1
|
Luo X, Jin C, Chen H, Niu J, Yu C, Dou X, Wang J, Wen J, Zhang H, Tian M, Zhong Y. PET imaging of synaptic vesicle glycoprotein 2 subtype A for neurological recovery in ischemic stroke. Eur J Nucl Med Mol Imaging 2024:10.1007/s00259-024-06904-6. [PMID: 39196302 DOI: 10.1007/s00259-024-06904-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/24/2024] [Indexed: 08/29/2024]
Abstract
PURPOSE [18F]SynVesT-1 is a novel radiopharmaceutical for assessing synaptic density in vivo. This study aims to investigate the potential of [18F]SynVesT-1 positron emission tomography (PET) in evaluating neurological recovery in the rat model of ischemic stroke, and to compare its performance with [18F]FDG PET. METHODS Sprague-Dawley rats were subjected to photothrombotic cerebral infarction, and safinamide was administered intraperitoneally from day 3 to day 14 post-stroke to alleviate neurological deficits. Cylinder test and forelimb placing test were performed to assess the neurological function. MRI, [18F]SynVesT-1 PET/CT and [18F]FDG PET/CT imaging were used to evaluate infarct volume, synaptic density, and cerebral glucose metabolism pre- and post-treatment. [18F]SynVesT-1 and [18F]FDG PET images were compared using Statistical Parametric Mapping (SPM) and region of interest (ROI)-based analysis. Post-mortem histological analysis was performed to validate PET images. RESULTS Safinamide treatment improved behavioral outcomes in stroke-damaged rats. Both [18F]SynVesT-1 and [18F]FDG PET detected stroke-induced injury, with the injured region being significantly larger in [18F]FDG PET than in [18F]SynVesT-1 PET. Compared with the saline group, radiotracer uptake in the injured area significantly increased in [18F]SynVesT-1 PET after safinamide treatment, whereas no notable change was observed in [18F]FDG PET. Additionally, [18F]SynVesT-1 PET imaging showed a better correlation with neurological function recovery than [18F]FDG PET. Post-mortem analysis revealed increased neuronal numbers, synaptic density, and synaptic neuroplasticity, as well as decreased glia activation in the stroke-injured area after treatment. CONCLUSION [18F]SynVesT-1 PET effectively quantified spatiotemporal dynamics of synaptic density in the rat model of stroke, and showed different capabilities in detecting stroke injury and neurological recovery compared with [18F]FDG PET. The utilization of [18F]SynVesT-1 PET holds promise as a potential non-invasive biomarker for evaluating ischemic stroke in conjunction with [18F]FDG PET.
Collapse
Affiliation(s)
- Xiaoyun Luo
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
- Institute of Nuclear Medicine and Molecular, Imaging of Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Chentao Jin
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
- Institute of Nuclear Medicine and Molecular, Imaging of Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, 310014, China
| | - Hetian Chen
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
- Institute of Nuclear Medicine and Molecular, Imaging of Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Jiaqi Niu
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
- Institute of Nuclear Medicine and Molecular, Imaging of Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Congcong Yu
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
- Institute of Nuclear Medicine and Molecular, Imaging of Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Xiaofeng Dou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
- Institute of Nuclear Medicine and Molecular, Imaging of Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Jing Wang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
- Institute of Nuclear Medicine and Molecular, Imaging of Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Junjie Wen
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, 310014, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, 310014, China
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China.
- Institute of Nuclear Medicine and Molecular, Imaging of Zhejiang University, Hangzhou, Zhejiang, 310009, China.
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, 310014, China.
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, 310014, China.
| | - Mei Tian
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China.
- Institute of Nuclear Medicine and Molecular, Imaging of Zhejiang University, Hangzhou, Zhejiang, 310009, China.
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Shanghai, 201203, China.
| | - Yan Zhong
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China.
- Institute of Nuclear Medicine and Molecular, Imaging of Zhejiang University, Hangzhou, Zhejiang, 310009, China.
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
2
|
Zhang H, Zhao J, Fan L, Wu X, Li F, Liu J, Bai C, Li X, Li B, Zhang T. Exploring the Structural Plasticity Mechanism of Corticospinal Tract during Stroke Rehabilitation Based Automated Fiber Quantification Tractography. Neurorehabil Neural Repair 2024; 38:425-436. [PMID: 38676561 DOI: 10.1177/15459683241249115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
BACKGROUND Corticospinal tract (CST) is the principal motor pathway; we aim to explore the structural plasticity mechanism in CST during stroke rehabilitation. METHODS A total of 25 patients underwent diffusion tensor imaging before rehabilitation (T1), 1-month post-rehabilitation (T2), 2 months post-rehabilitation (T3), and 1-year post-discharge (T4). The CST was segmented, and fractional anisotropy (FA), axial diffusion (AD), mean diffusivity (MD), and radial diffusivity (RD) were determined using automated fiber quantification tractography. Baseline level of laterality index (LI) and motor function for correlation analysis. RESULTS The FA values of all segments in the ipsilesional CST (IL-CST) were lower compared with normal CST. Repeated measures analysis of variance showed time-related effects on FA, AD, and MD of the IL-CST, and there were similar dynamic trends in these 3 parameters. At T1, FA, AD, and MD values of the mid-upper segments of IL-CST (around the core lesions) were the lowest; at T2 and T3, values for the mid-lower segments were lower than those at T1, while the values for the mid-upper segments gradually increased; at T4, the values for almost entire IL-CST were higher than before. The highest LI was observed at T2, with a predominance in contralesional CST. The LIs for the FA and AD at T1 were positively correlated with the change rate of motor function. CONCLUSIONS IL-CST showed aggravation followed by improvement from around the lesion to the distal end. Balance of interhemispheric CST may be closely related to motor function, and LIs for FA and AD may have predictive value for mild-to-moderate stroke rehabilitation. Clinical Trial Registration. URL: http://www.chictr.org.cn; Unique Identifier: ChiCTR1800019474.
Collapse
Affiliation(s)
- Haojie Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Center of Neurological Rehabilitation, China Rehabilitation Research Center, Beijing, China
| | - Jun Zhao
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Neurology, China Rehabilitation Research Center, Beijing, China
| | - Lingzhong Fan
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xia Wu
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fang Li
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Neurology, China Rehabilitation Research Center, Beijing, China
| | - Jingya Liu
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of occupational therapy, China Rehabilitation Research Center, Beijing, China
| | - Chen Bai
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Center of Neurological Rehabilitation, China Rehabilitation Research Center, Beijing, China
| | - Xingzhu Li
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Center of Neurological Rehabilitation, China Rehabilitation Research Center, Beijing, China
| | - Bingjie Li
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Neurology, China Rehabilitation Research Center, Beijing, China
| | - Tong Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Center of Neurological Rehabilitation, China Rehabilitation Research Center, Beijing, China
| |
Collapse
|
3
|
Hood RJ, Sanchez-Bezanilla S, Beard DJ, Rust R, Turner RJ, Stuckey SM, Collins-Praino LE, Walker FR, Nilsson M, Ong LK. Leakage beyond the primary lesion: A temporal analysis of cerebrovascular dysregulation at sites of hippocampal secondary neurodegeneration following cortical photothrombotic stroke. J Neurochem 2023; 167:733-752. [PMID: 38010732 DOI: 10.1111/jnc.16008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 11/29/2023]
Abstract
We have previously demonstrated that a cortical stroke causes persistent impairment of hippocampal-dependent cognitive tasks concomitant with secondary neurodegenerative processes such as amyloid-β accumulation in the hippocampus, a region remote from the primary infarct. Interestingly, there is emerging evidence suggesting that deposition of amyloid-β around cerebral vessels may lead to cerebrovascular structural changes, neurovascular dysfunction, and disruption of blood-brain barrier integrity. However, there is limited knowledge about the temporal changes of hippocampal cerebrovasculature after cortical stroke. In the current study, we aimed to characterise the spatiotemporal cerebrovascular changes after cortical stroke. This was done using the photothrombotic stroke model targeting the motor and somatosensory cortices of mice. Cerebrovascular morphology as well as the co-localisation of amyloid-β with vasculature and blood-brain barrier integrity were assessed in the cortex and hippocampal regions at 7, 28 and 84 days post-stroke. Our findings showed transient cerebrovascular remodelling in the peri-infarct area up to 28 days post-stroke. Importantly, the cerebrovascular changes were extended beyond the peri-infarct region to the ipsilateral hippocampus and were sustained out to 84 days post-stroke. When investigating vessel diameter, we showed a decrease at 84 days in the peri-infarct and CA1 regions that were exacerbated in vessels with amyloid-β deposition. Lastly, we showed sustained vascular leakage in the peri-infarct and ipsilateral hippocampus, indicative of a compromised blood-brain-barrier. Our findings indicate that hippocampal vasculature may represent an important therapeutic target to mitigate the progression of post-stroke cognitive impairment.
Collapse
Affiliation(s)
- Rebecca J Hood
- Discipline of Anatomy and Pathology, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia
- Heart and Stroke Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Sonia Sanchez-Bezanilla
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia
- Heart and Stroke Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Daniel J Beard
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia
- Heart and Stroke Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Ruslan Rust
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren, Switzerland
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Renée J Turner
- Discipline of Anatomy and Pathology, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Shannon M Stuckey
- Discipline of Anatomy and Pathology, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Lyndsey E Collins-Praino
- Discipline of Anatomy and Pathology, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Frederick R Walker
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia
- Heart and Stroke Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Centre for Rehab Innovations, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Michael Nilsson
- Heart and Stroke Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Centre for Rehab Innovations, The University of Newcastle, Callaghan, New South Wales, Australia
- School of Medicine and Public Health, The University of Newcastle, Callaghan, New South Wales, Australia
- LKC School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Lin Kooi Ong
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia
- Heart and Stroke Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
- School of Health and Medical Sciences & Centre for Health Research, University of Southern Queensland, Toowoomba, Queensland, Australia
| |
Collapse
|