1
|
Trigeminal stimulation is required for neural representations of bimodal odor localization: A time-resolved multivariate EEG and fNIRS study. Neuroimage 2023; 269:119903. [PMID: 36708974 DOI: 10.1016/j.neuroimage.2023.119903] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/28/2022] [Accepted: 01/24/2023] [Indexed: 01/26/2023] Open
Abstract
Whereas neural representations of spatial information are commonly studied in vision, olfactory stimuli might also be able to create such representations via the trigeminal system. We explored in two independent multi-method electroencephalography-functional near-infrared spectroscopy (EEG+fNIRS) experiments (n1=18, n2=14) if monorhinal odor stimuli can evoke spatial representations in the brain. We tested whether this representation depends on trigeminal properties of the stimulus, and if the retention in short-term memory follows the "sensorimotor recruitment theory", using multivariate representational similarity analysis (RSA). We demonstrate that the delta frequency band up to 5 Hz across the scull entail spatial information of which nostril has been stimulated. Delta frequencies were localized in a network involving primary and secondary olfactory, motor-sensory and occipital regions. RSA on fNIRS data showed that monorhinal stimulations evoke neuronal representations in motor-sensory regions and that this representation is kept stable beyond the time of perception. These effects were no longer valid when the odor stimulus did not sufficiently stimulate the trigeminal nerve as well. Our results are first evidence that the trigeminal system can create spatial representations of bimodal odors in the brain and that these representations follow similar principles as the other sensory systems.
Collapse
|
2
|
Wei PH, Chen H, Ye Q, Zhao H, Xu Y, Bai F. Self-reference Network-Related Interactions During the Process of Cognitive Impairment in the Early Stages of Alzheimer's Disease. Front Aging Neurosci 2021; 13:666437. [PMID: 33841130 PMCID: PMC8024683 DOI: 10.3389/fnagi.2021.666437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/08/2021] [Indexed: 12/18/2022] Open
Abstract
Background: Normal establishment of cognition occurs after forming a sensation to stimuli from internal or external cues, in which self-reference processing may be partially involved. However, self-reference processing has been less studied in the Alzheimer’s disease (AD) field within the self-reference network (SRN) and has instead been investigated within the default-mode network (DMN). Differences between these networks have been proven in the last decade, while ultra-early diagnoses have increased. Therefore, investigation of the altered pattern of SRN is significantly important, especially in the early stages of AD. Methods: A total of 65 individuals, including 43 with mild cognitive impairment (MCI) and 22 cognitively normal individuals, participated in this study. The SRN, dorsal attention network (DAN), and salience network (SN) were constructed with resting-state functional magnetic resonance imaging (fMRI), and voxel-based analysis of variance (ANOVA) was used to explore significant regions of network interactions. Finally, the correlation between the network interactions and clinical characteristics was analyzed. Results: We discovered four interactions among the three networks, with the SRN showing different distributions in the left and right hemispheres from the DAN and SN and modulated interactions between them. Group differences in the interactions that were impaired in MCI patients indicated that the degree of damage was most severe in the SRN, least severe in the SN, and intermediate in the DAN. The two SRN-related interactions showed positive effects on the executive and memory performances of MCI patients with no overlap with the clinical assessments performed in this study. Conclusion: This study is the first and primary evidence of SRN interactions related to MCI patients’ functional performance. The influence of the SRN in the ultra-early stages of AD is nonnegligible. There are still many unknowns regarding the contribution of the SRN in AD progression, and we strongly recommend future research in this area.
Collapse
Affiliation(s)
- Ping-Hsuan Wei
- Department of Neurology, Affiliated Drum Tower Hospital of Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Haifeng Chen
- Department of Neurology, Affiliated Drum Tower Hospital of Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Qing Ye
- Department of Neurology, Affiliated Drum Tower Hospital of Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Hui Zhao
- Department of Neurology, Affiliated Drum Tower Hospital of Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Yun Xu
- Department of Neurology, Affiliated Drum Tower Hospital of Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Feng Bai
- Department of Neurology, Affiliated Drum Tower Hospital of Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | | |
Collapse
|