1
|
Ninghetto M, Kozak A, Gałecki T, Szulborski K, Szaflik JP, Ołdak M, Marchewka A, Burnat K. Good vision without peripheries: behavioral and fMRI evidence. Sci Rep 2024; 14:26264. [PMID: 39487160 PMCID: PMC11530436 DOI: 10.1038/s41598-024-76879-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/17/2024] [Indexed: 11/04/2024] Open
Abstract
In healthy vision, bright slow-motion stimuli are processed primarily by the regions of the visual system that receive input from the central part of the scene, whereas processing of dark fast-motion stimuli is more dependent on peripheral visual input. We tested 31 retinitis pigmentosa (RP) patients with long-term loss of peripheral photoreceptors and healthy controls with temporarily limited peripheral vision. We measured motion-based acuity using random-dot kinematograms, establishing individual thresholds for differentiating a circle from an ellipse. Participants subsequently performed a functional magnetic resonance imaging (fMRI) task set at a constant level of difficulty. The results showed that limiting vision did not affect motion-acuity thresholds in control participants but did cause different brain activations than those in RP patients, indicating prompt implementation of the strategy that would be perceptually successful. Compared with controls with both full and limited vision, impaired motion acuity in RP patients led to decreased brain activation, particularly in the primary peripheral visual areas V1-3. Importantly, compared with controls in full vision, matched decreased activation in MT+/V5, salience-processing cortices and the superior temporal cortex were detected in RP patients and in controls with limited peripheral vision, revealing brain networks that compensate for the loss of peripheral vision.
Collapse
Affiliation(s)
- M Ninghetto
- Laboratory of Brain Imaging, Neurobiology Center, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - A Kozak
- Laboratory of Brain Imaging, Neurobiology Center, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - T Gałecki
- Department of Ophthalmology, Medical University of Warsaw, Warsaw, Poland
| | - K Szulborski
- Department of Ophthalmology, Medical University of Warsaw, Warsaw, Poland
| | - J P Szaflik
- Department of Ophthalmology, Medical University of Warsaw, Warsaw, Poland
| | - M Ołdak
- Department of Histology and Embryology, Medical University of Warsaw, Warsaw, Poland
| | - A Marchewka
- Laboratory of Brain Imaging, Neurobiology Center, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - K Burnat
- Laboratory of Brain Imaging, Neurobiology Center, Nencki Institute of Experimental Biology, Warsaw, Poland.
| |
Collapse
|
2
|
Xu J, Zhang X, Cheng Q, Zhang H, Zhong L, Luo Y, Zhang Y, Ou Z, Yan Z, Peng K, Liu G. Abnormal supplementary motor areas are associated with idiopathic and acquired blepharospasm. Parkinsonism Relat Disord 2024; 121:106029. [PMID: 38394948 DOI: 10.1016/j.parkreldis.2024.106029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024]
Abstract
Blepharospasm is a common form of focal dystonia characterized by excessive and involuntary spasms of the orbicularis oculi. In addition to idiopathic blepharospasm, lesions in various brain regions can also cause acquired blepharospasm. Whether these two types of blepharospasm share a common brain network remains largely unknown. Herein, we performed lesion coactivation network mapping, based on meta-analytic connectivity modeling, to test whether lesions causing blepharospasm could be mapped to a common coactivation brain network. We then tested the abnormality of the network in patients with idiopathic blepharospasm (n = 42) compared with healthy controls (n = 44). We identified 21 cases of lesion-induced blepharospasms through a systematic literature search. Although these lesions were heterogeneous, they were part of a co-activated brain network that mainly included the bilateral supplementary motor areas. Coactivation of these regions defines a single brain network that encompasses or is adjacent to most heterogeneous lesions causing blepharospasm. Moreover, the bilateral supplementary motor area is primarily associated with action execution, visual motion, and imagination, and participates in finger tapping and saccades. They also reported decreased functional connectivity with the left posterior cingulate cortex in patients with idiopathic blepharospasm. These results demonstrate a common convergent abnormality of the supplementary motor area across idiopathic and acquired blepharospasms, providing additional evidence that the supplementary motor area is an important brain region that is pathologically impaired in patients with blepharospasm.
Collapse
Affiliation(s)
- Jinping Xu
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiaodong Zhang
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Shenzhen Children's Hospital, Shenzhen, 518000, China
| | - Qinxiu Cheng
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Haoran Zhang
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Linchang Zhong
- Department of Medical Imaging, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Yuhan Luo
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, 510080, China
| | - Yue Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, 510080, China
| | - Zilin Ou
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, 510080, China
| | - Zhicong Yan
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, 510080, China
| | - Kangqiang Peng
- Department of Medical Imaging, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.
| | - Gang Liu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, 510080, China.
| |
Collapse
|
3
|
Zarifkar P, Shaff NA, Nersesjan V, Mayer AR, Ryman S, Kondziella D. Lesion network mapping of eye-opening apraxia. Brain Commun 2023; 5:fcad288. [PMID: 37953849 PMCID: PMC10636562 DOI: 10.1093/braincomms/fcad288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/01/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023] Open
Abstract
Apraxia of eyelid opening (or eye-opening apraxia) is characterized by the inability to voluntarily open the eyes because of impaired supranuclear control. Here, we examined the neural substrates implicated in eye-opening apraxia through lesion network mapping. We analysed brain lesions from 27 eye-opening apraxia stroke patients and compared them with lesions from 20 aphasia and 45 hemiballismus patients serving as controls. Lesions were mapped onto a standard brain atlas using resting-state functional MRI data derived from 966 healthy adults in the Harvard Dataverse. Our analyses revealed that most eye-opening apraxia-associated lesions occurred in the right hemisphere, with subcortical or mixed cortical/subcortical involvement. Despite their anatomical heterogeneity, these lesions functionally converged on the bilateral dorsal anterior and posterior insula. The functional connectivity map for eye-opening apraxia was distinct from those for aphasia and hemiballismus. Hemiballismus lesions predominantly mapped onto the putamen, particularly the posterolateral region, while aphasia lesions were localized to language-processing regions, primarily within the frontal operculum. In summary, in patients with eye-opening apraxia, disruptions in the dorsal anterior and posterior insula may compromise their capacity to initiate the appropriate eyelid-opening response to relevant interoceptive and exteroceptive stimuli, implicating a complex interplay between salience detection and motor execution.
Collapse
Affiliation(s)
- Pardis Zarifkar
- Department of Neurology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | | | - Vardan Nersesjan
- Department of Neurology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
- Copenhagen Research Center for Mental Health—CORE, Copenhagen University Hospital, 2900 Copenhagen, Denmark
| | | | | | - Daniel Kondziella
- Department of Neurology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, 1172 Copenhagen, Denmark
| |
Collapse
|
4
|
Kryklywy JH, Forys BJ, Vieira JB, Quinlan DJ, Mitchell DGV. Dissociating representations of affect and motion in visual cortices. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023; 23:1322-1345. [PMID: 37526901 PMCID: PMC10545642 DOI: 10.3758/s13415-023-01115-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/05/2023] [Indexed: 08/02/2023]
Abstract
While a delicious dessert being presented to us may elicit strong feelings of happiness and excitement, the same treat falling slowly away can lead to sadness and disappointment. Our emotional response to the item depends on its visual motion direction. Despite this importance, it remains unclear whether (and how) cortical areas devoted to decoding motion direction represents or integrates emotion with perceived motion direction. Motion-selective visual area V5/MT+ sits, both functionally and anatomically, at the nexus of dorsal and ventral visual streams. These pathways, however, differ in how they are modulated by emotional cues. The current study was designed to disentangle how emotion and motion perception interact, as well as use emotion-dependent modulation of visual cortices to understand the relation of V5/MT+ to canonical processing streams. During functional magnetic resonance imaging (fMRI), approaching, receding, or static motion after-effects (MAEs) were induced on stationary positive, negative, and neutral stimuli. An independent localizer scan was conducted to identify the visual-motion area V5/MT+. Through univariate and multivariate analyses, we demonstrated that emotion representations in V5/MT+ share a more similar response profile to that observed in ventral visual than dorsal, visual structures. Specifically, V5/MT+ and ventral structures were sensitive to the emotional content of visual stimuli, whereas dorsal visual structures were not. Overall, this work highlights the critical role of V5/MT+ in the representation and processing of visually acquired emotional content. It further suggests a role for this region in utilizing affectively salient visual information to augment motion perception of biologically relevant stimuli.
Collapse
Affiliation(s)
- James H Kryklywy
- Department of Psychology, Lakehead University, Thunder Bay, Canada.
| | - Brandon J Forys
- Department of Psychology, University of British Columbia, Vancouver, Canada
| | - Joana B Vieira
- Department of Psychology, University of Exeter, Exeter, UK
| | - Derek J Quinlan
- Department of Psychology, Huron University College, London, Canada
- Graduate Brain and Mind Institute, Brain and Mind Institute, University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Derek G V Mitchell
- Graduate Brain and Mind Institute, Brain and Mind Institute, University of Western Ontario, London, Ontario, N6A 5B7, Canada
- Department of Anatomy & Cell Biology, University of Western Ontario, London, Canada
- Department of Psychology, University of Western Ontario, London, Canada
- Department of Psychiatry, University of Western Ontario, London, Canada
| |
Collapse
|
5
|
Jeong KY. Editorial for "An MRI Study Combining Virtual Brain Grafting and Surface-Based Morphometry Analysis to Investigate Contralateral Alterations in Cortical Morphology in Patients With Diffuse Low-Grade Glioma". J Magn Reson Imaging 2023; 58:750-751. [PMID: 36510417 DOI: 10.1002/jmri.28561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
|
6
|
Tomita H, Kamagata K, Andica C, Uchida W, Fukuo M, Waki H, Sugano H, Tange Y, Mitsuhashi T, Lukies M, Hagiwara A, Fujita S, Wada A, Akashi T, Murata S, Harada M, Aoki S, Naito H. Connectome analysis of male world-class gymnasts using probabilistic multishell, multitissue constrained spherical deconvolution tracking. J Neurosci Res 2021; 99:2558-2572. [PMID: 34245603 PMCID: PMC9541483 DOI: 10.1002/jnr.24912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/19/2021] [Accepted: 06/17/2021] [Indexed: 11/17/2022]
Abstract
In athletes, long‐term intensive training has been shown to increase unparalleled athletic ability and might induce brain plasticity. We evaluated the structural connectome of world‐class gymnasts (WCGs), as mapped by diffusion‐weighted magnetic resonance imaging probabilistic tractography and a multishell, multitissue constrained spherical deconvolution method to increase the precision of tractography at the tissue interfaces. The connectome was mapped in 10 Japanese male WCGs and in 10 age‐matched male controls. Network‐based statistic identified subnetworks with increased connectivity density in WCGs, involving the sensorimotor, default mode, attentional, visual, and limbic areas. It also revealed a significant association between the structural connectivity of some brain structures with functions closely related to the gymnastic skills and the D‐score, which is used as an index of the gymnasts' specific physical abilities for each apparatus. Furthermore, graph theory analysis demonstrated the characteristics of brain anatomical topology in the WCGs. They displayed significantly increased global connectivity strength with decreased characteristic path length at the global level and higher nodal strength and degree in the sensorimotor, default mode, attention, and limbic/subcortical areas at the local level as compared with controls. Together, these findings extend the current understanding of neural mechanisms that distinguish WCGs from controls and suggest brain anatomical network plasticity in WCGs resulting from long‐term intensive training. Future studies should assess the contribution of genetic or early‐life environmental factors in the brain network organization of WCGs. Furthermore, the indices of brain topology (i.e., connection density and graph theory indices) could become markers for the objective evaluation of gymnastic performance.
Collapse
Affiliation(s)
- Hiroyuki Tomita
- Juntendo University Graduate School of Health and Sports Science, Chiba, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Christina Andica
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Wataru Uchida
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Makoto Fukuo
- Juntendo University Graduate School of Health and Sports Science, Chiba, Japan
| | - Hidefumi Waki
- Juntendo University Graduate School of Health and Sports Science, Chiba, Japan
| | - Hidenori Sugano
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuichi Tange
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takumi Mitsuhashi
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Matthew Lukies
- Department of Diagnostic and Interventional Radiology, Alfred Health, Melbourne, VIC, Australia
| | - Akifumi Hagiwara
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shohei Fujita
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akihiko Wada
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Toshiaki Akashi
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Syo Murata
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mutsumi Harada
- Juntendo University Graduate School of Health and Sports Science, Chiba, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hisashi Naito
- Juntendo University Graduate School of Health and Sports Science, Chiba, Japan
| |
Collapse
|
7
|
Song L, Ge Y, Long J, Dong P. Altered Intrinsic and Casual Functional Connectivities of the Middle Temporal Visual Motion Area Subregions in Chess Experts. Front Neurosci 2020; 14:605986. [PMID: 33335474 PMCID: PMC7736603 DOI: 10.3389/fnins.2020.605986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/28/2020] [Indexed: 11/16/2022] Open
Abstract
An outstanding chess player needs to accumulate massive visual and spatial information for chess configurations. Visual motion area (MT) is considered as a brain region specialized for visual motion perception and visuospatial attention processing. However, how long-term chess training shapes the functional connectivity patterns of MT, especially its functional subregions, has rarely been investigated. In our study, using resting-state functional connectivity (RSFC) and Granger causality analysis (GCA), we studied the changed functional couplings of MT subregions between 28 chess master players and 27 gender- and age-matched healthy novices to reveal the neural basis of long-term professional chess training. RSFC analysis identified decreased functional connections between right dorsal-anterior subregion (CI1.R) and left angular gyrus, and increased functional connections between right ventral-anterior MT subregion (CI2.R) and right superior temporal gyrus in chess experts. Moreover, GCA analyses further found increased mutual interactions of left angular gyrus and CI1.R in chess experts compared to novice players. These findings demonstrate that long-term professional chess training could enhance spatial perception and reconfiguration and semantic processing efficiency for superior performance.
Collapse
Affiliation(s)
- Limei Song
- School of Medical Imaging, Weifang Medical University, Weifang, China
| | - Yanming Ge
- Medical Imaging Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Jinfeng Long
- School of Medical Imaging, Weifang Medical University, Weifang, China
| | - Peng Dong
- School of Medical Imaging, Weifang Medical University, Weifang, China
| |
Collapse
|