1
|
Saigre T, Prud'homme C, Szopos M. Model order reduction and sensitivity analysis for complex heat transfer simulations inside the human eyeball. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2024; 40:e3864. [PMID: 39250194 DOI: 10.1002/cnm.3864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/06/2024] [Accepted: 08/17/2024] [Indexed: 09/10/2024]
Abstract
Heat transfer in the human eyeball, a complex organ, is significantly influenced by various pathophysiological and external parameters. Particularly, heat transfer critically affects fluid behavior within the eye and ocular drug delivery processes. Overcoming the challenges of experimental analysis, this study introduces a comprehensive three-dimensional mathematical and computational model to simulate the heat transfer in a realistic geometry. Our work includes an extensive sensitivity analysis to address uncertainties and delineate the impact of different variables on heat distribution in ocular tissues. To manage the model's complexity, we employed a very fast model reduction technique with certified sharp error bounds, ensuring computational efficiency without compromising accuracy. Our results demonstrate remarkable consistency with experimental observations and align closely with existing numerical findings in the literature. Crucially, our findings underscore the significant role of blood flow and environmental conditions, particularly in the eye's internal tissues. Clinically, this model offers a promising tool for examining the temperature-related effects of various therapeutic interventions on the eye. Such insights are invaluable for optimizing treatment strategies in ophthalmology.
Collapse
Affiliation(s)
- Thomas Saigre
- Institut de Recherche Mathématique Avancée, UMR 7501 Université de Strasbourg et CNRS, Strasbourg, France
| | - Christophe Prud'homme
- Institut de Recherche Mathématique Avancée, UMR 7501 Université de Strasbourg et CNRS, Strasbourg, France
| | - Marcela Szopos
- Université Paris Cité, CNRS, MAP5, F75006, Paris, France
| |
Collapse
|
2
|
Verma A, Agadagba SK, Chan LLH. Exploring the synergy of the eye-brain connection: neuromodulation approaches for neurodegenerative disorders through transcorneal electrical stimulation. Neural Regen Res 2024; 19:2097-2098. [PMID: 38488536 PMCID: PMC11034586 DOI: 10.4103/1673-5374.392877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/14/2023] [Accepted: 11/24/2023] [Indexed: 04/24/2024] Open
Affiliation(s)
- Antara Verma
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region, China
- Pennsylvania State University, University Park, PA, USA
| | - Stephen K. Agadagba
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region, China
- Centre for Eye and Vision Research Ltd., Hong Kong Special Administrative Region, China
| | - Leanne Lai-Hang Chan
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region, China
| |
Collapse
|
3
|
Jaroszynska N, Salzinger A, Tsarouchas TM, Becker CG, Becker T, Lyons DA, MacDonald RB, Keatinge M. C9ORF72 Deficiency Results in Neurodegeneration in the Zebrafish Retina. J Neurosci 2024; 44:e2128232024. [PMID: 38658168 PMCID: PMC11209673 DOI: 10.1523/jneurosci.2128-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/19/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024] Open
Abstract
Hexanucleotide repeat expansions within the gene C9ORF72 are the most common cause of the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). This disease-causing expansion leads to a reduction in C9ORF72 expression levels in patients, suggesting loss of C9ORF72 function could contribute to disease. To further understand the consequences of C9ORF72 deficiency in vivo, we generated a c9orf72 mutant zebrafish line. Analysis of the adult female spinal cords revealed no appreciable neurodegenerative pathology such as loss of motor neurons or increased levels of neuroinflammation. However, detailed examination of adult female c9orf72-/- retinas showed prominent neurodegenerative features, including a decrease in retinal thickness, gliosis, and an overall reduction in neurons of all subtypes. Analysis of rod and cone cells within the photoreceptor layer showed a disturbance in their outer segment structure and rhodopsin mislocalization from rod outer segments to their cell bodies and synaptic terminals. Thus, C9ORF72 may play a previously unappreciated role in retinal homeostasis and suggests C9ORF72 deficiency can induce tissue specific neuronal loss.
Collapse
Affiliation(s)
- Natalia Jaroszynska
- Institute of Ophthalmology, University College London, London EC1Y 0AD, United Kingdom
| | - Andrea Salzinger
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
- UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - Themistoklis M Tsarouchas
- Department of Psychiatry and Behavioural Sciences, Stanford University School of Medicine, Palo Alto, California 94305
| | - Catherina G Becker
- Center for Regenerative Therapies Dresden (CRTD), Dresden 01307, Germany
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4SB, United Kingdom
| | - Thomas Becker
- Center for Regenerative Therapies Dresden (CRTD), Dresden 01307, Germany
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4SB, United Kingdom
| | - David A Lyons
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4SB, United Kingdom
| | - Ryan B MacDonald
- Institute of Ophthalmology, University College London, London EC1Y 0AD, United Kingdom
| | - Marcus Keatinge
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
- UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| |
Collapse
|
4
|
Bernardes CP, Lopes Pinheiro E, Ferreira IG, de Oliveira IS, dos Santos NAG, Sampaio SV, Arantes EC, dos Santos AC. Fraction of C. d. collilineatus venom containing crotapotin protects PC12 cells against MPP + toxicity by activating the NGF-signaling pathway. J Venom Anim Toxins Incl Trop Dis 2024; 30:e20230056. [PMID: 38915449 PMCID: PMC11194915 DOI: 10.1590/1678-9199-jvatitd-2023-0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 05/08/2024] [Indexed: 06/26/2024] Open
Abstract
Background Parkinson's disease (PD) is the second most prevalent neurodegenerative disease. There is no effective treatment for neurodegenerative diseases. Snake venoms are a cocktail of proteins and peptides with great therapeutic potential and might be useful in the treatment of neurodegenerative diseases. Crotapotin is the acid chain of crotoxin, the major component of Crotalus durissus collilineatus venom. PD is characterized by low levels of neurotrophins, and synaptic and axonal degeneration; therefore, neurotrophic compounds might delay the progression of PD. The neurotrophic potential of crotapotin has not been studied yet. Methods We evaluated the neurotrophic potential of crotapotin in untreated PC12 cells, by assessing the induction of neurite outgrowth. The activation of the NGF signaling pathway was investigated through pharmacological inhibition of its main modulators. Additionally, its neuroprotective and neurorestorative effects were evaluated by assessing neurite outgrowth and cell viability in PC12 cells treated with the dopaminergic neurotoxin MPP+ (1-methyl-4-phenylpyridinium), known to induce Parkinsonism in humans and animal models. Results Crotapotin induced neuritogenesis in PC12 cells through the NGF-signaling pathway, more specifically, by activating the NGF-selective receptor trkA, and the PI3K/Akt and the MAPK/ERK cascades, which are involved in neuronal survival and differentiation. In addition, crotapotin had no cytotoxic effect and protected PC12 cells against the inhibitory effects of MPP+ on cell viability and differentiation. Conclusion These findings show, for the first time, that crotapotin has neurotrophic/neuroprotective/neurorestorative potential and might be beneficial in Parkinson's disease. Additional studies are necessary to evaluate the toxicity of crotapotin in other cell models.
Collapse
Affiliation(s)
- Carolina Petri Bernardes
- Department of Clinical Analyses, Toxicology and Food Science, School
of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP),
Ribeirão Preto, SP, Brazil
| | - Ernesto Lopes Pinheiro
- Department of Biomolecular Sciences, School of Pharmaceutical
Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP,
Brazil
| | - Isabela Gobbo Ferreira
- Department of Biomolecular Sciences, School of Pharmaceutical
Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP,
Brazil
| | - Isadora Sousa de Oliveira
- Department of Biomolecular Sciences, School of Pharmaceutical
Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP,
Brazil
| | - Neife Aparecida Guinaim dos Santos
- Department of Clinical Analyses, Toxicology and Food Science, School
of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP),
Ribeirão Preto, SP, Brazil
| | - Suely Vilela Sampaio
- Department of Clinical Analyses, Toxicology and Food Science, School
of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP),
Ribeirão Preto, SP, Brazil
| | - Eliane Candiani Arantes
- Department of Biomolecular Sciences, School of Pharmaceutical
Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP,
Brazil
| | - Antonio Cardozo dos Santos
- Department of Clinical Analyses, Toxicology and Food Science, School
of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP),
Ribeirão Preto, SP, Brazil
| |
Collapse
|
5
|
Lo Faro V, Bhattacharya A, Zhou W, Zhou D, Wang Y, Läll K, Kanai M, Lopera-Maya E, Straub P, Pawar P, Tao R, Zhong X, Namba S, Sanna S, Nolte IM, Okada Y, Ingold N, MacGregor S, Snieder H, Surakka I, Shortt J, Gignoux C, Rafaels N, Crooks K, Verma A, Verma SS, Guare L, Rader DJ, Willer C, Martin AR, Brantley MA, Gamazon ER, Jansonius NM, Joos K, Cox NJ, Hirbo J. Novel ancestry-specific primary open-angle glaucoma loci and shared biology with vascular mechanisms and cell proliferation. Cell Rep Med 2024; 5:101430. [PMID: 38382466 PMCID: PMC10897632 DOI: 10.1016/j.xcrm.2024.101430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/28/2023] [Accepted: 01/25/2024] [Indexed: 02/23/2024]
Abstract
Primary open-angle glaucoma (POAG), a leading cause of irreversible blindness globally, shows disparity in prevalence and manifestations across ancestries. We perform meta-analysis across 15 biobanks (of the Global Biobank Meta-analysis Initiative) (n = 1,487,441: cases = 26,848) and merge with previous multi-ancestry studies, with the combined dataset representing the largest and most diverse POAG study to date (n = 1,478,037: cases = 46,325) and identify 17 novel significant loci, 5 of which were ancestry specific. Gene-enrichment and transcriptome-wide association analyses implicate vascular and cancer genes, a fifth of which are primary ciliary related. We perform an extensive statistical analysis of SIX6 and CDKN2B-AS1 loci in human GTEx data and across large electronic health records showing interaction between SIX6 gene and causal variants in the chr9p21.3 locus, with expression effect on CDKN2A/B. Our results suggest that some POAG risk variants may be ancestry specific, sex specific, or both, and support the contribution of genes involved in programmed cell death in POAG pathogenesis.
Collapse
Affiliation(s)
- Valeria Lo Faro
- Department of Ophthalmology, Amsterdam University Medical Center (AMC), Amsterdam, the Netherlands; Department of Clinical Genetics, Amsterdam University Medical Center (AMC), Amsterdam, the Netherlands; Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Arjun Bhattacharya
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Institute for Quantitative and Computational Biosciences, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Wei Zhou
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Dan Zhou
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ying Wang
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Kristi Läll
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Masahiro Kanai
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Esteban Lopera-Maya
- University of Groningen, UMCG, Department of Genetics, Groningen, the Netherlands
| | - Peter Straub
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Priyanka Pawar
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ran Tao
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xue Zhong
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shinichi Namba
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Serena Sanna
- University of Groningen, UMCG, Department of Genetics, Groningen, the Netherlands; Institute for Genetics and Biomedical Research (IRGB), National Research Council (CNR), Cagliari, Italy
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan; Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka, Japan; Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, Japan
| | - Nathan Ingold
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Queensland University of Technology, Brisbane, QLD, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Stuart MacGregor
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ida Surakka
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan Shortt
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Chris Gignoux
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Nicholas Rafaels
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kristy Crooks
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Anurag Verma
- Department of Medicine, Division of Translational Medicine and Human Genetics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Shefali S Verma
- Department of Pathology, University of Pennsylvania, Philadelphia, PA, USA
| | - Lindsay Guare
- Department of Pathology, University of Pennsylvania, Philadelphia, PA, USA; Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel J Rader
- Department of Medicine, Division of Translational Medicine and Human Genetics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Cristen Willer
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway; Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Alicia R Martin
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Milam A Brantley
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric R Gamazon
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nomdo M Jansonius
- Department of Ophthalmology, Amsterdam University Medical Center (AMC), Amsterdam, the Netherlands
| | - Karen Joos
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nancy J Cox
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jibril Hirbo
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
6
|
Sala L, Prud’homme C, Guidoboni G, Szopos M, Harris A. The ocular mathematical virtual simulator: A validated multiscale model for hemodynamics and biomechanics in the human eye. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2024; 40:e3791. [PMID: 37991116 PMCID: PMC10922164 DOI: 10.1002/cnm.3791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 10/22/2023] [Indexed: 11/23/2023]
Abstract
We present our continuous efforts from a modeling and numerical viewpoint to develop a powerful and flexible mathematical and computational framework called Ocular Mathematical Virtual Simulator (OMVS). The OMVS aims to solve problems arising in biomechanics and hemodynamics within the human eye. We discuss our contribution towards improving the reliability and reproducibility of computational studies by performing a thorough validation of the numerical predictions against experimental data. The OMVS proved capable of simulating complex multiphysics and multiscale scenarios motivated by the study of glaucoma. Furthermore, its modular design allows the continuous integration of new models and methods as the research moves forward, and supports the utilization of the OMVS as a promising non-invasive clinical investigation tool for personalized research in ophthalmology.
Collapse
Affiliation(s)
- Lorenzo Sala
- Université Paris-Saclay, INRAE, MaIAGE, 78350, Jouy-en-Josas, France
| | | | | | - Marcela Szopos
- Université Paris Cité, CNRS, MAP5, F-75006 Paris, France
| | - Alon Harris
- Icahn School of Medicine at Mount Sinai, New York (NY), USA
| |
Collapse
|
7
|
Tran KK, Lee PY, Finkelstein DI, McKendrick AM, Nguyen BN, Bui BV, Nguyen CT. Altered Outer Retinal Structure, Electrophysiology and Visual Perception in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2024; 14:167-180. [PMID: 38189711 PMCID: PMC10836541 DOI: 10.3233/jpd-230293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/19/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND Visual biomarkers of Parkinson's disease (PD) are attractive as the retina is an outpouching of the brain. Although inner retinal neurodegeneration in PD is well-established this has overlap with other neurodegenerative diseases and thus outer retinal (photoreceptor) measures warrant further investigation. OBJECTIVE To examine in a cross-sectional study whether clinically implementable measures targeting outer retinal function and structure can differentiate PD from healthy ageing and whether these are sensitive to intraday levodopa (L-DOPA) dosing. METHODS Centre-surround perceptual contrast suppression, macular visual field sensitivity, colour discrimination, light-adapted electroretinography and optical coherence tomography (OCT) were tested in PD participants (n = 16) and controls (n = 21). Electroretinography and OCT were conducted before and after midday L-DOPA in PD participants, or repeated after ∼2 hours in controls. RESULTS PD participants had decreased center-surround contrast suppression (p < 0.01), reduced macular visual field sensitivity (p < 0.05), color vision impairment (p < 0.01) photoreceptor dysfunction (a-wave, p < 0.01) and photoreceptor neurodegeneration (outer nuclear layer thinning, p < 0.05), relative to controls. Effect size comparison between inner and outer retinal parameters showed that photoreceptor metrics were similarly robust in differentiating the PD group from age-matched controls as inner retinal changes. Electroretinography and OCT were unaffected by L-DOPA treatment or time. CONCLUSIONS We show that outer retinal outcomes of photoreceptoral dysfunction (decreased cone function and impaired color vision) and degeneration (i.e., outer nuclear layer thinning) were equivalent to inner retinal metrics at differentiating PD from healthy age-matched adults. These findings suggest outer retinal metrics may serve as useful biomarkers for PD.
Collapse
Affiliation(s)
- Katie K.N. Tran
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Pei Ying Lee
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - David I. Finkelstein
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Allison M. McKendrick
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, Australia
- Division of Optometry, School of Allied Health, The University of Western Australia, Crawley, WA, Australia
- Lions Eye Institute, Nedlands, WA, Australia
| | - Bao N. Nguyen
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Bang V. Bui
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Christine T.O. Nguyen
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
8
|
Romano GL, Gozzo L, Maurel OM, Di Martino S, Riolo V, Micale V, Drago F, Bucolo C. Fluoxetine Protects Retinal Ischemic Damage in Mice. Pharmaceutics 2023; 15:pharmaceutics15051370. [PMID: 37242611 DOI: 10.3390/pharmaceutics15051370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND To evaluate the neuroprotective effect of the topical ocular administration of fluoxetine (FLX) in a mouse model of acute retinal damage. METHODS Ocular ischemia/reperfusion (I/R) injury in C57BL/6J mice was used to elicit retinal damage. Mice were divided into three groups: control group, I/R group, and I/R group treated with topical FLX. A pattern electroretinogram (PERG) was used as a sensitive measure of retinal ganglion cell (RGC) function. Finally, we analyzed the retinal mRNA expression of inflammatory markers (IL-6, TNF-α, Iba-1, IL-1β, and S100β) through Digital Droplet PCR. RESULTS PERG amplitude values were significantly (p < 0.05) higher in the I/R-FLX group compared to the I/R group, whereas PERG latency values were significantly (p < 0.05) reduced in I/R-FLX-treated mice compared to the I/R group. Retinal inflammatory markers increased significantly (p < 0.05) after I/R injury. FLX treatment was able to significantly (p < 0.05) attenuate the expression of inflammatory markers after I/R damage. CONCLUSIONS Topical treatment with FLX was effective in counteracting the damage of RGCs and preserving retinal function. Moreover, FLX treatment attenuates the production of pro-inflammatory molecules elicited by retinal I/R damage. Further studies need to be performed to support the use of FLX as neuroprotective agent in retinal degenerative diseases.
Collapse
Affiliation(s)
- Giovanni Luca Romano
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95100 Catania, Italy
- Center for Research in Ocular Pharmacology-CERFO, University of Catania, 95100 Catania, Italy
| | - Lucia Gozzo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95100 Catania, Italy
| | - Oriana Maria Maurel
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95100 Catania, Italy
| | - Serena Di Martino
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95100 Catania, Italy
| | - Valentina Riolo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95100 Catania, Italy
| | - Vincenzo Micale
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95100 Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95100 Catania, Italy
- Center for Research in Ocular Pharmacology-CERFO, University of Catania, 95100 Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95100 Catania, Italy
- Center for Research in Ocular Pharmacology-CERFO, University of Catania, 95100 Catania, Italy
| |
Collapse
|
9
|
Aragón-Navas A, Rodrigo MJ, Garcia-Herranz D, Martinez T, Subias M, Mendez S, Ruberte J, Pampalona J, Bravo-Osuna I, Garcia-Feijoo J, Pablo LE, Garcia-Martin E, Herrero-Vanrell R. Mimicking chronic glaucoma over 6 months with a single intracameral injection of dexamethasone/fibronectin-loaded PLGA microspheres. Drug Deliv 2022; 29:2357-2374. [PMID: 35904152 PMCID: PMC9341346 DOI: 10.1080/10717544.2022.2096712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
To create a chronic glaucoma animal model by a single intracameral injection of biodegradable poly lactic-co-glycolic acid (PLGA) microspheres (Ms) co-loaded with dexamethasone and fibronectin (MsDexaFibro). MsDexaFibro were prepared by a water-in-oil-in-water emulsion method including dexamethasone in the organic phase and fibronectin in the inner aqueous phase. To create the chronic glaucoma model, an interventionist and longitudinal animal study was performed using forty-five Long Evans rats (4-week-old). Rats received a single intracameral injection of MsDexafibro suspension (10%w/v) in the right eye. Ophthalmological parameters such as clinical signs, intraocular pressure (IOP), neuro-retinal functionality by electroretinography (ERG), retinal structural analysis by optical coherence tomography (OCT), and histology were evaluated up to six months. According to the results obtained, the model proposed was able to induce IOP increasing in both eyes over the study, higher in the injected eyes up to 6 weeks (p < 0.05), while preserving the ocular surface. OCT quantified progressive neuro-retinal degeneration (mainly in the retinal nerve fiber layer) in both eyes but higher in the injected eye. Ganglion cell functionality decreased in injected eyes, thus smaller amplitudes in PhNR were detected by ERG. In conclusion, a new chronic glaucoma animal model was created by a single injection of MsDexaFibro very similar to open-angle glaucoma occurring in humans. This model would impact in different fields such as ophthalmology, allowing long period of study of this pathology; pharmacology, evaluating the neuroprotective activity of active compounds; and pharmaceutical technology, allowing the correct evaluation of the efficacy of long-term sustained ocular drug delivery systems.
Collapse
Affiliation(s)
- Alba Aragón-Navas
- Complutense University, Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid Spain, Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain.,Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain.,Research Institute of the San Carlos Clinical Hospital (IdISSC), Grupo de Investigación Innovación Farmacéutica en Oftalmología, Madrid, Spain
| | - María J Rodrigo
- Instituto de Investigación Sanitaria de Aragón, Hospital Universitario Miguel Servet, Universidad de Zaragoza, Zaragoza, Spain.,National Ocular Pathology Network (OFTARED) Carlos III Health Institute, Madrid, Spain
| | - David Garcia-Herranz
- Complutense University, Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid Spain, Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain.,Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain.,Research Institute of the San Carlos Clinical Hospital (IdISSC), Grupo de Investigación Innovación Farmacéutica en Oftalmología, Madrid, Spain
| | - Teresa Martinez
- Instituto de Investigación Sanitaria de Aragón, Hospital Universitario Miguel Servet, Universidad de Zaragoza, Zaragoza, Spain
| | - Manuel Subias
- Instituto de Investigación Sanitaria de Aragón, Hospital Universitario Miguel Servet, Universidad de Zaragoza, Zaragoza, Spain
| | - Silvia Mendez
- Instituto de Investigación Sanitaria de Aragón, Hospital Universitario Miguel Servet, Universidad de Zaragoza, Zaragoza, Spain
| | - Jesús Ruberte
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.,Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Judit Pampalona
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.,Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Irene Bravo-Osuna
- Complutense University, Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid Spain, Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain.,Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain.,Research Institute of the San Carlos Clinical Hospital (IdISSC), Grupo de Investigación Innovación Farmacéutica en Oftalmología, Madrid, Spain.,National Ocular Pathology Network (OFTARED) Carlos III Health Institute, Madrid, Spain
| | - Julian Garcia-Feijoo
- National Ocular Pathology Network (OFTARED) Carlos III Health Institute, Madrid, Spain.,Department of Ophthalmology, San Carlos Clinical Hospital, Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Luis E Pablo
- Instituto de Investigación Sanitaria de Aragón, Hospital Universitario Miguel Servet, Universidad de Zaragoza, Zaragoza, Spain.,National Ocular Pathology Network (OFTARED) Carlos III Health Institute, Madrid, Spain
| | - Elena Garcia-Martin
- Instituto de Investigación Sanitaria de Aragón, Hospital Universitario Miguel Servet, Universidad de Zaragoza, Zaragoza, Spain.,National Ocular Pathology Network (OFTARED) Carlos III Health Institute, Madrid, Spain
| | - Rocío Herrero-Vanrell
- Complutense University, Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid Spain, Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain.,Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain.,Research Institute of the San Carlos Clinical Hospital (IdISSC), Grupo de Investigación Innovación Farmacéutica en Oftalmología, Madrid, Spain.,National Ocular Pathology Network (OFTARED) Carlos III Health Institute, Madrid, Spain
| |
Collapse
|
10
|
Sahu M, Tripathi R, Jha NK, Jha SK, Ambasta RK, Kumar P. Cross talk mechanism of disturbed sleep patterns in neurological and psychological disorders. Neurosci Biobehav Rev 2022; 140:104767. [PMID: 35811007 DOI: 10.1016/j.neubiorev.2022.104767] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/20/2022] [Accepted: 07/01/2022] [Indexed: 11/25/2022]
Abstract
The incidence and prevalence of sleep disorders continue to increase in the elderly populace, particularly those suffering from neurodegenerative and neuropsychiatric disorders. This not only affects the quality of life but also accelerates the progression of the disease. There are many reasons behind sleep disturbances in such patients, for instance, medication use, nocturia, obesity, environmental factors, nocturnal motor disturbances and depressive symptoms. This review focuses on the mechanism and effects of sleep dysfunction in neurodegenerative and neuropsychiatric disorders. Wherein we discuss disturbed circadian rhythm, signaling cascade and regulation of genes during sleep deprivation. Moreover, we explain the perturbation in brainwaves during disturbed sleep and the ocular perspective of neurodegenerative and neuropsychiatric manifestations in sleep disorders. Further, as the pharmacological approach is often futile and carries side effects, therefore, the non-pharmacological approach opens newer possibilities to treat these disorders and widens the landscape of treatment options for patients.
Collapse
Affiliation(s)
- Mehar Sahu
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Rahul Tripathi
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET) Sharda University, UP, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET) Sharda University, UP, India.
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India.
| |
Collapse
|
11
|
Mazur-Michałek I, Ruciński M, Sowiński M, Pietras P, Leśniczak-Staszak M, Szaflarski W, Isalan M, Mielcarek M. Identification of the Transcriptional Biomarkers Panel Linked to Pathological Remodelling of the Eye Tissues in Various HD Mouse Models. Cells 2022; 11:1675. [PMID: 35626712 PMCID: PMC9139483 DOI: 10.3390/cells11101675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 02/01/2023] Open
Abstract
Ocular abnormalities are becoming associated with a spectrum of pathological events in various neurodegenerative diseases. Huntington's disease (HD) is just such an example of a fatal neurological disorder, where mutated genes (CAG trinucleotide expansions in the Huntingtin gene) have widespread expression, leading to the production of mutant Huntingtin (mHTT) protein. It is well known that mutant HTT protein is prone to form toxic aggregates, which are a typical pathological feature, along with global transcriptome alterations. In this study, we employed well-established quantitative methods such as Affymetrix arrays and quantitative PCR (qPCR) to identify a set of transcriptional biomarkers that will track HD progression in three well-established mouse models: R6/2, R6/1, and HdhQ150. Our array analysis revealed significantly deregulated networks that are related to visual processes and muscle contractions. Furthermore, our targeted quantitative analysis identified a panel of biomarkers with some being dysregulated even at the presymptomatic stage of the disease, e.g., Opn1mw, Opn1sw, and Pfkfb2. Some of the deregulated genes identified in this study have been linked to other genetic ocular disorders such as: GNAT2, a source of achromatopsia, and REEP6, linked to Retinitis pigmentosa. It may thus be a useful platform for preclinical evaluations of therapeutic interventions.
Collapse
Affiliation(s)
- Iwona Mazur-Michałek
- Department of Histology and Embryology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (I.M.-M.); (M.R.); (M.S.); (P.P.); (M.L.-S.); (W.S.)
| | - Marcin Ruciński
- Department of Histology and Embryology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (I.M.-M.); (M.R.); (M.S.); (P.P.); (M.L.-S.); (W.S.)
| | - Mateusz Sowiński
- Department of Histology and Embryology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (I.M.-M.); (M.R.); (M.S.); (P.P.); (M.L.-S.); (W.S.)
| | - Paulina Pietras
- Department of Histology and Embryology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (I.M.-M.); (M.R.); (M.S.); (P.P.); (M.L.-S.); (W.S.)
| | - Marta Leśniczak-Staszak
- Department of Histology and Embryology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (I.M.-M.); (M.R.); (M.S.); (P.P.); (M.L.-S.); (W.S.)
| | - Witold Szaflarski
- Department of Histology and Embryology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (I.M.-M.); (M.R.); (M.S.); (P.P.); (M.L.-S.); (W.S.)
| | - Mark Isalan
- Department of Life Sciences, Imperial College London, Exhibition Road, London SW7 2AZ, UK;
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| | - Michal Mielcarek
- Department of Life Sciences, Imperial College London, Exhibition Road, London SW7 2AZ, UK;
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
12
|
Marchesi N, Fahmideh F, Boschi F, Pascale A, Barbieri A. Ocular Neurodegenerative Diseases: Interconnection between Retina and Cortical Areas. Cells 2021; 10:2394. [PMID: 34572041 PMCID: PMC8469605 DOI: 10.3390/cells10092394] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022] Open
Abstract
The possible interconnection between the eye and central nervous system (CNS) has been a topic of discussion for several years just based on fact that the eye is properly considered an extension of the brain. Both organs consist of neurons and derived from a neural tube. The visual process involves photoreceptors that receive light stimulus from the external environment and send it to retinal ganglionic cells (RGC), one of the cell types of which the retina is composed. The retina, the internal visual membrane of the eye, processes the visual stimuli in electric stimuli to transfer it to the brain, through the optic nerve. Retinal chronic progressive neurodegeneration, which may occur among the elderly, can lead to different disorders of the eye such as glaucoma, age-related macular degeneration (AMD), and diabetic retinopathy (DR). Mainly in the elderly population, but also among younger people, such ocular pathologies are the cause of irreversible blindness or impaired, reduced vision. Typical neurodegenerative diseases of the CSN are a group of pathologies with common characteristics and etiology not fully understood; some risk factors have been identified, but they are not enough to justify all the cases observed. Furthermore, several studies have shown that also ocular disorders present characteristics of neurodegenerative diseases and, on the other hand, CNS pathologies, i.e., Alzheimer disease (AD) and Parkinson disease (PD), which are causes of morbidity and mortality worldwide, show peculiar alterations at the ocular level. The knowledge of possible correlations could help to understand the mechanisms of onset. Moreover, the underlying mechanisms of these heterogeneous disorders are still debated. This review discusses the characteristics of the ocular illnesses, focusing on the relationship between the eye and the brain. A better comprehension could help in future new therapies, thus reducing or avoiding loss of vision and improve quality of life.
Collapse
Affiliation(s)
| | | | | | | | - Annalisa Barbieri
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Viale Taramelli 14, 27100 Pavia, Italy; (N.M.); (F.F.); (F.B.); (A.P.)
| |
Collapse
|
13
|
Abstract
The eye and brain share common mechanisms of aging and disease, thus the retina is an essential source of accessible information about neurodegenerative processes occurring in the brain. Advances in retinal imaging have led to the discovery of many potential biomarkers of Alzheimer's disease, although further research is needed to validate these associations. Understanding the mechanisms of retinal disease in the context of aging will extend our knowledge of AD and may enable advancements in diagnosis, monitoring, and treatment.
Collapse
|
14
|
Prud'homme C, Sala L, Szopos M. Uncertainty propagation and sensitivity analysis: results from the Ocular Mathematical Virtual Simulator. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:2010-2032. [PMID: 33892535 DOI: 10.3934/mbe.2021105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We propose an uncertainty propagation study and a sensitivity analysis with the Ocular Mathematical Virtual Simulator, a computational and mathematical model that predicts the hemodynamics and biomechanics within the human eye. In this contribution, we focus on the effect of intraocular pressure, retrolaminar tissue pressure and systemic blood pressure on the ocular posterior tissue vasculature. The combination of a physically-based model with experiments-based stochastic input allows us to gain a better understanding of the physiological system, accounting both for the driving mechanisms and the data variability.
Collapse
Affiliation(s)
| | - Lorenzo Sala
- Centre de recherche INRIA de Paris, Paris 75012, France
| | - Marcela Szopos
- MAP5 UMR CNRS 8145, Université de Paris, Paris 75006, France
| |
Collapse
|