1
|
Esteban FJ, Guevara R, Poza J, Iglesias-Parro S. Interdisciplinary Approaches in Psychiatric Research: From Neural Dynamics to Clinical Applications in Schizophrenia. ACTAS ESPANOLAS DE PSIQUIATRIA 2025; 53:191-197. [PMID: 39801402 PMCID: PMC11726208 DOI: 10.62641/aep.v53i1.1878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 11/27/2024] [Indexed: 01/16/2025]
Abstract
This editorial explores the dynamic psychiatric research field by focusing on interdisciplinary approaches to understand the complexity of mental disorders by placing particular emphasis on schizophrenia. It highlights the need to integrate findings from diverse scientific disciplines, such as neuroscience, computational modeling and genomics, to unravel the multifaceted nature of these conditions. The potential of interdisciplinary research to transform our knowledge and the treatment of psychiatric disorders is underscored by moving beyond traditional models and developing more nuanced frameworks to more effectively address these complexities. Thus by combining perspectives from different fields, significant advancements are expected in the diagnosis, treatment and prevention of mental disorders like schizophrenia, and will open new research and clinical practice avenues in psychiatry.
Collapse
Affiliation(s)
| | - Ramón Guevara
- Department of Physics and Astronomy, University of Padova, 35122 Padova, Italy
| | - Jesús Poza
- Department of Signal Theory and Communications and Telematics Engineering, University of Valladolid, 47011 Valladolid, Spain
| | | |
Collapse
|
2
|
Päeske L, Uudeberg T, Hinrikus H, Lass J, Bachmann M. Correlation between electroencephalographic markers in the healthy brain. Sci Rep 2023; 13:6307. [PMID: 37072499 PMCID: PMC10113388 DOI: 10.1038/s41598-023-33364-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023] Open
Abstract
Mental disorders have an increasing tendency and represent the main burden of disease to society today. A wide variety of electroencephalographic (EEG) markers have been successfully used to assess different symptoms of mental disorders. Different EEG markers have demonstrated similar classification accuracy, raising a question of their independence. The current study is aimed to investigate the hypotheses that different EEG markers reveal partly the same EEG features reflecting brain functioning and therefore provide overlapping information. The assessment of the correlations between EEG signal frequency band power, dynamics, and functional connectivity markers demonstrates that a statistically significant correlation is evident in 37 of 66 (56%) comparisons performed between 12 markers of different natures. A significant correlation between the majority of the markers supports the similarity of information in the markers. The results of the performed study confirm the hypotheses that different EEG markers reflect partly the same features in brain functioning. Higuchi's fractal dimension has demonstrated a significant correlation with the 82% of other markers and is suggested to reveal a wide spectrum of various brain disorders. This marker is preferable in the early detection of symptoms of mental disorders.
Collapse
Affiliation(s)
- Laura Päeske
- Department of Health Technologies, School of Information Technology, Tallinn University of Technology, 5 Ehitajate Rd, 19086, Tallinn, Estonia
| | - Tuuli Uudeberg
- Department of Health Technologies, School of Information Technology, Tallinn University of Technology, 5 Ehitajate Rd, 19086, Tallinn, Estonia
| | - Hiie Hinrikus
- Department of Health Technologies, School of Information Technology, Tallinn University of Technology, 5 Ehitajate Rd, 19086, Tallinn, Estonia.
| | - Jaanus Lass
- Department of Health Technologies, School of Information Technology, Tallinn University of Technology, 5 Ehitajate Rd, 19086, Tallinn, Estonia
| | - Maie Bachmann
- Department of Health Technologies, School of Information Technology, Tallinn University of Technology, 5 Ehitajate Rd, 19086, Tallinn, Estonia
| |
Collapse
|
3
|
Mesin L, Cipriani GE, Amanzio M. Electroencephalography-Based Brain-Machine Interfaces in Older Adults: A Literature Review. Bioengineering (Basel) 2023; 10:bioengineering10040395. [PMID: 37106582 PMCID: PMC10136126 DOI: 10.3390/bioengineering10040395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/08/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
The aging process is a multifaceted phenomenon that affects cognitive-affective and physical functioning as well as interactions with the environment. Although subjective cognitive decline may be part of normal aging, negative changes objectified as cognitive impairment are present in neurocognitive disorders and functional abilities are most impaired in patients with dementia. Electroencephalography-based brain-machine interfaces (BMI) are being used to assist older people in their daily activities and to improve their quality of life with neuro-rehabilitative applications. This paper provides an overview of BMI used to assist older adults. Both technical issues (detection of signals, extraction of features, classification) and application-related aspects with respect to the users' needs are considered.
Collapse
Affiliation(s)
- Luca Mesin
- Mathematical Biology and Physiology, Department Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy
| | | | - Martina Amanzio
- Department of Psychology, Universitá di Torino, 10124 Turin, Italy
| |
Collapse
|
4
|
Yang S, Hwang HS, Zhu BH, Chen J, Enkhzaya G, Wang ZJ, Kim ES, Kim NY. Evaluating the Alterations Induced by Virtual Reality in Cerebral Small-World Networks Using Graph Theory Analysis with Electroencephalography. Brain Sci 2022; 12:brainsci12121630. [PMID: 36552090 PMCID: PMC9776076 DOI: 10.3390/brainsci12121630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/13/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
Abstract
Virtual reality (VR), a rapidly evolving technology that simulates three-dimensional virtual environments for users, has been proven to activate brain functions. However, the continuous alteration pattern of the functional small-world network in response to comprehensive three-dimensional stimulation rather than realistic two-dimensional media stimuli requires further exploration. Here, we aimed to validate the effect of VR on the pathways and network parameters of a small-world organization and interpret its mechanism of action. Fourteen healthy volunteers were selected to complete missions in an immersive VR game. The changes in the functional network in six different frequency categories were analyzed using graph theory with electroencephalography data measured during the pre-, VR, and post-VR stages. The mutual information matrix revealed that interactions between the frontal and posterior areas and those within the frontal and occipital lobes were strengthened. Subsequently, the betweenness centrality (BC) analysis indicated more robust and extensive pathways among hubs. Furthermore, a specific lateralized channel (O1 or O2) increment in the BC was observed. Moreover, the network parameters improved simultaneously in local segregation, global segregation, and global integration. The overall topological improvements of small-world organizations were in high-frequency bands and exhibited some degree of sustainability.
Collapse
Affiliation(s)
- Shan Yang
- RFIC Center, Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
- NDAC Center, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Hyeon-Sik Hwang
- RFIC Center, Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Bao-Hua Zhu
- RFIC Center, Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
- NDAC Center, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Jian Chen
- RFIC Center, Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
- NDAC Center, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Ganbold Enkhzaya
- RFIC Center, Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
- NDAC Center, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Zhi-Ji Wang
- RFIC Center, Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
- Department of Pediatrics, Severance Children’s Hospital, Yonsei University, Seoul 03722, Republic of Korea
- Correspondence: (Z.-J.W.); (E.-S.K.); (N.-Y.K.)
| | - Eun-Seong Kim
- RFIC Center, Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
- WAVEPIA Co., Ltd., 557, Dongtangiheung-ro, Hwaseong-si 18469, Republic of Korea
- Correspondence: (Z.-J.W.); (E.-S.K.); (N.-Y.K.)
| | - Nam-Young Kim
- RFIC Center, Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
- NDAC Center, Kwangwoon University, Seoul 01897, Republic of Korea
- Correspondence: (Z.-J.W.); (E.-S.K.); (N.-Y.K.)
| |
Collapse
|
5
|
Franciotti R, Moretti DV, Benussi A, Ferri L, Russo M, Carrarini C, Barbone F, Arnaldi D, Falasca NW, Koch G, Cagnin A, Nobili FM, Babiloni C, Borroni B, Padovani A, Onofrj M, Bonanni L. Cortical network modularity changes along the course of frontotemporal and Alzheimer's dementing diseases. Neurobiol Aging 2021; 110:37-46. [PMID: 34847523 DOI: 10.1016/j.neurobiolaging.2021.10.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/07/2021] [Accepted: 10/26/2021] [Indexed: 12/14/2022]
Abstract
Cortical network modularity underpins cognitive functions, so we hypothesized its progressive derangement along the course of frontotemporal (FTD) and Alzheimer's (AD) dementing diseases. EEG was recorded in 18 FTD, 18 AD, and 20 healthy controls (HC). In the FTD and AD patients, the EEG recordings were performed at the prodromal stage of dementia, at the onset of dementia, and three years after the onset of dementia. HC underwent three EEG recordings at 2-3-year time interval. Information flows underlying EEG activity recorded at electrode pairs were estimated by means of Mutual Information (MI) analysis. The functional organization of the cortical network was modelled by means of the Graph theory analysis on MI adjacency matrices. Graph theory analysis showed that the main hub of HC (Parietal area) was lost in FTD patients at onset of dementia, substituted by provincial hubs in frontal leads. No changes in global network organization were found in AD. Despite a progressive cognitive impairment during the FTD and AD progression, only the FTD patients showed a derangement in the cortical network modularity, possibly due to dysfunctions in frontal functional connectivity.
Collapse
Affiliation(s)
- Raffaella Franciotti
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Davide V Moretti
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Laura Ferri
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Mirella Russo
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Claudia Carrarini
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Filomena Barbone
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Dario Arnaldi
- Dipartimento di Neuroscienze (DINOGMI), University of Genova, Genoa, Italy; U.O. Clinica Neurologica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Nicola W Falasca
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Giacomo Koch
- Non Invasive Brain Stimulation Unit/Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy; Stroke Unit, Department of Neuroscience, Tor Vergata Policlinic, Rome, Italy
| | | | - Flavio M Nobili
- Dipartimento di Neuroscienze (DINOGMI), University of Genova, Genoa, Italy; U.O. Clinica Neurologica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "V. Erspamer," Sapienza University of Rome, Rome, Italy; Hospital San Raffaele Cassino (FR), Cassino, Italy
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Marco Onofrj
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Laura Bonanni
- Department of Medicine and Aging Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.
| | | |
Collapse
|
6
|
Li Z, Bai X, Hu R, Li X. Measuring Phase-Amplitude Coupling Based on the Jensen-Shannon Divergence and Correlation Matrix. IEEE Trans Neural Syst Rehabil Eng 2021; 29:1375-1385. [PMID: 34236967 DOI: 10.1109/tnsre.2021.3095510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Phase-amplitude coupling (PAC) measures the relationship between the phase of low-frequency oscillations (LFO) and the amplitude of high-frequency oscillations (HFO). It plays an important functional role in neural information processing and cognition. Thus, we propose a novel method based on the Jensen-Shannon (JS) divergence and correlation matrix. The method takes the amplitude distributions of the HFO located in the corresponding phase bins of the LFO as multichannel inputs to construct a correlation matrix, where the elements are calculated based on the JS divergence between pairs of amplitude distributions. Then, the omega complexity extracted from the correlation matrix is used to estimate the PAC strength. The simulation results demonstrate that the proposed method can effectively reflect the PAC strength and slightly vary with the data length. Moreover, it outperforms five frequently used algorithms in the performance against additive white Gaussian noise and spike noise and the ability of detecting PAC in wide frequency ranges. To validate our proposed method with real data, it was applied to analyze the local field potential recorded from the dorsomedial striatum in a male Sprague-Dawley rat. It can replicate previous results obtained with other PAC metrics. In conclusion, these results suggest that our proposed method is a powerful tool for measuring the PAC between neural oscillations.
Collapse
|