sci 2021; 18:639-645. [PMID: 33437198 PMCID: PMC7797547 DOI: 10.7150/ijms.51150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/17/2020] [Indexed: 11/19/2022] Open
Abstract
Intracerebral hemorrhage (ICH) represents a common acute cerebrovascular event that imparts high rates of disability. The microglia-mediated inflammatory response is a critical factor in determining cerebral damage post-ICH. Clemastine (CLM) is a histamine receptor H1 (HRH1) antagonist that has been shown to modulate the inflammatory response. However, the effects of CLM on ICH and the underlying mechanism remain to be determined. This investigation reveals that CLM resulted in reduction of cerebral hematoma volume, decreased cerebral edema and lower rates of neuronal apoptosis as well as improved behavioral scores in an acute ICH murine model. CLM treatment was noted to decrease pro-inflammatory effectors and increased anti-inflammatory effectors post-ICH. In addition, CLM reduced the deleterious effects of activated microglia on neurons in a transwell co-culture system. Our findings show that CLM likely mediates its therapeutic effect through inhibition of microglia-induced inflammatory response and apoptosis, thereby enhancing restoration of neuronal function.
Collapse
Affiliation(s)
- Cheng Zhi
- Department of Pathology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Shulian Zeng
- Department of Neurology, Heyuan People's Hospital, Heyuan, 517000 China
| | - Yuan Chen
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Degui Liao
- Department of Pathology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Miaoling Lai
- Department of Pathology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Zhaotao Wang
- Institute of Neuroscience, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260 China
| | - Yezhong Wang
- Institute of Neuroscience, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260 China
| | - Shiyin Xiao
- Institute of Neuroscience, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260 China
| |
Collapse
|
18
|
Zhang H, Wang Y, Lian L, Zhang C, He Z. Glycine-Histidine-Lysine (GHK) Alleviates Astrocytes Injury of Intracerebral Hemorrhage via the Akt/miR-146a-3p/AQP4 Pathway. Front Neurosci 2020; 14:576389. [PMID: 33192260 PMCID: PMC7658812 DOI: 10.3389/fnins.2020.576389] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/03/2020] [Indexed: 12/22/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a major type of cerebrovascular disease with poor prognosis. Recent studies have shown that Glycyl-l-histidyl-l-lysine (GHK) is a kind of natural human tripeptide which could inhibit inflammation and against neurodegenerative diseases, but neither its role nor the mechanisms in ICH have yet been explicit. Currently, we investigated the possible strategies of GHK on ICH injury. Neurological deficit scores, brain water content, Nissl staining, and aquaporin 4 (AQP4) immunohistochemistry were detected in different groups of rats. The expression of microRNAs (miRNAs) was examined by real-time PCR. Inflammatory factors were detected using enzyme-linked immunosorbent assay (ELISA). Cell viability and cell proliferation were detected by Cell Counting Kit-8 (CCK-8). Matrix metalloproteinase 2 (MMP2), MMP9, tissue inhibitors of metalloproteinase-1 (TIMP1), AQP4 expression were detected/assessed using western blot. We observed that 5 and 10 μg/g of GHK improved neurological recovery by significantly reducing brain water content, improving neurological deficits, and promoting neuron survival. Besides, GHK alleviated inflammatory reaction and downregulated AQP4 expression. Furthermore, the effects of GHK on astrocyte were associated with the upregulation of miRNA-146a-3p, which partially regulated the expression of AQP4. Our results demonstrated that the phosphatidylinositol 3-kinase (PI3K)/AKT pathway participated in the GHK-induced upregulation of miR-146a-3p and miR-146a-3p/AQP4 interaction plays a role in the injury following ICH. These findings suggested that GHK could provide a novel therapeutic strategy for ICH.
Collapse
Affiliation(s)
- Heyu Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China.,Department of Neurology, First Hospital of China Medical University, Shenyang, China
| | - Yanzhe Wang
- Department of Neurology, First Hospital of China Medical University, Shenyang, China
| | - Ling Lian
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Cheng Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Zhiyi He
- Department of Neurology, First Hospital of China Medical University, Shenyang, China
| |
Collapse
|