1
|
Montanaro D, Vavla M, Frijia F, Coi A, Baratto A, Pasquariello R, Stefan C, Martinuzzi A. Metabolite profile in hereditary spastic paraplegia analyzed using magnetic resonance spectroscopy: a cross-sectional analysis in a longitudinal study. Front Neurosci 2024; 18:1416093. [PMID: 39193522 PMCID: PMC11347332 DOI: 10.3389/fnins.2024.1416093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/11/2024] [Indexed: 08/29/2024] Open
Abstract
Background Hereditary Spastic Paraplegias (HSP) are genetic neurodegenerative disorders affecting the corticospinal tract. No established neuroimaging biomarker is associated with this condition. Methods A total of 46 patients affected by HSP, genetically and clinically evaluated and tested with SPRS scores, and 46 healthy controls (HC) matched by age and gender underwent a single-voxel Magnetic Resonance Spectroscopy sampling (MRS) of bilateral pre-central and pre-frontal regions. MRS data were analyzed cross-sectionally (at T0 and T1) and longitudinally (T0 vs. T1). Results Statistically significant data showed that T0 mI/Cr in the pre-central areas of HSP patients was higher than in HC. In the left (L) pre-central area, NAA/Cr was significantly lower in HSP than in HC. In the right (R) pre-frontal area, NAA/Cr was significantly lower in HSP patients than in HC. HSP SPG4 subjects had significantly lower Cho/Cr concentrations in the L pre-central area compared to HC. Among the HSP subjects, non-SPG4 patients had significantly higher mI/Cr in the L pre-central area compared to SPG4 patients. In the R pre-frontal area, NAA/Cr was reduced, and ml/Cr was higher in non-SPG4 patients compared to SPG4 patients. Comparing "pure" and "complex" forms, NAA/Cr was higher in pHSP than in cHSP in the R pre-central and R pre-frontal areas. The longitudinal analysis, which involved fewer patients (n = 30), showed an increase in mI/Cr concentration in the L pre-frontal area among HSP subjects with respect to baseline. The patients had significantly higher SPRS scores at follow-up, with a significant positive correlation between SPRS scores and mI/Cr in the L pre-central area, while in bilateral pre-frontal areas, lower SPRS scores corresponded to higher NAA/Cr concentrations. To explore the discriminating power of MRS in correctly identifying HSP and controls, an inference tree methodology classified HSP subjects and controls with an overall accuracy of 73.9%, a sensitivity of 87.0%, and a specificity of 60.9%. Conclusion This pilot study indicates that brain MRS is a valuable approach that could potentially serve as an objective biomarker in HSP.
Collapse
Affiliation(s)
- Domenico Montanaro
- U.O. Dipartimentale e Servizio Autonomo di Risonanza Magnetica, Dipartimento di Neuroscienze dell’Età Evolutiva, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Marinela Vavla
- Child and Adolescent Neuropsychiatric Unit, Department of Women’s and Children’s Health, University Hospital of Padua, Padova, Italy
- Department of Neurorehabilitation, IRCCS E. Medea Scientific Institute, Conegliano, Italy
| | - Francesca Frijia
- Bioengineering Unit, Fondazione Toscana G. Monasterio, Pisa, Italy
| | - Alessio Coi
- Unit of Epidemiology of Rare Diseases and Congenital Anomalies, Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Alessandra Baratto
- Department of Radiology, S. Maria dei Battuti Hospital- Conegliano, Treviso, Italy
| | - Rosa Pasquariello
- U.O. Dipartimentale e Servizio Autonomo di Risonanza Magnetica, Dipartimento di Neuroscienze dell’Età Evolutiva, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Cristina Stefan
- Department of Neurorehabilitation, IRCCS E. Medea Scientific Institute, Conegliano, Italy
| | - Andrea Martinuzzi
- Department of Neurorehabilitation, IRCCS E. Medea Scientific Institute, Conegliano, Italy
| |
Collapse
|
2
|
Tu Y, Liu Y, Fan S, Weng J, Li M, Zhang F, Fu Y, Hu J. Relationship between brain white matter damage and grey matter atrophy in hereditary spastic paraplegia types 4 and 5. Eur J Neurol 2024; 31:e16310. [PMID: 38651515 PMCID: PMC11235729 DOI: 10.1111/ene.16310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/11/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND AND PURPOSE White matter (WM) damage is the main target of hereditary spastic paraplegia (HSP), but mounting evidence indicates that genotype-specific grey matter (GM) damage is not uncommon. Our aim was to identify and compare brain GM and WM damage patterns in HSP subtypes and investigate how gene expression contributes to these patterns, and explore the relationship between GM and WM damage. METHODS In this prospective single-centre cohort study from 2019 to 2022, HSP patients and controls underwent magnetic resonance imaging evaluations. The alterations of GM and WM patterns were compared between groups by applying a source-based morphometry approach. Spearman rank correlation was used to explore the associations between gene expression and GM atrophy patterns in HSP subtypes. Mediation analysis was conducted to investigate the interplay between GM and WM damage. RESULTS Twenty-one spastic paraplegia type 4 (SPG4) patients (mean age 50.7 years ± 12.0 SD, 15 men), 21 spastic paraplegia type 5 (SPG5) patients (mean age 29.1 years ± 12.8 SD, 14 men) and 42 controls (sex- and age-matched) were evaluated. Compared to controls, SPG4 and SPG5 showed similar WM damage but different GM atrophy patterns. GM atrophy patterns in SPG4 and SPG5 were correlated with corresponding gene expression (ρ = 0.30, p = 0.008, ρ = 0.40, p < 0.001, respectively). Mediation analysis indicated that GM atrophy patterns were mediated by WM damage in HSP. CONCLUSIONS Grey matter atrophy patterns were distinct between SPG4 and SPG5 and were not only secondary to WM damage but also associated with disease-related gene expression. CLINICAL TRIAL REGISTRATION NO NCT04006418.
Collapse
Affiliation(s)
- Yuqing Tu
- Department of RadiologyFirst Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Department of Radiology, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouChina
| | - Ying Liu
- Department of RadiologyFirst Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Department of Radiology, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouChina
| | - Shuping Fan
- Department of RadiologyFirst Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Department of Radiology, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouChina
| | - Jiaqi Weng
- Department of RadiologyFirst Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Department of Radiology, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouChina
| | - Mengcheng Li
- Department of RadiologyFirst Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Department of Radiology, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouChina
| | - Fan Zhang
- Department of RadiologyFirst Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Department of Radiology, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouChina
| | - Ying Fu
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhouFujianChina
| | - Jianping Hu
- Department of RadiologyFirst Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Department of Radiology, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouChina
| |
Collapse
|
3
|
Siow SF, Yeow D, Rudaks LI, Jia F, Wali G, Sue CM, Kumar KR. Outcome Measures and Biomarkers for Clinical Trials in Hereditary Spastic Paraplegia: A Scoping Review. Genes (Basel) 2023; 14:1756. [PMID: 37761896 PMCID: PMC10530989 DOI: 10.3390/genes14091756] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Hereditary spastic paraplegia (HSP) is characterized by progressive lower limb spasticity. There is no disease-modifying treatment currently available. Therefore, standardized, validated outcome measures to facilitate clinical trials are urgently needed. We performed a scoping review of outcome measures and biomarkers for HSP to provide recommendations for future studies and identify areas for further research. We searched Embase, Medline, Scopus, Web of Science, and the Central Cochrane database. Seventy studies met the inclusion criteria, and eighty-three outcome measures were identified. The Spastic Paraplegia Rating Scale (SPRS) was the most widely used (27 studies), followed by the modified Ashworth Scale (18 studies) and magnetic resonance imaging (17 studies). Patient-reported outcome measures (PROMs) were infrequently used to assess treatment outcomes (28% of interventional studies). Diffusion tensor imaging, gait analysis and neurofilament light chain levels were the most promising biomarkers in terms of being able to differentiate patients from controls and correlate with clinical disease severity. Overall, we found variability and inconsistencies in use of outcome measures with a paucity of longitudinal data. We highlight the need for (1) a standardized set of core outcome measures, (2) validation of existing biomarkers, and (3) inclusion of PROMs in HSP clinical trials.
Collapse
Affiliation(s)
- Sue-Faye Siow
- Sydney Medical School, University of Sydney, Camperdown 2050, Australia (C.M.S.)
- Department of Clinical Genetics, Royal North Shore Hospital, St Leonards 2065, Australia
| | - Dennis Yeow
- Sydney Medical School, University of Sydney, Camperdown 2050, Australia (C.M.S.)
- Neuroscience Research Australia, University of New South Wales, Randwick 2031, Australia
- Rare Disease Program, Garvan Institute of Medical Research, Darlinghurst 2010, Australia
- Translational Neurogenomics Group, Molecular Medicine Laboratory and Department of Neurology, Concord Hospital, Concord 2139, Australia
- Neurodegenerative Service, Prince of Wales Hospital, Randwick 2031, Australia
| | - Laura I. Rudaks
- Sydney Medical School, University of Sydney, Camperdown 2050, Australia (C.M.S.)
- Department of Clinical Genetics, Royal North Shore Hospital, St Leonards 2065, Australia
- Rare Disease Program, Garvan Institute of Medical Research, Darlinghurst 2010, Australia
- Translational Neurogenomics Group, Molecular Medicine Laboratory and Department of Neurology, Concord Hospital, Concord 2139, Australia
| | - Fangzhi Jia
- Sydney Medical School, University of Sydney, Camperdown 2050, Australia (C.M.S.)
| | - Gautam Wali
- Sydney Medical School, University of Sydney, Camperdown 2050, Australia (C.M.S.)
- Neuroscience Research Australia, University of New South Wales, Randwick 2031, Australia
| | - Carolyn M. Sue
- Sydney Medical School, University of Sydney, Camperdown 2050, Australia (C.M.S.)
- Neuroscience Research Australia, University of New South Wales, Randwick 2031, Australia
- Neurodegenerative Service, Prince of Wales Hospital, Randwick 2031, Australia
- School of Clinical Medicine, UNSW Medicine & Health, University of New South Wales, Kensington 2052, Australia
| | - Kishore R. Kumar
- Sydney Medical School, University of Sydney, Camperdown 2050, Australia (C.M.S.)
- Rare Disease Program, Garvan Institute of Medical Research, Darlinghurst 2010, Australia
- Translational Neurogenomics Group, Molecular Medicine Laboratory and Department of Neurology, Concord Hospital, Concord 2139, Australia
- School of Clinical Medicine, UNSW Medicine & Health, University of New South Wales, Kensington 2052, Australia
| |
Collapse
|
4
|
Mulkerrin G, França MC, Lope J, Tan EL, Bede P. Neuroimaging in hereditary spastic paraplegias: from qualitative cues to precision biomarkers. Expert Rev Mol Diagn 2022; 22:745-760. [PMID: 36042576 DOI: 10.1080/14737159.2022.2118048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION : Hereditary spastic paraplegias (HSP) include a clinically and genetically heterogeneous group of conditions. Novel imaging modalities have been increasingly applied to HSP cohorts which helps to quantitatively evaluate the integrity of specific anatomical structures and develop monitoring markers for both clinical care and future clinical trials. AREAS COVERED : Advances in HSP imaging are systematically reviewed with a focus on cohort sizes, imaging modalities, study design, clinical correlates, methodological approaches, and key findings. EXPERT OPINION : A wide range of imaging techniques have been recently applied to HSP cohorts. Common shortcomings of existing studies include the evaluation of genetically unconfirmed or admixed cohorts, limited sample sizes, unimodal imaging approaches, lack of postmortem validation, and a limited clinical battery, often exclusively focusing on motor aspects of the condition. A number of innovative methodological approaches have also be identified, such as robust longitudinal study designs, the implementation of multimodal imaging protocols, complementary cognitive assessments, and the comparison of HSP cohorts to MND cohorts. Collaborative multicentre initiatives may overcome sample limitations, and comprehensive clinical profiling with motor, extrapyramidal, cerebellar, and neuropsychological assessments would permit systematic clinico-radiological correlations. Academic achievements in HSP imaging have the potential to be developed into viable clinical applications to expedite the diagnosis and monitor disease progression.
Collapse
Affiliation(s)
| | - Marcondes C França
- Department of Neurology, The State University of Campinas, São Paulo, Brazil
| | - Jasmin Lope
- Computational Neuroimaging Group, Trinity College Dublin, Ireland
| | - Ee Ling Tan
- Computational Neuroimaging Group, Trinity College Dublin, Ireland
| | - Peter Bede
- Department of Neurology, St James's Hospital, Dublin, Ireland.,Computational Neuroimaging Group, Trinity College Dublin, Ireland
| |
Collapse
|
5
|
Navas-Sánchez FJ, Marcos-Vidal L, de Blas DM, Fernández-Pena A, Alemán-Gómez Y, Guzmán-de-Villoria JA, Romero J, Catalina I, Lillo L, Muñoz-Blanco JL, Ordoñez-Ugalde A, Quintáns B, Sobrido MJ, Carmona S, Grandas F, Desco M. Tract-specific damage at spinal cord level in pure hereditary spastic paraplegia type 4: a diffusion tensor imaging study. J Neurol 2022; 269:3189-3203. [PMID: 34999956 DOI: 10.1007/s00415-021-10933-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 01/15/2023]
Abstract
BACKGROUND SPG4 is a subtype of hereditary spastic paraplegia (HSP), an upper motor neuron disorder characterized by axonal degeneration of the corticospinal tracts and the fasciculus gracilis. The few neuroimaging studies that have focused on the spinal cord in HSP are based mainly on the analysis of structural characteristics. METHODS We assessed diffusion-related characteristics of the spinal cord using diffusion tensor imaging (DTI), as well as structural and shape-related properties in 12 SPG4 patients and 14 controls. We used linear mixed effects models up to T3 in order to analyze the global effects of 'group' and 'clinical data' on structural and diffusion data. For DTI, we carried out a region of interest (ROI) analysis in native space for the whole spinal cord, the anterior and lateral funiculi, and the dorsal columns. We also performed a voxelwise analysis of the spinal cord to study local diffusion-related changes. RESULTS A reduced cross-sectional area was observed in the cervical region of SPG4 patients, with significant anteroposterior flattening. DTI analyses revealed significantly decreased fractional anisotropy (FA) and increased radial diffusivity at all the cervical and thoracic levels, particularly in the lateral funiculi and dorsal columns. The FA changes in SPG4 patients were significantly related to disease severity, measured as the Spastic Paraplegia Rating Scale score. CONCLUSIONS Our results in SPG4 indicate tract-specific axonal damage at the level of the cervical and thoracic spinal cord. This finding is correlated with the degree of motor disability.
Collapse
Affiliation(s)
- Francisco J Navas-Sánchez
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Dr Esquerdo 46, 28007, Madrid, Spain. .,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.
| | - Luis Marcos-Vidal
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Dr Esquerdo 46, 28007, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Departamento de Bioingeniería E Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain
| | - Daniel Martín de Blas
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Dr Esquerdo 46, 28007, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Departamento de Bioingeniería E Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain
| | - Alberto Fernández-Pena
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Dr Esquerdo 46, 28007, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Departamento de Bioingeniería E Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain
| | - Yasser Alemán-Gómez
- Department of Psychiatry, Centre Hospitalier Universitaire Vaudois, Prilly, Switzerland.,Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Medical Image Analysis Laboratory (MIAL), Centre d'Imagerie BioMédicale (CIBM), Lausanne, Switzerland
| | - Juan A Guzmán-de-Villoria
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Dr Esquerdo 46, 28007, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Servicio de Radiodiagnóstico, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Julia Romero
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Servicio de Radiodiagnóstico, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Irene Catalina
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Servicio de Neurología, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Laura Lillo
- Servicio de Neurología, Hospital Ruber Internacional, Madrid, Spain
| | - José L Muñoz-Blanco
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Servicio de Neurología, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Andrés Ordoñez-Ugalde
- Instituto de Investigación Sanitaria, Hospital Clínico Universitario, Santiago de Compostela, Spain.,Laboratorio Biomolecular, Cuenca, Ecuador.,Unidad de Genética y Molecular, Hospital de Especialidades José Carrasco Arteaga, Cuenca, Ecuador
| | - Beatriz Quintáns
- Instituto de Investigación Sanitaria, Hospital Clínico Universitario, Santiago de Compostela, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-U711), Madrid, Spain.,Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain
| | - María-Jesús Sobrido
- Instituto de Investigación Sanitaria, Hospital Clínico Universitario, Santiago de Compostela, Spain.,Instituto de Investigación Biomédica, Hospital Clínico Universitario de A Coruña, SERGAS, A Coruña, Spain
| | - Susanna Carmona
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Dr Esquerdo 46, 28007, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Francisco Grandas
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Servicio de Neurología, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Manuel Desco
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Dr Esquerdo 46, 28007, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Departamento de Bioingeniería E Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain.,Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| |
Collapse
|
6
|
McKenna MC, Corcia P, Couratier P, Siah WF, Pradat PF, Bede P. Frontotemporal Pathology in Motor Neuron Disease Phenotypes: Insights From Neuroimaging. Front Neurol 2021; 12:723450. [PMID: 34484106 PMCID: PMC8415268 DOI: 10.3389/fneur.2021.723450] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/22/2021] [Indexed: 01/18/2023] Open
Abstract
Frontotemporal involvement has been extensively investigated in amyotrophic lateral sclerosis (ALS) but remains relatively poorly characterized in other motor neuron disease (MND) phenotypes such as primary lateral sclerosis (PLS), progressive muscular atrophy (PMA), spinal muscular atrophy (SMA), spinal bulbar muscular atrophy (SBMA), post poliomyelitis syndrome (PPS), and hereditary spastic paraplegia (HSP). This review focuses on insights from structural, metabolic, and functional neuroimaging studies that have advanced our understanding of extra-motor disease burden in these phenotypes. The imaging literature is limited in the majority of these conditions and frontotemporal involvement has been primarily evaluated by neuropsychology and post mortem studies. Existing imaging studies reveal that frontotemporal degeneration can be readily detected in ALS and PLS, varying degree of frontotemporal pathology may be captured in PMA, SBMA, and HSP, SMA exhibits cerebral involvement without regional predilection, and there is limited evidence for cerebral changes in PPS. Our review confirms the heterogeneity extra-motor pathology across the spectrum of MNDs and highlights the role of neuroimaging in characterizing anatomical patterns of disease burden in vivo. Despite the contribution of neuroimaging to MND research, sample size limitations, inclusion bias, attrition rates in longitudinal studies, and methodological constraints need to be carefully considered. Frontotemporal involvement is a quintessential clinical facet of MND which has important implications for screening practices, individualized management strategies, participation in clinical trials, caregiver burden, and resource allocation. The academic relevance of imaging frontotemporal pathology in MND spans from the identification of genetic variants, through the ascertainment of presymptomatic changes to the design of future epidemiology studies.
Collapse
Affiliation(s)
- Mary Clare McKenna
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland
| | - Philippe Corcia
- Department of Neurology-Neurophysiology, CRMR ALS, Tours, France.,UMR 1253 iBrain, University of Tours, Tours, France.,LITORALS, Federation of ALS Centres: Tours-Limoges, Limoges, France
| | - Philippe Couratier
- LITORALS, Federation of ALS Centres: Tours-Limoges, Limoges, France.,ALS Centre, Limoges University Hospital (CHU de Limoges), Limoges, France
| | - We Fong Siah
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland
| | | | - Peter Bede
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland.,Pitié-Salpêtrière University Hospital, Sorbonne University, Paris, France
| |
Collapse
|
7
|
Navas-Sánchez FJ, Martín De Blas D, Fernández-Pena A, Alemán-Gómez Y, Lage-Castellanos A, Marcos-Vidal L, Guzmán-De-Villoria JA, Catalina I, Lillo L, Muñoz-Blanco JL, -Ugalde AO, Quintáns B, Sobrido MJ, Carmona S, Grandas F, Desco M. Corticospinal tract and motor cortex degeneration in pure hereditary spastic paraparesis type 4 (SPG4). Amyotroph Lateral Scler Frontotemporal Degener 2021; 23:25-34. [PMID: 34396852 DOI: 10.1080/21678421.2021.1962353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Objective: SPG4 is an autosomal dominant pure form of hereditary spastic paraplegia (HSP) caused by mutations in the SPAST gene. HSP is considered an upper motor neuron disorder characterized by progressive retrograde degeneration, or "dying-back" phenomenon, of the corticospinal tract's longest axons. Neuroimaging studies mainly focus on white matter changes and, although previous studies reported cortical thinning in complicated HSP forms, cortical changes remain unclear in SPG4 patients. This work aimed to compare changes in white matter microstructure and cortical thickness between 12 SPG4 patients and 22 healthy age-matched controls. We also explore whether white matter alterations are related to cortical thickness and their correlation with clinical symptoms. Methods: we used fixel-based analysis, an advanced diffusion-weighted imaging technique, and probabilistic tractography of the corticospinal tracts. We also analyzed cortical morphometry using whole-brain surface-based and atlas-based methods in sensorimotor areas. Results: SPG4 patients showed bilateral involvement in the corticospinal tracts; this was more intense in the distal portion than in the upper segments and was associated with the degree of clinical impairment. We found a significant correlation between disease severity and fiber density and cross-section of the corticospinal tracts. Furthermore, corticospinal tract changes were significantly correlated with bilateral cortical thinning in the precentral gyrus in SPG4 patients. Conclusions: Our data point to axonal damage of the corticospinal motor neurons in SPG4 patients might be related to cortical thinning in motor regions.
Collapse
Affiliation(s)
- Francisco J Navas-Sánchez
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | | | | | - Yasser Alemán-Gómez
- Department of Psychiatry, Centre Hospitalier Universitaire Vaudois, Prilly, Switzerland.,Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Centre d'Imagerie BioMédicale (CIBM), Medical Image Analysis Laboratory (MIAL), Lausanne, Switzerland
| | | | - Luis Marcos-Vidal
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain
| | - Juan A Guzmán-De-Villoria
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Servicio de Radiodiagnóstico, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Irene Catalina
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Servicio de Neurología, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Laura Lillo
- Servicio de Neurología, Hospital Ruber Internacional, Madrid, Spain.,Servicio de Neurología, Hospital Universitario Fundación Alcorcón, Madrid, Spain
| | - José L Muñoz-Blanco
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Servicio de Neurología, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Andrés Ordoñez -Ugalde
- Laboratorio Biomolecular, Cuenca, Ecuador.,Unidad de Genética y Molecular, Hospital de Especialidades José Carrasco Arteaga, Cuenca, Ecuador.,Neurogenetics Group, FPGMX-IDIS, Santiago de Compostela, Spain
| | - Beatriz Quintáns
- Instituto de Investigación Sanitaria, Santiago de Compostela, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-U711), Madrid, Spain.,Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain
| | - María-Jesús Sobrido
- Instituto de Investigación Sanitaria, Santiago de Compostela, Spain.,Hospital Clínico Universitario de A Coruña, SERGAS, A Coruña, Spain and
| | - Susanna Carmona
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Francisco Grandas
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Servicio de Neurología, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Manuel Desco
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain.,Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| |
Collapse
|
8
|
Servelhere KR, Rezende TJR, de Lima FD, de Brito MR, de França Nunes RF, Casseb RF, Pedroso JL, Barsottini OGP, Cendes F, França MC. Brain Damage and Gene Expression Across Hereditary Spastic Paraplegia Subtypes. Mov Disord 2021; 36:1644-1653. [PMID: 33576112 DOI: 10.1002/mds.28519] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/29/2020] [Accepted: 01/03/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Spinal cord has been considered the main target of damage in hereditary spastic paraplegias (HSPs), but mounting evidence indicates that the brain is also affected. Despite this, little is known about the brain signature of HSPs, in particular regarding stratification for specific genetic subtypes. OBJECTIVE We aimed to characterize cerebral and cerebellar damage in five HSP subtypes (9 SPG3A, 27 SPG4, 10 SPG7, 9 SPG8, and 29 SPG11) and to uncover the clinical and gene expression correlates. METHODS We obtained high-resolution brain T1 and diffusion tensor image (DTI) datasets in this cross-sectional case-control study (n = 84). The MRICloud, FreeSurfer, and CERES-SUIT pipelines were employed to assess cerebral gray (GM) and white matter (WM) as well as the cerebellum. RESULTS Brain abnormalities were found in all but one HSP group (SPG3A), but the patterns were gene-specific: basal ganglia, thalamic, and posterior WM involvement in SPG4; diffuse WM and cerebellar involvement in SPG7; cortical thinning at the motor cortices and pallidal atrophy in SPG8; and widespread GM, WM, and deep cerebellar nuclei damage in SPG11. Abnormal regions in SPG4 and SPG8 matched those with higher SPAST and WASHC5 expression, whereas in SPG7 and SPG11 this concordance was only noticed in the cerebellum. CONCLUSIONS Brain damage is a conspicuous feature of HSPs (even for pure subtypes), but the pattern of abnormalities is genotype-specific. Correlation between brain structural damage and gene expression maps is different for autosomal dominant and recessive HSPs, pointing to distinct pathophysiological mechanisms underlying brain damage in these subgroups of the disease. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Katiane R Servelhere
- Department of Neurology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | | | - Fabrício Diniz de Lima
- Department of Neurology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Mariana Rabelo de Brito
- Department of Neurology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | | | - Raphael F Casseb
- Seaman Family MR Research Center, University of Calgary, Calgary, Alberta, Canada
| | - José Luiz Pedroso
- Department of Neurology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Fernando Cendes
- Department of Neurology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Marcondes C França
- Department of Neurology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|