1
|
Milicic L, Porter T, Vacher M, Laws SM. Utility of DNA Methylation as a Biomarker in Aging and Alzheimer's Disease. J Alzheimers Dis Rep 2023; 7:475-503. [PMID: 37313495 PMCID: PMC10259073 DOI: 10.3233/adr-220109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/23/2023] [Indexed: 06/15/2023] Open
Abstract
Epigenetic mechanisms such as DNA methylation have been implicated in a number of diseases including cancer, heart disease, autoimmune disorders, and neurodegenerative diseases. While it is recognized that DNA methylation is tissue-specific, a limitation for many studies is the ability to sample the tissue of interest, which is why there is a need for a proxy tissue such as blood, that is reflective of the methylation state of the target tissue. In the last decade, DNA methylation has been utilized in the design of epigenetic clocks, which aim to predict an individual's biological age based on an algorithmically defined set of CpGs. A number of studies have found associations between disease and/or disease risk with increased biological age, adding weight to the theory of increased biological age being linked with disease processes. Hence, this review takes a closer look at the utility of DNA methylation as a biomarker in aging and disease, with a particular focus on Alzheimer's disease.
Collapse
Affiliation(s)
- Lidija Milicic
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
- Collaborative Genomics and Translation Group, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Tenielle Porter
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
- Collaborative Genomics and Translation Group, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
| | - Michael Vacher
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
- CSIRO Health and Biosecurity, Australian e-Health Research Centre, Floreat, Western Australia
| | - Simon M. Laws
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
- Collaborative Genomics and Translation Group, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
| |
Collapse
|
2
|
Tarazona S, Arzalluz-Luque A, Conesa A. Undisclosed, unmet and neglected challenges in multi-omics studies. NATURE COMPUTATIONAL SCIENCE 2021; 1:395-402. [PMID: 38217236 DOI: 10.1038/s43588-021-00086-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/17/2021] [Indexed: 01/15/2024]
Abstract
Multi-omics approaches have become a reality in both large genomics projects and small laboratories. However, the multi-omics research community still faces a number of issues that have either not been sufficiently discussed or for which current solutions are still limited. In this Perspective, we elaborate on these limitations and suggest points of attention for future research. We finally discuss new opportunities and challenges brought to the field by the rapid development of single-cell high-throughput molecular technologies.
Collapse
Affiliation(s)
- Sonia Tarazona
- Department of Applied Statistics, Operations Research and Quality, Universitat Politècnica de València, Valencia, Spain
| | - Angeles Arzalluz-Luque
- Department of Applied Statistics, Operations Research and Quality, Universitat Politècnica de València, Valencia, Spain
| | - Ana Conesa
- Microbiology and Cell Science Department, Institute for Food and Agricultural Research, University of Florida, Gainesville, FL, USA.
- Genetics Institute, University of Florida, Gainesville, FL, USA.
- Institute for Integrative Systems Biology, Spanish National Research Council, Valencia, Spain.
| |
Collapse
|
3
|
Wörheide MA, Krumsiek J, Kastenmüller G, Arnold M. Multi-omics integration in biomedical research - A metabolomics-centric review. Anal Chim Acta 2021; 1141:144-162. [PMID: 33248648 PMCID: PMC7701361 DOI: 10.1016/j.aca.2020.10.038] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/09/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023]
Abstract
Recent advances in high-throughput technologies have enabled the profiling of multiple layers of a biological system, including DNA sequence data (genomics), RNA expression levels (transcriptomics), and metabolite levels (metabolomics). This has led to the generation of vast amounts of biological data that can be integrated in so-called multi-omics studies to examine the complex molecular underpinnings of health and disease. Integrative analysis of such datasets is not straightforward and is particularly complicated by the high dimensionality and heterogeneity of the data and by the lack of universal analysis protocols. Previous reviews have discussed various strategies to address the challenges of data integration, elaborating on specific aspects, such as network inference or feature selection techniques. Thereby, the main focus has been on the integration of two omics layers in their relation to a phenotype of interest. In this review we provide an overview over a typical multi-omics workflow, focusing on integration methods that have the potential to combine metabolomics data with two or more omics. We discuss multiple integration concepts including data-driven, knowledge-based, simultaneous and step-wise approaches. We highlight the application of these methods in recent multi-omics studies, including large-scale integration efforts aiming at a global depiction of the complex relationships within and between different biological layers without focusing on a particular phenotype.
Collapse
Affiliation(s)
- Maria A Wörheide
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jan Krumsiek
- Institute for Computational Biomedicine, Englander Institute for Precision Medicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Gabi Kastenmüller
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Matthias Arnold
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA.
| |
Collapse
|