1
|
Falaschetti L, Biagetti G, Alessandrini M, Turchetti C, Luzzi S, Crippa P. Multi-Class Detection of Neurodegenerative Diseases from EEG Signals Using Lightweight LSTM Neural Networks. SENSORS (BASEL, SWITZERLAND) 2024; 24:6721. [PMID: 39460201 PMCID: PMC11511166 DOI: 10.3390/s24206721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/07/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Neurodegenerative diseases severely impact the life of millions of patients worldwide, and their occurrence is more and more increasing proportionally to longer life expectancy. Electroencephalography has become an important diagnostic tool for these diseases, due to its relatively simple procedure, but it requires analyzing a large number of data, often carrying a small fraction of informative content. For this reason, machine learning tools have gained a considerable relevance as an aid to classify potential signs of a specific disease, especially in its early stages, when treatments can be more effective. In this work, long short-term memory-based neural networks with different numbers of units were properly designed and trained after accurate data pre-processing, in order to perform a multi-class detection. To this end, a custom dataset of EEG recordings from subjects affected by five neurodegenerative diseases (Alzheimer's disease, frontotemporal dementia, dementia with Lewy bodies, progressive supranuclear palsy, and vascular dementia) was acquired. Experimental results show that an accuracy up to 98% was achieved with data belonging to different classes of disease, up to six including the control group, while not requiring particularly heavy computational resources.
Collapse
Affiliation(s)
- Laura Falaschetti
- Department of Information Engineering, Università Politecnica delle Marche, Via Brecce Bianche 12, I-60131 Ancona, Italy; (G.B.); (M.A.); (C.T.); (P.C.)
| | - Giorgio Biagetti
- Department of Information Engineering, Università Politecnica delle Marche, Via Brecce Bianche 12, I-60131 Ancona, Italy; (G.B.); (M.A.); (C.T.); (P.C.)
| | - Michele Alessandrini
- Department of Information Engineering, Università Politecnica delle Marche, Via Brecce Bianche 12, I-60131 Ancona, Italy; (G.B.); (M.A.); (C.T.); (P.C.)
| | - Claudio Turchetti
- Department of Information Engineering, Università Politecnica delle Marche, Via Brecce Bianche 12, I-60131 Ancona, Italy; (G.B.); (M.A.); (C.T.); (P.C.)
| | - Simona Luzzi
- Neurology Clinic, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Torrette, I-60126 Ancona, Italy;
| | - Paolo Crippa
- Department of Information Engineering, Università Politecnica delle Marche, Via Brecce Bianche 12, I-60131 Ancona, Italy; (G.B.); (M.A.); (C.T.); (P.C.)
| |
Collapse
|
2
|
Majdi H, Azarnoosh M, Ghoshuni M, Sabzevari VR. Direct lingam and visibility graphs for analyzing brain connectivity in BCI. Med Biol Eng Comput 2024; 62:2117-2132. [PMID: 38457065 DOI: 10.1007/s11517-024-03048-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 02/13/2024] [Indexed: 03/09/2024]
Abstract
The brain-computer interface (BCI) is a direct pathway of communication between the electrical activity of the brain and an external device. The present paper was aimed to investigate directed connectivity between different areas of the brain during motor imagery (MI)-based BCI. For this purpose, two methods were implemented including, Limited Penetrable Horizontal Visibility Graph (LPHVG) and Direct Lingam. The visibility graph (VG) is a robust algorithm for analyzing complex systems such as the brain. Direct Lingam uses a non-Gaussian model to extract causal links which is appropriate for analyzing large-scale connectivity. First, LPHVG map MI-EEG (electroencephalogram) signals into networks. After extracting the topological features of the networks, a support vector machine classifier was applied to categorize multi-classes MI. The network of all classes was found to be different from one another, and the kappa value of classification was 0.68. The degree sequence of LPHVG was calculated for each channel in order to obtain the direction of brain information flow. Transfer entropy (TE) is used to compute the relations of the channel degree sequence. Therefore, the directed graph between channels was formed. This method is called LPHVG_TE directed graph. The Bayesian network, also known as the Direct LiNGAM model, was implemented for the second method. Finally, images of the LPHVG and Direct Lingam were classified by convolutional neural network (CNN). In this study, Data sets 2a of BCI competition IV was used. The outcomes reveal that the brain network developed by LPHVG (92.7%) might be more effective to distinguish 4 classes of MI than the Direct Lingam (90.6%) and it was shown that graph theory has the potential to get better efficiency of BCI.
Collapse
Affiliation(s)
- Hoda Majdi
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mahdi Azarnoosh
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | - Majid Ghoshuni
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Vahid Reza Sabzevari
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
3
|
Li T, Wang J, Li S, Li K. Probing latent brain dynamics in Alzheimer's disease via recurrent neural network. Cogn Neurodyn 2024; 18:1183-1195. [PMID: 38826675 PMCID: PMC11143160 DOI: 10.1007/s11571-023-09981-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/14/2023] [Accepted: 05/31/2023] [Indexed: 06/04/2024] Open
Abstract
The impairment of cognitive function in Alzheimer's disease (AD) is clearly correlated to abnormal changes in cortical rhythm. However, the mechanisms underlying this correlation are still poorly understood. Here, we investigate how network structure and dynamical characteristics alter their abnormal changes in cortical rhythm. To that end, biological data of AD and normal participates are collected. By extracting the energy characteristics of different sub-bands in EEG signals, we find that the rhythm of AD patients is special particularly in theta and alpha bands. The cortical rhythm of normal state is mainly at alpha band, while that of AD state shift to the theta band. Furthermore, recurrent neural network (RNN) is trained to explore the rhythm formation and transformation between two neural states from the perspective view of neurocomputation. It is found that the neural coupling strength decreases significantly under AD state when compared with normal state, which weakens the ability of information transmission in AD state. Besides, the low-dimensional properties of RNN are obtained. By analyzing the relationship between the cortical rhythm transition and the low-dimensional trajectory, it is concluded that the low-dimensional trajectory update is slower and the communication cost is higher in AD state, which explains the abnormal synchronization of AD brain network. Our work reveals the causes for the formation of abnormal brain synchronous functional network status, which may expand our understanding of the mechanism of cognitive impairment in AD and provide an EEG biomarker for early AD.
Collapse
Affiliation(s)
- Tong Li
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Jiang Wang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Shanshan Li
- School of Automation and Electrical Engineering, Tianjin University of Technology and Educations, Tianjin, China
| | - Kai Li
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
4
|
Miao Y, Iimura Y, Sugano H, Fukumori K, Tanaka T. Seizure onset zone identification using phase-amplitude coupling and multiple machine learning approaches for interictal electrocorticogram. Cogn Neurodyn 2023; 17:1591-1607. [PMID: 37969944 PMCID: PMC10640557 DOI: 10.1007/s11571-022-09915-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/26/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Automatic seizure onset zone (SOZ) localization using interictal electrocorticogram (ECoG) improves the diagnosis and treatment of patients with medically refractory epilepsy. This study aimed to investigate the characteristics of phase-amplitude coupling (PAC) extracted from interictal ECoG and the feasibility of PAC serving as a promising biomarker for SOZ identification. We employed the mean vector length modulation index approach on the 20-s ECoG window to calculate PAC features between low-frequency rhythms (0.5-24 Hz) and high frequency oscillations (HFOs) (80-560 Hz). We used statistical measures to test the significant difference in PAC between the SOZ and non-seizure onset zone (NSOZ). To overcome the drawback of handcraft feature engineering, we established novel machine learning models to learn automatically the characteristics of the obtained PAC features and classify them to identify the SOZ. Besides, to handle imbalanced dataset classification, we introduced novel feature-wise/class-wise re-weighting strategies in conjunction with classifiers. In addition, we proposed a time-series nest cross-validation to provide more accurate and unbiased evaluations for this model. Seven patients with focal cortical dysplasia were included in this study. The experiment results not only showed that a significant coupling at band pairs of slow waves and HFOs exists in the SOZ when compared with the NSOZ, but also indicated the effectiveness of the PAC features and the proposed models in achieving better classification performance .
Collapse
Affiliation(s)
- Yao Miao
- Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Yasushi Iimura
- Department of Neurosurgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Hidenori Sugano
- Department of Neurosurgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Kosuke Fukumori
- Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Toshihisa Tanaka
- Tokyo University of Agriculture and Technology, Tokyo, Japan
- Department of Neurosurgery, Juntendo University School of Medicine, Tokyo, Japan
- RIKEN Center for Brain Science, Saitama, Japan
- RIKEN Center for Advanced Intelligent Project, Tokyo, Japan
| |
Collapse
|
5
|
Sulaimany S, Safahi Z. Visibility graph analysis for brain: scoping review. Front Neurosci 2023; 17:1268485. [PMID: 37841678 PMCID: PMC10570536 DOI: 10.3389/fnins.2023.1268485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
In the past two decades, network-based analysis has garnered considerable attention for analyzing time series data across various fields. Time series data can be transformed into graphs or networks using different methods, with the visibility graph (VG) being a widely utilized approach. The VG holds extensive applications in comprehending, identifying, and predicting specific characteristics of time series data. Its practicality extends to domains such as medicine, economics, meteorology, tourism, and others. This research presents a scoping review of scholarly articles published in reputable English-language journals and conferences, focusing on VG-based analysis methods related to brain disorders. The aim is to provide a foundation for further and future research endeavors, beginning with an introduction to the VG and its various types. To achieve this, a systematic search and refinement of relevant articles were conducted in two prominent scientific databases: Google Scholar and Scopus. A total of 51 eligible articles were selected for a comprehensive analysis of the topic. These articles categorized based on publication year, type of VG used, rationale for utilization, machine learning algorithms employed, frequently occurring keywords, top authors and universities, evaluation metrics, applied network properties, and brain disorders examined, such as Epilepsy, Alzheimer's disease, Autism, Alcoholism, Sleep disorders, Fatigue, Depression, and other related conditions. Moreover, there are recommendations for future advancements in research, which involve utilizing cutting-edge techniques like graph machine learning and deep learning. Additionally, the exploration of understudied medical conditions such as attention deficit hyperactivity disorder and Parkinson's disease is also suggested.
Collapse
Affiliation(s)
- Sadegh Sulaimany
- Social and Biological Network Analysis Laboratory (SBNA), Department of Computer Engineering, University of Kurdistan, Sanandaj, Iran
| | | |
Collapse
|
6
|
Wang R, Wang H, Shi L, Han C, He Q, Che Y, Luo L. A novel framework of MOPSO-GDM in recognition of Alzheimer's EEG-based functional network. Front Aging Neurosci 2023; 15:1160534. [PMID: 37455939 PMCID: PMC10339813 DOI: 10.3389/fnagi.2023.1160534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Background Most patients with Alzheimer's disease (AD) have an insidious onset and frequently atypical clinical symptoms, which are considered a normal consequence of aging, making it difficult to diagnose AD medically. But then again, accurate diagnosis is critical to prevent degeneration and provide early treatment for AD patients. Objective This study aims to establish a novel EEG-based classification framework with deep learning methods for AD recognition. Methods First, considering the network interactions in different frequency bands (δ, θ, α, β, and γ), multiplex networks are reconstructed by the phase synchronization index (PSI) method, and fourteen topology features are extracted subsequently, forming a high-dimensional feature vector. However, in feature combination, not all features can provide effective information for recognition. Moreover, combining features by manual selection is time-consuming and laborious. Thus, a feature selection optimization algorithm called MOPSO-GDM was proposed by combining multi-objective particle swarm optimization (MOPSO) algorithm with Gaussian differential mutation (GDM) algorithm. In addition to considering the classification error rates of support vector machine, naive bayes, and discriminant analysis classifiers, our algorithm also considers distance measure as an optimization objective. Results Finally, this method proposed achieves an excellent classification error rate of 0.0531 (5.31%) with the feature vector size of 8, by a ten-fold cross-validation strategy. Conclusion These findings show that our framework can adaptively combine the best brain network features to explore network synchronization, functional interactions, and characterize brain functional abnormalities, which can improve the recognition efficiency of diseases. While improving the classification accuracy of application algorithms, we aim to expand our understanding of the brain function of patients with neurological disorders through the analysis of brain networks.
Collapse
Affiliation(s)
- Ruofan Wang
- School of Information Technology Engineering, Tianjin University of Technology and Education, Tianjin, China
| | - Haodong Wang
- School of Information Technology Engineering, Tianjin University of Technology and Education, Tianjin, China
| | - Lianshuan Shi
- School of Information Technology Engineering, Tianjin University of Technology and Education, Tianjin, China
| | - Chunxiao Han
- Tianjin Key Laboratory of Information Sensing and Intelligent Control, School of Automation and Electrical Engineering, Tianjin University of Technology and Education, Tianjin, China
| | - Qiguang He
- School of Information Technology Engineering, Tianjin University of Technology and Education, Tianjin, China
| | - Yanqiu Che
- Tianjin Key Laboratory of Information Sensing and Intelligent Control, School of Automation and Electrical Engineering, Tianjin University of Technology and Education, Tianjin, China
| | - Li Luo
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
7
|
Hadiyoso S, Zakaria H, Anam Ong P, Erawati Rajab TL. Multi Modal Feature Extraction for Classification of Vascular Dementia in Post-Stroke Patients Based on EEG Signal. SENSORS (BASEL, SWITZERLAND) 2023; 23:1900. [PMID: 36850499 PMCID: PMC9966260 DOI: 10.3390/s23041900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Dementia is a term that represents a set of symptoms that affect the ability of the brain's cognitive functions related to memory, thinking, behavior, and language. At worst, dementia is often called a major neurocognitive disorder or senile disease. One of the most common types of dementia after Alzheimer's is vascular dementia. Vascular dementia is closely related to cerebrovascular disease, one of which is stroke. Post-stroke patients with recurrent onset have the potential to develop dementia. An accurate diagnosis is needed for proper therapy management to ensure the patient's quality of life and prevent it from worsening. The gold standard diagnostic of vascular dementia is complex, includes psychological tests, complete memory tests, and is evidenced by medical imaging of brain lesions. However, brain imaging methods such as CT-Scan, PET-Scan, and MRI have high costs and cannot be routinely used in a short period. For more than two decades, electroencephalogram signal analysis has been an alternative in assisting the diagnosis of brain diseases associated with cognitive decline. Traditional EEG analysis performs visual observations of signals, including rhythm, power, and spikes. Of course, it requires a clinician expert, time consumption, and high costs. Therefore, a quantitative EEG method for identifying vascular dementia in post-stroke patients is discussed in this study. This study used 19 EEG channels recorded from normal elderly, post-stroke with mild cognitive impairment, and post-stroke with dementia. The QEEG method used for feature extraction includes relative power, coherence, and signal complexity; the evaluation performance of normal-mild cognitive impairment-dementia classification was conducted using Support Vector Machine and K-Nearest Neighbor. The results of the classification simulation showed the highest accuracy of 96% by Gaussian SVM with a sensitivity and specificity of 95.6% and 97.9%, respectively. This study is expected to be an additional criterion in the diagnosis of dementia, especially in post-stroke patients.
Collapse
Affiliation(s)
- Sugondo Hadiyoso
- School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Bandung 40116, Indonesia
- School of Applied Science, Telkom University, Bandung 40257, Indonesia
| | - Hasballah Zakaria
- School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Bandung 40116, Indonesia
| | - Paulus Anam Ong
- Department of Neurology, Dr. Hasan Sadikin General Hospital, Bandung 40161, Indonesia
| | | |
Collapse
|
8
|
Zhang C, Cui X, Lian S, Xiao R, Qiao H, Li S, Lou Y, Feng Y, Zhuang L, Du J, Liu X. Intelligent algorithm for dynamic functional brain network complexity from CN to AD. INT J INTELL SYST 2022. [DOI: 10.1002/int.22737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Chenghui Zhang
- School of Computer Science Qufu Normal University Rizhao China
- Department of Psychology and Behavioral Sciences Zhejiang University Hangzhou China
| | - Xinchun Cui
- School of Computer Science Qufu Normal University Rizhao China
- Guangxi Key Laboratory of Cryptography and Information Security Guilin China
| | - Shujun Lian
- School of Management Qufu Normal University Rizhao China
| | - Ruyi Xiao
- School of Computer Science Qufu Normal University Rizhao China
| | - Hong Qiao
- School of Business Shandong Normal University Jinan China
| | - Shancang Li
- Department of Computer Science University of the West of England Bristol UK
| | - Yue Lou
- Department of Neurology Zhejiang Hospital Hangzhou China
| | - Yue Feng
- Department of Radiology Zhejiang Hospital Hangzhou China
| | - Liying Zhuang
- Department of Neurology Zhejiang Hospital Hangzhou China
| | - Jianzong Du
- Respiratory Medicine Zhejiang Hospital Hangzhou China
| | - Xiaoli Liu
- Department of Neurology Zhejiang Hospital Hangzhou China
| |
Collapse
|
9
|
EEG-Based Alzheimer's Disease Recognition Using Robust-PCA and LSTM Recurrent Neural Network. SENSORS 2022; 22:s22103696. [PMID: 35632105 PMCID: PMC9145212 DOI: 10.3390/s22103696] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/02/2022] [Accepted: 05/10/2022] [Indexed: 01/27/2023]
Abstract
The use of electroencephalography (EEG) has recently grown as a means to diagnose neurodegenerative pathologies such as Alzheimer's disease (AD). AD recognition can benefit from machine learning methods that, compared with traditional manual diagnosis methods, have higher reliability and improved recognition accuracy, being able to manage large amounts of data. Nevertheless, machine learning methods may exhibit lower accuracies when faced with incomplete, corrupted, or otherwise missing data, so it is important do develop robust pre-processing techniques do deal with incomplete data. The aim of this paper is to develop an automatic classification method that can still work well with EEG data affected by artifacts, as can arise during the collection with, e.g., a wireless system that can lose packets. We show that a recurrent neural network (RNN) can operate successfully even in the case of significantly corrupted data, when it is pre-filtered by the robust principal component analysis (RPCA) algorithm. RPCA was selected because of its stated ability to remove outliers from the signal. To demonstrate this idea, we first develop an RNN which operates on EEG data, properly processed through traditional PCA; then, we use corrupted data as input and process them with RPCA to filter outlier components, showing that even with data corruption causing up to 20% erasures, the RPCA was able to increase the detection accuracy by about 5% with respect to the baseline PCA.
Collapse
|
10
|
Deepa N, Chokkalingam S. Optimization of VGG16 utilizing the Arithmetic Optimization Algorithm for early detection of Alzheimer’s disease. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103455] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Javaid H, Kumarnsit E, Chatpun S. Age-Related Alterations in EEG Network Connectivity in Healthy Aging. Brain Sci 2022; 12:brainsci12020218. [PMID: 35203981 PMCID: PMC8870284 DOI: 10.3390/brainsci12020218] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 02/01/2023] Open
Abstract
Emerging studies have reported that functional brain networks change with increasing age. Graph theory is applied to understand the age-related differences in brain behavior and function, and functional connectivity between the regions is examined using electroencephalography (EEG). The effect of normal aging on functional networks and inter-regional synchronization during the working memory (WM) state is not well known. In this study, we applied graph theory to investigate the effect of aging on network topology in a resting state and during performing a visual WM task to classify aging EEG signals. We recorded EEGs from 20 healthy middle-aged and 20 healthy elderly subjects with their eyes open, eyes closed, and during a visual WM task. EEG signals were used to construct the functional network; nodes are represented by EEG electrodes; and edges denote the functional connectivity. Graph theory matrices including global efficiency, local efficiency, clustering coefficient, characteristic path length, node strength, node betweenness centrality, and assortativity were calculated to analyze the networks. We applied the three classifiers of K-nearest neighbor (KNN), a support vector machine (SVM), and random forest (RF) to classify both groups. The analyses showed the significantly reduced network topology features in the elderly group. Local efficiency, global efficiency, and clustering coefficient were significantly lower in the elderly group with the eyes-open, eyes-closed, and visual WM task states. KNN achieved its highest accuracy of 98.89% during the visual WM task and depicted better classification performance than other classifiers. Our analysis of functional network connectivity and topological characteristics can be used as an appropriate technique to explore normal age-related changes in the human brain.
Collapse
Affiliation(s)
- Hamad Javaid
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand;
| | - Ekkasit Kumarnsit
- Physiology Program, Division of Health and Applied Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand;
- Biosignal Research Centre for Health, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Surapong Chatpun
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand;
- Biosignal Research Centre for Health, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
- Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Correspondence:
| |
Collapse
|
12
|
Machine learning techniques for diagnosis of alzheimer disease, mild cognitive disorder, and other types of dementia. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103293] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Pini L, Wennberg AM, Salvalaggio A, Vallesi A, Pievani M, Corbetta M. Breakdown of specific functional brain networks in clinical variants of Alzheimer's disease. Ageing Res Rev 2021; 72:101482. [PMID: 34606986 DOI: 10.1016/j.arr.2021.101482] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is characterized by different clinical entities. Although AD phenotypes share a common molecular substrate (i.e., amyloid beta and tau accumulation), several clinicopathological differences exist. Brain functional networks might provide a macro-scale scaffolding to explain this heterogeneity. In this review, we summarize the evidence linking different large-scale functional network abnormalities to distinct AD phenotypes. Specifically, executive deficits in early-onset AD link with the dysfunction of networks that support sustained attention and executive functions. Posterior cortical atrophy relates to the breakdown of visual and dorsal attentional circuits, while the primary progressive aphasia variant of AD may be associated with the dysfunction of the left-lateralized language network. Additionally, network abnormalities might provide in vivo signatures for distinguishing proteinopathies that mimic AD, such as TAR DNA binding protein 43 related pathologies. These network differences vis-a-vis clinical syndromes are more evident in the earliest stage of AD. Finally, we discuss how these findings might pave the way for new tailored interventions targeting the most vulnerable brain circuit at the optimal time window to maximize clinical benefits.
Collapse
|