1
|
Chauhan M, Singh K, Chongtham C, A G A, Sharma P. miR-449a mediated repression of the cell cycle machinery prevents neuronal apoptosis. J Biol Chem 2024; 300:107698. [PMID: 39173945 PMCID: PMC11419829 DOI: 10.1016/j.jbc.2024.107698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/18/2024] [Accepted: 08/08/2024] [Indexed: 08/24/2024] Open
Abstract
Aberrant activation of the cell cycle of terminally differentiated neurons results in their apoptosis and is known to contribute to neuronal loss in various neurodegenerative disorders like Alzheimer's Disease. However, the mechanisms that regulate cell cycle-related neuronal apoptosis are poorly understood. We identified several miRNA that are dysregulated in neurons from a transgenic APP/PS1 mouse model for AD (TgAD). Several of these miRNA are known to and/or are predicted to target cell cycle-related genes. Detailed investigation on miR-449a revealed the following: a, it promotes neuronal differentiation by suppressing the neuronal cell cycle; b, its expression in cortical neurons was impaired in response to amyloid peptide Aβ42; c, loss of its expression resulted in aberrant activation of the cell cycle leading to apoptosis. miR-449a may prevent cell cycle-related neuronal apoptosis by targeting cyclin D1 and protein phosphatase CDC25A, which are important for G1-S transition. Importantly, the lentiviral-mediated delivery of miR-449a in TgAD mouse brain significantly reverted the defects in learning and memory, which are associated with AD.
Collapse
Affiliation(s)
- Monika Chauhan
- Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi, India.
| | - Komal Singh
- Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi, India
| | - Chen Chongtham
- Molecular Genetics Laboratory, National Institute of Immunology, New Delhi, India
| | - Aneeshkumar A G
- Molecular Genetics Laboratory, National Institute of Immunology, New Delhi, India
| | - Pushkar Sharma
- Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi, India.
| |
Collapse
|
2
|
Shaikh A, Ahmad F, Teoh SL, Kumar J, Yahaya MF. Unveiling the Therapeutic Potential of Kelulut (Stingless Bee) Honey in Alzheimer's Disease: Findings from a Rat Model Study. Antioxidants (Basel) 2024; 13:926. [PMID: 39199172 PMCID: PMC11351951 DOI: 10.3390/antiox13080926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 09/01/2024] Open
Abstract
Alzheimer's disease (AD) poses a major worldwide health challenge because of its profound impact on cognitive abilities and overall well-being. Despite extensive research and numerous clinical trials, therapeutic options remain limited. Our study aimed to investigate the potential of Kelulut honey (KH) as a novel therapeutic agent for addressing the multifactorial pathology of AD. We tried to evaluate the disease-attenuating and neuroprotective potential of KH in the intrahippocampally induced AD rat model by utilizing histochemistry and enzyme-linked immunosorbent assay (ELISA) studies. A total of 26 male Sprague Dawley rats weighing ~280-380 g were randomly divided into three groups: Control, AD-induced (Aβ), and AD-induced and treated with KH (Aβ+KH). The latter two groups underwent stereotaxic surgery, where 6.25 µg of amyloid β1-42 peptides were injected intrahippocampally. One-week post-surgery, KH was administered to the treatment group at a dose of 1 g/kg body weight for a period of four weeks, after which the rats went through behavior tests. After completion of behavior analysis, the rats were sacrificed, and the brains were processed for histochemistry and ELISA studies. The open field test analysis demonstrated that KH improved the locomotion of Aβ+KH compared to Aβ (p = 0.0013). In comparison, the Morris water maze did not show any nootropic effects on cognition with a paradoxical increase in time spent in the target quadrant by the Aβ group (p = 0.029). Histochemical staining showed markedly increased Congo-red-stained amyloid plaques, which were significantly reduced in dentate gyrus of Aβ+KH compared to Aβ (p < 0.05). Moreover, significantly higher apoptosis was seen in the Aβ group compared to Aβ+KH (p < 0.01) and control groups (p < 0.001). Furthermore, the ELISA studies deduced more phosphorylated tau in the diseased group compared to Aβ+KH (p = 0.038) and controls (p = 0.016). These findings suggest that KH consumption for twenty-eight days has the potential to attenuate the pathological burden of disease while exerting neuroprotective effects in rodent models of AD.
Collapse
Affiliation(s)
- Ammara Shaikh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (A.S.); (F.A.); (S.L.T.)
| | - Fairus Ahmad
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (A.S.); (F.A.); (S.L.T.)
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (A.S.); (F.A.); (S.L.T.)
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Mohamad Fairuz Yahaya
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (A.S.); (F.A.); (S.L.T.)
| |
Collapse
|
3
|
Huang M, Sui R, Zhang L, Zhu Y, Yuan X, Jiang H, Mao X. Rosavin thwarts amyloid-β-induced macromolecular damages and neurotoxicity, exhibiting anti-Alzheimer's disease activity in Wister rat model. Inflammopharmacology 2024; 32:1461-1474. [PMID: 37758932 DOI: 10.1007/s10787-023-01320-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 08/04/2023] [Indexed: 09/29/2023]
Abstract
Lately, interest surrounding the utilization of plant-derived compounds as a viable beneficial approach for treating Alzheimer's disease (AD) has significantly increased. This study aimed to assess the defensive properties of rosavin against Alzheimer's disease induced by amyloid-β, utilizing experimental models. We found that rosavin exhibited anti-aggregation and disaggregation properties, suggesting its potential to prevent the gathering of Aβ-aggregates. In vitro experiments revealed that rosavin effectively mitigated the neurotoxicity induced by Aβ in Neuro-2a cells, showcasing its protective potential. Rosavin significantly improved the Aβ-induced cognitive deficits in Wistar rats, particularly in spatial memory. Which the pathophysiology of AD includes oxidative damage, which negatively impacts biological macromolecules. Triggers the apoptotic process, causing macromolecular destruction. Interestingly, rosavin attenuated Aβ-induced macromolecular damages, thereby preserving neuronal integrity. Furthermore, the activation of antioxidative defense enzymes by rosavin inhibited oxidative damage. The positive outcomes associated with rosavin were primarily attributed to its capacity to enhance acetylcholine-mediated effects. Finally, rosavin has the potential to alleviate Aβ-induced neurotoxicity and macromolecular damages, ultimately resulting in enhanced memorial and reasoning function in Wistar rats, offering promising prospects for the treatment of AD.
Collapse
Affiliation(s)
- Meiyi Huang
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, No 2, Section 5, Renmin Street, Jinzhou, 121099, China
| | - Rubo Sui
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, No 2, Section 5, Renmin Street, Jinzhou, 121099, China.
| | - Lei Zhang
- School of Nursing, Jinzhou Medical University, Jinzhou, 121099, China
| | - Yue Zhu
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, No 2, Section 5, Renmin Street, Jinzhou, 121099, China
| | - Xueling Yuan
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, No 2, Section 5, Renmin Street, Jinzhou, 121099, China
| | - Hongxin Jiang
- Department of Radiology, Gucheng County Hospital, Gucheng, 253809, China
| | - Xin Mao
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, No 2, Section 5, Renmin Street, Jinzhou, 121099, China.
| |
Collapse
|
4
|
Meng HW, Kim JH, Kim HY, Lee AY, Cho EJ. Paeoniflorin Attenuates Lipopolysaccharide-Induced Cognitive Dysfunction by Inhibition of Amyloidogenesis in Mice. Int J Mol Sci 2023; 24:ijms24054838. [PMID: 36902268 PMCID: PMC10003666 DOI: 10.3390/ijms24054838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/14/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease, associated with progressive cognitive impairment and memory loss. In the present study, we examined the protective effects of paeoniflorin against memory loss and cognitive decline in lipopolysaccharide (LPS)-induced mice. Treatment with paeoniflorin alleviated LPS-induced neurobehavioral dysfunction, as confirmed by behavioral tests, including the T-maze test, novel-object recognition test, and Morris water maze test. LPS stimulated the amyloidogenic pathway-related proteins (amyloid precursor protein, APP; β-site APP cleavage enzyme, BACE; presenilin1, PS1; presenilin2, PS2) expression in the brain. However, paeoniflorin decreased APP, BACE, PS1, and PS2 protein levels. Therefore, paeoniflorin reverses LPS-induced cognitive impairment via inhibition of the amyloidogenic pathway in mice, which suggests that paeoniflorin may be useful in the prevention of neuroinflammation related to AD.
Collapse
Affiliation(s)
- Hui Wen Meng
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Republic of Korea
| | - Ji-Hyun Kim
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Republic of Korea
| | - Hyun Young Kim
- Department of Food Science and Nutrition, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Ah Young Lee
- Department of Food Science and Nutrition, Gyeongsang National University, Jinju 52725, Republic of Korea
- Correspondence: (A.Y.L.); (E.J.C.)
| | - Eun Ju Cho
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Republic of Korea
- Correspondence: (A.Y.L.); (E.J.C.)
| |
Collapse
|
5
|
Sánchez CQ, Schmitt FW, Curdt N, Westhoff AC, Bänfer IWH, Bayer TA, Bouter Y. Search Strategy Analysis of 5xFAD Alzheimer Mice in the Morris Water Maze Reveals Sex- and Age-Specific Spatial Navigation Deficits. Biomedicines 2023; 11:biomedicines11020599. [PMID: 36831135 PMCID: PMC9953202 DOI: 10.3390/biomedicines11020599] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Spatial disorientation and navigational impairments are not only some of the first memory deficits in Alzheimer's disease, but are also very disease-specific. In rodents, the Morris Water Maze is used to investigate spatial navigation and memory. Here, we examined the spatial memory in the commonly used 5xFAD Alzheimer mouse model in a sex- and age-dependent manner. Our findings show first spatial learning deficits in 7-month-old female 5xFAD and 12-month-old male 5xFAD mice, respectively. While the assessment of spatial working memory using escape latencies provides a global picture of memory performance, it does not explain how an animal solves a spatial task. Therefore, a detailed analysis of swimming strategies was performed to better understand the behavioral differences between 5xFAD and WT mice. 5xFAD mice used a qualitatively and quantitatively different search strategy pattern than wildtype animals that used more non-spatial strategies and showed allocentric-specific memory deficits. Furthermore, a detailed analysis of swimming strategies revealed allocentric memory deficits in the probe trial in female 3-month-old and male 7-month-old 5xFAD animals before the onset of severe reference memory deficits. Overall, we could demonstrate that spatial navigation deficits in 5xFAD mice are age- and sex-dependent, with female mice being more severely affected. In addition, the implementation of a search strategy classification system allowed an earlier detection of behavioral differences and therefore could be a powerful tool for preclinical drug testing in the 5xFAD model.
Collapse
Affiliation(s)
- Carolina Quintanilla Sánchez
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, 37075 Goettingen, Germany
| | - Franziska W. Schmitt
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, 37075 Goettingen, Germany
| | - Nadine Curdt
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, 37075 Goettingen, Germany
| | - Anna Celine Westhoff
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, 37075 Goettingen, Germany
| | - Irina Wanda Helene Bänfer
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, 37075 Goettingen, Germany
| | - Thomas A. Bayer
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, 37075 Goettingen, Germany
| | - Yvonne Bouter
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, 37075 Goettingen, Germany
- Department of Nuclear Medicine, University Medical Center Göttingen (UMG), 37075 Goettingen, Germany
- Correspondence:
| |
Collapse
|
6
|
Curdt N, Schmitt FW, Bouter C, Iseni T, Weile HC, Altunok B, Beindorff N, Bayer TA, Cooke MB, Bouter Y. Search strategy analysis of Tg4-42 Alzheimer Mice in the Morris Water Maze reveals early spatial navigation deficits. Sci Rep 2022; 12:5451. [PMID: 35361814 PMCID: PMC8971530 DOI: 10.1038/s41598-022-09270-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/18/2022] [Indexed: 12/20/2022] Open
Abstract
Spatial disorientation is one of the earliest symptoms in Alzheimer’s disease and allocentric deficits can already be detected in the asymptomatic preclinical stages of the disease. The Morris Water Maze (MWM) is used to study spatial learning in rodent models. Here we investigated the spatial memory of female 3, 7 and 12 month-old Alzheimer Tg4-42 mice in comparison to wild-type control animals. Conventional behavior analysis of escape latencies and quadrant preference revealed spatial memory and reference memory deficits in female 7 and 12 month-old Tg4-42 mice. In contrast, conventional analysis of the MWM indicated an intact spatial memory in 3 month-old Tg4-42 mice. However, a detailed analysis of the swimming strategies demonstrated allocentric-specific memory deficits in 3 month-old Tg4-42 mice before the onset of severe memory deficits. Furthermore, we could show that the spatial reference memory deficits in aged Tg4-42 animals are caused by the lack of allocentric and spatial strategies. Analyzing search strategies in the MWM allows to differentiate between hippocampus-dependent allocentric and hippocampus-independent egocentric search strategies. The spatial navigation impairments in young Tg4-42 mice are well in line with the hypometabolism and synaptic deficits in the hippocampus. Therefore, analyzing search strategies in the Tg4-42 model can be a powerful tool for preclinical drug testing and identifying early therapeutic successes.
Collapse
Affiliation(s)
- Nadine Curdt
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, Georg-August-University Göttingen, University Medicine Göttingen, 37075, Göttingen, Germany
| | - Franziska W Schmitt
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, Georg-August-University Göttingen, University Medicine Göttingen, 37075, Göttingen, Germany
| | - Caroline Bouter
- Department of Nuclear Medicine, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| | - Trendelina Iseni
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, Georg-August-University Göttingen, University Medicine Göttingen, 37075, Göttingen, Germany
| | - Hanna C Weile
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, Georg-August-University Göttingen, University Medicine Göttingen, 37075, Göttingen, Germany
| | - Berfin Altunok
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, Georg-August-University Göttingen, University Medicine Göttingen, 37075, Göttingen, Germany
| | - Nicola Beindorff
- Berlin Experimental Radionuclide Imaging Center (BERIC), Charité-University Medicine Berlin, Berlin, Germany
| | - Thomas A Bayer
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, Georg-August-University Göttingen, University Medicine Göttingen, 37075, Göttingen, Germany
| | - Matthew B Cooke
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.,Department of Psychology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Yvonne Bouter
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, Georg-August-University Göttingen, University Medicine Göttingen, 37075, Göttingen, Germany.
| |
Collapse
|
7
|
Zhao YB, Hou XF, Li X, Zhu LS, Zhu J, Ma GR, Liu YX, Miao YC, Zhou QY, Xu L, Zhou QX. Early Memory Impairment is Accompanied by Changes in GluA1/ p-GluA1 in APP/PS1 Mice. Curr Alzheimer Res 2022; 19:667-673. [PMID: 36278470 DOI: 10.2174/1567205020666221019124543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/15/2022] [Accepted: 09/23/2022] [Indexed: 11/22/2022]
Abstract
AIMS Exploring the neurobiological mechanisms of early AD damage. BACKGROUND The early diagnosis of Alzheimer's disease (AD) has a very important impact on the prognosis of AD. However, the early symptoms of AD are not obvious and difficult to diagnose. Existing studies have rarely explored the mechanism of early AD. AMPARs are early important learning memory-related receptors. However, it is not clear how the expression levels of AMPARs change in early AD. OBJECTIVE We explored learning memory abilities and AMPAR expression changes in APP/PS1 mice at 4 months, 8 months, and 12 months. METHODS We used the classic Morris water maze to explore the learning and memory impairment of APP/PS1 mice and used western blotting to explore the changes in AMPARs in APP/PS1 mice. RESULTS We found that memory impairment occurred in APP/PS1 mice as early as 4 months of age, and the impairment of learning and memory gradually became serious with age. The changes in GluA1 and p-GluA1 were most pronounced in the early stages of AD in APP/PS1 mice. CONCLUSION Our study found that memory impairment in APP/PS1 mice could be detected as early as 4 months of age, and this early injury may be related to GluA1.
Collapse
Affiliation(s)
- Ya-Bo Zhao
- Laboratory of Learning and Memory, Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
| | - Xue-Fei Hou
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Biomedical Engineering Research Institute, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Xin Li
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Biomedical Engineering Research Institute, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Li-Su Zhu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Biomedical Engineering Research Institute, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Jing Zhu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Biomedical Engineering Research Institute, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Guo-Rui Ma
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Biomedical Engineering Research Institute, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yu-Xuan Liu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Biomedical Engineering Research Institute, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yu-Can Miao
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Biomedical Engineering Research Institute, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Qian-Yu Zhou
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Biomedical Engineering Research Institute, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Lin Xu
- Laboratory of Learning and Memory, Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
| | - Qi-Xin Zhou
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Biomedical Engineering Research Institute, Kunming Medical University, Kunming, Yunnan 650500, China
| |
Collapse
|
8
|
Nidadavolu P, Bilkei-Gorzo A, Krämer M, Schürmann B, Palmisano M, Beins EC, Madea B, Zimmer A. Efficacy of Δ 9 -Tetrahydrocannabinol (THC) Alone or in Combination With a 1:1 Ratio of Cannabidiol (CBD) in Reversing the Spatial Learning Deficits in Old Mice. Front Aging Neurosci 2021; 13:718850. [PMID: 34526890 PMCID: PMC8435893 DOI: 10.3389/fnagi.2021.718850] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/06/2021] [Indexed: 12/28/2022] Open
Abstract
Decline in cognitive performance, an aspect of the normal aging process, is influenced by the endocannabinoid system (ECS). Cannabinoid receptor 1 (CB1) signaling diminishes with advancing age in specific brain regions that regulate learning and memory and abolishing CB1 receptor signaling accelerates cognitive aging in mice. We recently demonstrated that prolonged exposure to low dose (3 mg/kg/day) Δ9-tetrahydrocannabinol (THC) improved the cognitive performances in old mice on par with young untreated mice. Here we investigated the potential influence of cannabidiol (CBD) on this THC effect, because preclinical and clinical studies indicate that the combination of THC and CBD often exhibits an enhanced therapeutic effect compared to THC alone. We first tested the effectiveness of a lower dose (1 mg/kg/day) THC, and then the efficacy of the combination of THC and CBD in 1:1 ratio, same as in the clinically approved medicine Sativex®. Our findings reveal that a 1 mg/kg/day THC dose still effectively improved spatial learning in aged mice. However, a 1:1 combination of THC and CBD failed to do so. The presence of CBD induced temporal changes in THC metabolism ensuing in a transient elevation of blood THC levels. However, as CBD metabolizes, the inhibitory effect on THC metabolism was alleviated, causing a rapid clearance of THC. Thus, the beneficial effects of THC seemed to wane off more swiftly in the presence of CBD, due to these metabolic effects. The findings indicate that THC-treatment alone is more efficient to improve spatial learning in aged mice than the 1:1 combination of THC and CBD.
Collapse
Affiliation(s)
- Prakash Nidadavolu
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn, Germany
| | - Andras Bilkei-Gorzo
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn, Germany
| | - Michael Krämer
- Institute of Forensic Medicine, Medical Faculty, University of Bonn, Bonn, Germany
| | - Britta Schürmann
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn, Germany
| | - Michela Palmisano
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn, Germany
| | - Eva C Beins
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn, Germany.,Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Burkhard Madea
- Institute of Forensic Medicine, Medical Faculty, University of Bonn, Bonn, Germany
| | - Andreas Zimmer
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|