1
|
Duret LC, Nagoshi E. The intertwined relationship between circadian dysfunction and Parkinson's disease. Trends Neurosci 2024:S0166-2236(24)00203-0. [PMID: 39578132 DOI: 10.1016/j.tins.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/23/2024] [Accepted: 10/23/2024] [Indexed: 11/24/2024]
Abstract
Neurodegenerative disorders represent a leading cause of disability among the elderly population, and Parkinson's disease (PD) is the second most prevalent. Emerging evidence suggests a frequent co-occurrence of circadian disruption and PD. However, the nature of this relationship remains unclear: is circadian disruption a cause, consequence, or a parallel feature of the disease that shares the same root cause? This review seeks to address this question by highlighting and discussing clinical evidence and findings from experiments using vertebrate and invertebrate animal models. While research on causality is still in its early stages, the available data suggest reciprocal interactions between PD progression and circadian disruption.
Collapse
Affiliation(s)
- Lou C Duret
- Department of Genetics and Evolution, University of Geneva, CH-1205 Geneva, Switzerland; Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, CH-1211 Geneva, Switzerland
| | - Emi Nagoshi
- Department of Genetics and Evolution, University of Geneva, CH-1205 Geneva, Switzerland; Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, CH-1211 Geneva, Switzerland.
| |
Collapse
|
2
|
Carneiro P, Ferreira M, Marisa Costa V, Carvalho F, Capela JP. Protective effects of amphetamine and methylphenidate against dopaminergic neurotoxicants in SH-SY5Y cells. Curr Res Toxicol 2024; 6:100165. [PMID: 38562456 PMCID: PMC10982568 DOI: 10.1016/j.crtox.2024.100165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/10/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
Full treatment of the second most common neurodegenerative disorder, Parkinson's disease (PD), is still considered an unmet need. As the psychostimulants, amphetamine (AMPH) and methylphenidate (MPH), were shown to be neuroprotective against stroke and other neuronal injury diseases, this study aimed to evaluate their neuroprotective potential against two dopaminergic neurotoxicants, 6-hydroxydopamine (6-OHDA) and paraquat (PQ), in differentiated human dopaminergic SH-SY5Y cells. Neither cytotoxicity nor mitochondrial membrane potential changes were seen following a 24-hour exposure to either therapeutic concentration of AMPH or MPH (0.001-10 μM). On the other hand, a 24-hour exposure to 6-OHDA (31.25-500 μM) or PQ (100-5000 μM) induced concentration-dependent mitochondrial dysfunction, assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, and lysosomal damage, evaluated by the neutral red uptake assay. The lethal concentrations 25 and 50 retrieved from the concentration-toxicity curves in the MTT assay were 99.9 µM and 133.6 µM for 6-OHDA, or 422 µM and 585.8 µM for PQ. Both toxicants caused mitochondrial membrane potential depolarization, but only 6-OHDA increased reactive oxygen species (ROS). Most importantly, PQ-induced toxicity was partially prevented by 1 μM of AMPH or MPH. Nonetheless, neither AMPH nor MPH could prevent 6-OHDA toxicity in this experimental model. According to these findings, AMPH and MPH may provide some neuroprotection against PQ-induced neurotoxicity, but further investigation is required to determine the exact mechanism underlying this protection.
Collapse
Affiliation(s)
- Patrícia Carneiro
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050‐313 Porto, Portugal
| | - Mariana Ferreira
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050‐313 Porto, Portugal
| | - Vera Marisa Costa
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050‐313 Porto, Portugal
| | - Félix Carvalho
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050‐313 Porto, Portugal
| | - João Paulo Capela
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050‐313 Porto, Portugal
- FP3ID, Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, Rua Carlos da Maia 296, 4200-150 Porto, Portugal
| |
Collapse
|
3
|
Chen YC, Wang WS, Lewis SJG, Wu SL. Fighting Against the Clock: Circadian Disruption and Parkinson's Disease. J Mov Disord 2024; 17:1-14. [PMID: 37989149 PMCID: PMC10846969 DOI: 10.14802/jmd.23216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 11/23/2023] Open
Abstract
Circadian disruption is being increasingly recognized as a critical factor in the development and progression of Parkinson's disease (PD). This review aims to provide an in-depth overview of the relationship between circadian disruption and PD by exploring the molecular, cellular, and behavioral aspects of this interaction. This review will include a comprehensive understanding of how the clock gene system and transcription-translation feedback loops function and how they are diminished in PD. The article also discusses the role of clock genes in the regulation of circadian rhythms, as well as the impact of clock gene dysregulation on mitochondrial function, oxidative stress, and neuroinflammation, including the microbiota-gut-brain axis, which have all been proposed as being crucial mechanisms in the pathophysiology of PD. Finally, this review highlights potential therapeutic strategies targeting the clock gene system and circadian rhythm for the treatment of PD.
Collapse
Affiliation(s)
- Yen-Chung Chen
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
- Department of Public Health, Chung Shan Medical University, Taichung, Taiwan
| | - Wei-Sheng Wang
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
| | - Simon J G Lewis
- Brain and Mind Centre, School of Medical Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| | - Shey-Lin Wu
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
- Department of Electrical Engineering, National Changhua University of Education, Changhua, Taiwan
| |
Collapse
|
4
|
Lopez-de-Ipina K, Iradi J, Fernandez E, Calvo PM, Salle D, Poologaindran A, Villaverde I, Daelman P, Sanchez E, Requejo C, Suckling J. HUMANISE: Human-Inspired Smart Management, towards a Healthy and Safe Industrial Collaborative Robotics. SENSORS (BASEL, SWITZERLAND) 2023; 23:1170. [PMID: 36772209 PMCID: PMC9920065 DOI: 10.3390/s23031170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/10/2023] [Accepted: 01/14/2023] [Indexed: 06/18/2023]
Abstract
The workplace is evolving towards scenarios where humans are acquiring a more active and dynamic role alongside increasingly intelligent machines. Moreover, the active population is ageing and consequently emerging risks could appear due to health disorders of workers, which requires intelligent intervention both for production management and workers' support. In this sense, the innovative and smart systems oriented towards monitoring and regulating workers' well-being will become essential. This work presents HUMANISE, a novel proposal of an intelligent system for risk management, oriented to workers suffering from disease conditions. The developed support system is based on Computer Vision, Machine Learning and Intelligent Agents. Results: The system was applied to a two-arm Cobot scenario during a Learning from Demonstration task for collaborative parts transportation, where risk management is critical. In this environment with a worker suffering from a mental disorder, safety is successfully controlled by means of human/robot coordination, and risk levels are managed through the integration of human/robot behaviour models and worker's models based on the workplace model of the World Health Organization. The results show a promising real-time support tool to coordinate and monitoring these scenarios by integrating workers' health information towards a successful risk management strategy for safe industrial Cobot environments.
Collapse
Affiliation(s)
- Karmele Lopez-de-Ipina
- Department of Psychiatry, University of Cambridge, Cambridge CB2 3PT, UK
- EleKin Lab, Systems Engineering and Automation, Computers’ Architecture and Technology, and Enterprise Management Departments, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastian, Spain
| | - Jon Iradi
- EleKin Lab, Systems Engineering and Automation, Computers’ Architecture and Technology, and Enterprise Management Departments, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastian, Spain
| | - Elsa Fernandez
- EleKin Lab, Systems Engineering and Automation, Computers’ Architecture and Technology, and Enterprise Management Departments, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastian, Spain
| | - Pilar M. Calvo
- EleKin Lab, Systems Engineering and Automation, Computers’ Architecture and Technology, and Enterprise Management Departments, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastian, Spain
| | - Damien Salle
- Tecnalia Research Centre, Tecnalia Industry and Transport Division, 20009 Donostia-San Sebastia, Spain
| | - Anujan Poologaindran
- Department of Psychiatry, University of Cambridge, Cambridge CB2 3PT, UK
- The Alan Turing Institute, British Library, London NW1 2DB, UK
| | - Ivan Villaverde
- Tecnalia Research Centre, Tecnalia Industry and Transport Division, 20009 Donostia-San Sebastia, Spain
| | - Paul Daelman
- Tecnalia Research Centre, Tecnalia Industry and Transport Division, 20009 Donostia-San Sebastia, Spain
| | - Emilio Sanchez
- Department of Mechanical Engineering and Materials, Engineering School, University of Navarra, TECNUN, 20018 Donostia-San Sebastian, Spain
- CEIT, Manufacturing Division, 20018 Donostia-San Sebastian, Spain
| | - Catalina Requejo
- Cajal Institute, Consejo Superior de Investigaciones Científicas (CSIC), 28002 Madrid, Spain
| | - John Suckling
- Department of Psychiatry, University of Cambridge, Cambridge CB2 3PT, UK
| |
Collapse
|
5
|
Real CC, Binda KH, Thomsen MB, Lillethorup TP, Brooks DJ, Landau AM. Selecting the Best Animal Model of Parkinson's Disease for Your Research Purpose: Insight from in vivo PET Imaging Studies. Curr Neuropharmacol 2023; 21:1241-1272. [PMID: 36797611 PMCID: PMC10286593 DOI: 10.2174/1570159x21666230216101659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 02/18/2023] Open
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative multisystem disorder leading to motor and non-motor symptoms in millions of individuals. Despite intense research, there is still no cure, and early disease biomarkers are lacking. Animal models of PD have been inspired by basic elements of its pathogenesis, such as dopamine dysfunction, alpha-synuclein accumulation, neuroinflammation and disruption of protein degradation, and these have been crucial for a deeper understanding of the mechanisms of pathology, the identification of biomarkers, and evaluation of novel therapies. Imaging biomarkers are non-invasive tools to assess disease progression and response to therapies; their discovery and validation have been an active field of translational research. Here, we highlight different considerations of animal models of PD that can be applied to future research, in terms of their suitability to answer different research questions. We provide the reader with important considerations of the best choice of model to use based on the disease features of each model, including issues related to different species. In addition, positron emission tomography studies conducted in PD animal models in the last 5 years are presented. With a variety of different species, interventions and genetic information, the choice of the most appropriate model to answer research questions can be daunting, especially since no single model recapitulates all aspects of this complex disorder. Appropriate animal models in conjunction with in vivo molecular imaging tools, if selected properly, can be a powerful combination for the assessment of novel therapies and developing tools for early diagnosis.
Collapse
Affiliation(s)
- Caroline Cristiano Real
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Karina Henrique Binda
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Majken Borup Thomsen
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Thea Pinholt Lillethorup
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - David James Brooks
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
- Institute of Translational and Clinical Research, University of Newcastle, Upon Tyne, UK
| | - Anne Marlene Landau
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
6
|
Kim J, Park I, Jang S, Choi M, Kim D, Sun W, Choe Y, Choi JW, Moon C, Park SH, Choe HK, Kim K. Pharmacological Rescue with SR8278, a Circadian Nuclear Receptor REV-ERBα Antagonist as a Therapy for Mood Disorders in Parkinson's Disease. Neurotherapeutics 2022; 19:592-607. [PMID: 35322351 PMCID: PMC9226214 DOI: 10.1007/s13311-022-01215-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2022] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease is a neurodegenerative disease characterized by progressive dopaminergic neuronal loss. Motor deficits experienced by patients with Parkinson's disease are well documented, but non-motor symptoms, including mood disorders associated with circadian disturbances, are also frequent features. One common phenomenon is "sundowning syndrome," which is characterized by the occurrence of neuropsychiatric symptoms at a specific time (dusk), causing severe quality of life challenges. This study aimed to elucidate the underlying mechanisms of sundowning syndrome in Parkinson's disease and their molecular links with the circadian clock. We demonstrated that 6-hydroxydopamine (6-OHDA)-lesioned mice, as Parkinson's disease mouse model, exhibit increased depression- and anxiety-like behaviors only at dawn (the equivalent of dusk in human). Administration of REV-ERBα antagonist, SR8278, exerted antidepressant and anxiolytic effects in a circadian time-dependent manner in 6-OHDA-lesioned mice and restored the circadian rhythm of mood-related behaviors. 6-OHDA-lesion altered DAergic-specific Rev-erbα and Nurr1 transcription, and atypical binding activities of REV-ERBα and NURR1, which are upstream nuclear receptors for the discrete tyrosine hydroxylase promoter region. SR8278 treatment restored the binding activities of REV-ERBα and NURR1 to the tyrosine hydroxylase promoter and the induction of enrichment of the R/N motif, recognized by REV-ERBα and NURR1, as revealed by ATAC-sequencing; therefore, tyrosine hydroxylase expression was elevated in the ventral tegmental area of 6-OHDA-injected mice, especially at dawn. These results indicate that REV-ERBα is a potential therapeutic target, and its antagonist, SR8278, is a potential drug for mood disorders related to circadian disturbances, namely sundowning syndrome, in Parkinson's disease.
Collapse
Affiliation(s)
- Jeongah Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Korea
- Department of Anatomy, College of Medicine, Korea University, Seoul, Korea
| | - Inah Park
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Korea
| | - Sangwon Jang
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Korea
| | - Mijung Choi
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Korea
| | - Doyeon Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Korea
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Woong Sun
- Department of Anatomy, College of Medicine, Korea University, Seoul, Korea
| | | | - Ji-Woong Choi
- Department of Electrical Engineering and Computer Science, DGIST, Daegu, Korea
| | - Cheil Moon
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Korea
- Convergence Research Advanced Centre for Olfaction, DGIST, Daegu, Korea
| | - Sung Ho Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Korea
| | - Han Kyoung Choe
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Korea
| | - Kyungjin Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Korea.
- Convergence Research Advanced Centre for Olfaction, DGIST, Daegu, Korea.
| |
Collapse
|
7
|
Van Den Berge N, Ulusoy A. Animal models of brain-first and body-first Parkinson's disease. Neurobiol Dis 2022; 163:105599. [DOI: 10.1016/j.nbd.2021.105599] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
|
8
|
Marie A, Darricau M, Touyarot K, Parr-Brownlie LC, Bosch-Bouju C. Role and Mechanism of Vitamin A Metabolism in the Pathophysiology of Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2021; 11:949-970. [PMID: 34120916 PMCID: PMC8461657 DOI: 10.3233/jpd-212671] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/12/2021] [Indexed: 01/09/2023]
Abstract
Evidence shows that altered retinoic acid signaling may contribute to the pathogenesis and pathophysiology of Parkinson's disease (PD). Retinoic acid is the bioactive derivative of the lipophilic vitamin A. Vitamin A is involved in several important homeostatic processes, such as cell differentiation, antioxidant activity, inflammation and neuronal plasticity. The role of vitamin A and its derivatives in the pathogenesis and pathophysiology of neurodegenerative diseases, and their potential as therapeutics, has drawn attention for more than 10 years. However, the literature sits in disparate fields. Vitamin A could act at the crossroad of multiple environmental and genetic factors of PD. The purpose of this review is to outline what is known about the role of vitamin A metabolism in the pathogenesis and pathophysiology of PD. We examine key biological systems and mechanisms that are under the control of vitamin A and its derivatives, which are (or could be) exploited for therapeutic potential in PD: the survival of dopaminergic neurons, oxidative stress, neuroinflammation, circadian rhythms, homeostasis of the enteric nervous system, and hormonal systems. We focus on the pivotal role of ALDH1A1, an enzyme expressed by dopaminergic neurons for the detoxification of these neurons, which is under the control of retinoic acid. By providing an integrated summary, this review will guide future studies on the potential role of vitamin A in the management of symptoms, health and wellbeing for PD patients.
Collapse
Affiliation(s)
- Anaıs Marie
- University Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Morgane Darricau
- University Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
- University Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Katia Touyarot
- University Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Louise C. Parr-Brownlie
- Department of Anatomy, Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- Brain Research New Zealand (Center of Research Excellence), Dunedin, New Zealand
| | | |
Collapse
|
9
|
Two Players in the Field: Hierarchical Model of Interaction between the Dopamine and Acetylcholine Signaling Systems in the Striatum. Biomedicines 2021; 9:biomedicines9010025. [PMID: 33401461 PMCID: PMC7824505 DOI: 10.3390/biomedicines9010025] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/25/2020] [Accepted: 12/29/2020] [Indexed: 12/13/2022] Open
Abstract
Tight interactions exist between dopamine and acetylcholine signaling in the striatum. Dopaminergic neurons express muscarinic and nicotinic receptors, and cholinergic interneurons express dopamine receptors. All neurons in the striatum are pacemakers. An increase in dopamine release is activated by stopping acetylcholine release. The coordinated timing or synchrony of the direct and indirect pathways is critical for refined movements. Changes in neurotransmitter ratios are considered a prominent factor in Parkinson’s disease. In general, drugs increase striatal dopamine release, and others can potentiate both dopamine and acetylcholine release. Both neurotransmitters and their receptors show diurnal variations. Recently, it was observed that reward function is modulated by the circadian system, and behavioral changes (hyperactivity and hypoactivity during the light and dark phases, respectively) are present in an animal model of Parkinson’s disease. The striatum is one of the key structures responsible for increased locomotion in the active (dark) period in mice lacking M4 muscarinic receptors. Thus, we propose here a hierarchical model of the interaction between dopamine and acetylcholine signaling systems in the striatum. The basis of this model is their functional morphology. The next highest mode of interaction between these two neurotransmitter systems is their interaction at the neurotransmitter/receptor/signaling level. Furthermore, these interactions contribute to locomotor activity regulation and reward behavior, and the topmost level of interaction represents their biological rhythmicity.
Collapse
|