1
|
Madamesila J, Tchistiakova E, Faruqi S, Das S, Ploquin N. Can machine learning models improve early detection of brain metastases using diffusion weighted imaging-based radiomics? Quant Imaging Med Surg 2023; 13:7706-7718. [PMID: 38106308 PMCID: PMC10722027 DOI: 10.21037/qims-23-441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/15/2023] [Indexed: 12/19/2023]
Abstract
Background Metastatic complications are a major cause of cancer-related morbidity, with up to 40% of cancer patients experiencing at least one brain metastasis. Earlier detection may significantly improve patient outcomes and overall survival. We investigated machine learning (ML) models for early detection of brain metastases based on diffusion weighted imaging (DWI) radiomics. Methods Longitudinal diffusion imaging from 116 patients previously treated with stereotactic radiosurgery (SRS) for brain metastases were retrospectively analyzed. Clinical contours from 600 metastases were extracted from radiosurgery planning computed tomography, and rigidly registered to corresponding contrast enhanced-T1 and apparent diffusion coefficient (ADC) maps. Contralateral contours located in healthy brain tissue were used as control. The dataset consisted of (I) radiomic features using ADC maps, (II) radiomic feature change calculated using timepoints before the metastasis manifested on contrast enhanced-T1, (III) primary cancer, and (IV) anatomical location. The dataset was divided into training and internal validation sets using an 80/20 split with stratification. Four classification algorithms [Linear Support Vector Machine (SVM), Random Forest (RF), AdaBoost, and XGBoost] underwent supervised classification training, with contours labeled either 'control' or 'metastasis'. Hyperparameters were optimized towards balanced accuracy. Various model metrics (receiver operating characteristic curve area scores, accuracy, recall, and precision) were calculated to gauge performance. Results The radiomic and clinical data set, feature engineering, and ML models developed were able to identify metastases with an accuracy of up to 87.7% on the training set, and 85.8% on an unseen test set. XGBoost and RF showed superior accuracy (XGBoost: 0.877±0.021 and 0.833±0.47, RF: 0.823±0.024 and 0.858±0.045) for training and validation sets, respectively. XGBoost and RF also showed strong area under the receiver operating characteristic curve (AUC) performance on the validation set (0.910±0.037 and 0.922±0.034, respectively). AdaBoost performed slightly lower in all metrics. SVM model generalized poorly with the internal validation set. Important features involved changes in radiomics months before manifesting on contrast enhanced-T1. Conclusions The proposed models using diffusion-based radiomics showed encouraging results in differentiating healthy brain tissue from metastases using clinical imaging data. These findings suggest that longitudinal diffusion imaging and ML may help improve patient care through earlier diagnosis and increased patient monitoring/follow-up. Future work aims to improve model classification metrics, robustness, user-interface, and clinical applicability.
Collapse
Affiliation(s)
- Joseph Madamesila
- Department of Physics and Astronomy, University of Calgary, Calgary, Canada
- Department of Medical Physics, Tom Baker Cancer Centre, Alberta Health Services, Calgary, Canada
| | - Ekaterina Tchistiakova
- Department of Physics and Astronomy, University of Calgary, Calgary, Canada
- Department of Medical Physics, Tom Baker Cancer Centre, Alberta Health Services, Calgary, Canada
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Salman Faruqi
- Department of Radiation Oncology, Tom Baker Cancer Center, Alberta Health Services, Calgary, Canada
| | - Subhadip Das
- Division of Radiation Oncology and Developmental Radiotherapeutics, BC Cancer Agency-Victoria, University of British Columbia, Victoria, Canada
| | - Nicolas Ploquin
- Department of Physics and Astronomy, University of Calgary, Calgary, Canada
- Department of Medical Physics, Tom Baker Cancer Centre, Alberta Health Services, Calgary, Canada
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
2
|
Hosseinpour Z, Oladosu O, Liu WQ, Pike GB, Yong VW, Metz LM, Zhang Y. Distinct characteristics and severity of brain magnetic resonance imaging lesions in women and men with multiple sclerosis assessed using verified texture analysis measures. Front Neurol 2023; 14:1213377. [PMID: 37638198 PMCID: PMC10449451 DOI: 10.3389/fneur.2023.1213377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Background and goal In vivo characterization of brain lesion types in multiple sclerosis (MS) has been an ongoing challenge. Based on verified texture analysis measures from clinical magnetic resonance imaging (MRI), this study aimed to develop a method to identify two extremes of brain MS lesions that were approximately severely demyelinated (sDEM) and highly remyelinated (hREM), and compare them in terms of common clinical variables. Method Texture analysis used an optimized gray-level co-occurrence matrix (GLCM) method based on FLAIR MRI from 200 relapsing-remitting MS participants. Two top-performing metrics were calculated: texture contrast and dissimilarity. Lesion identification applied a percentile approach according to texture values calculated: ≤ 25 percentile for hREM and ≥75 percentile for sDEM. Results The sDEM had a greater total normalized volume yet smaller average size, and worse MRI texture than hREM. In lesion distribution mapping, the two lesion types appeared to overlap largely in location and were present the most in the corpus callosum and periventricular regions. Further, in sDEM, the normalized volume was greater and in hREM, the average size was smaller in men than women. There were no other significant results in clinical variable-associated analyses. Conclusion Percentile statistics of competitive MRI texture measures may be a promising method for probing select types of brain MS lesion pathology. Associated findings can provide another useful dimension for improved measurement and monitoring of disease activity in MS. The different characteristics of sDEM and hREM between men and women likely adds new information to the literature, deserving further confirmation.
Collapse
Affiliation(s)
- Zahra Hosseinpour
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| | - Olayinka Oladosu
- Department of Neuroscience, Faculty of Graduate Studies, University of Calgary, Calgary, AB, Canada
| | - Wei-qiao Liu
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - G. Bruce Pike
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - V. Wee Yong
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Luanne M. Metz
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Yunyan Zhang
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
3
|
La Rosa F, Wynen M, Al-Louzi O, Beck ES, Huelnhagen T, Maggi P, Thiran JP, Kober T, Shinohara RT, Sati P, Reich DS, Granziera C, Absinta M, Bach Cuadra M. Cortical lesions, central vein sign, and paramagnetic rim lesions in multiple sclerosis: Emerging machine learning techniques and future avenues. Neuroimage Clin 2022; 36:103205. [PMID: 36201950 PMCID: PMC9668629 DOI: 10.1016/j.nicl.2022.103205] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 12/14/2022]
Abstract
The current diagnostic criteria for multiple sclerosis (MS) lack specificity, and this may lead to misdiagnosis, which remains an issue in present-day clinical practice. In addition, conventional biomarkers only moderately correlate with MS disease progression. Recently, some MS lesional imaging biomarkers such as cortical lesions (CL), the central vein sign (CVS), and paramagnetic rim lesions (PRL), visible in specialized magnetic resonance imaging (MRI) sequences, have shown higher specificity in differential diagnosis. Moreover, studies have shown that CL and PRL are potential prognostic biomarkers, the former correlating with cognitive impairments and the latter with early disability progression. As machine learning-based methods have achieved extraordinary performance in the assessment of conventional imaging biomarkers, such as white matter lesion segmentation, several automated or semi-automated methods have been proposed as well for CL, PRL, and CVS. In the present review, we first introduce these MS biomarkers and their imaging methods. Subsequently, we describe the corresponding machine learning-based methods that were proposed to tackle these clinical questions, putting them into context with respect to the challenges they are facing, including non-standardized MRI protocols, limited datasets, and moderate inter-rater variability. We conclude by presenting the current limitations that prevent their broader deployment and suggesting future research directions.
Collapse
Key Words
- ms, multiple sclerosis
- mri, magnetic resonance imaging
- dl, deep learning
- ml, machine learning
- cl, cortical lesions
- prl, paramagnetic rim lesions
- cvs, central vein sign
- wml, white matter lesions
- flair, fluid-attenuated inversion recovery
- mprage, magnetization prepared rapid gradient-echo
- gm, gray matter
- wm, white matter
- psir, phase-sensitive inversion recovery
- dir, double inversion recovery
- mp2rage, magnetization-prepared 2 rapid gradient echoes
- sels, slowly evolving/expanding lesions
- cnn, convolutional neural network
- xai, explainable ai
- pv, partial volume
Collapse
Affiliation(s)
- Francesco La Rosa
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; CIBM Center for Biomedical Imaging, Switzerland; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Maxence Wynen
- CIBM Center for Biomedical Imaging, Switzerland; ICTeam, UCLouvain, Louvain-la-Neuve, Belgium; Louvain Inflammation Imaging Lab (NIL), Institute of Neuroscience (IoNS), UCLouvain, Brussels, Belgium; Radiology Department, Lausanne University and University Hospital, Switzerland
| | - Omar Al-Louzi
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Erin S Beck
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Till Huelnhagen
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Radiology Department, Lausanne University and University Hospital, Switzerland; Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| | - Pietro Maggi
- Louvain Inflammation Imaging Lab (NIL), Institute of Neuroscience (IoNS), UCLouvain, Brussels, Belgium; Department of Neurology, Cliniques universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Department of Neurology, CHUV, Lausanne, Switzerland
| | - Jean-Philippe Thiran
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; CIBM Center for Biomedical Imaging, Switzerland; Radiology Department, Lausanne University and University Hospital, Switzerland
| | - Tobias Kober
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Radiology Department, Lausanne University and University Hospital, Switzerland; Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| | - Russell T Shinohara
- Center for Biomedical Image Computing and Analysis (CBICA), Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA; Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PA, USA; Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Pascal Sati
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Cristina Granziera
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Switzerland; Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Martina Absinta
- IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Meritxell Bach Cuadra
- CIBM Center for Biomedical Imaging, Switzerland; Radiology Department, Lausanne University and University Hospital, Switzerland
| |
Collapse
|
4
|
Oladosu O, Liu WQ, Brown L, Pike BG, Metz LM, Zhang Y. Advanced diffusion MRI and image texture analysis detect widespread brain structural differences between relapsing-remitting and secondary progressive multiple sclerosis. Front Hum Neurosci 2022; 16:944908. [PMID: 36034111 PMCID: PMC9413838 DOI: 10.3389/fnhum.2022.944908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction Disease development in multiple sclerosis (MS) causes dramatic structural changes, but the exact changing patterns are unclear. Our objective is to investigate the differences in brain structure locally and spatially between relapsing-remitting MS (RRMS) and its advanced form, secondary progressive MS (SPMS), through advanced analysis of diffusion magnetic resonance imaging (MRI) and image texture. Methods A total of 20 patients with RRMS and nine patients with SPMS from two datasets underwent 3T anatomical and diffusion tensor imaging (DTI). The DTI was harmonized, augmented, and then modeled, which generated six voxel- and sub-voxel-scale measures. Texture analysis focused on T2 and FLAIR MRI, which produced two phase-based measures, namely, phase congruency and weighted mean phase. Data analysis was 3-fold, i.e., histogram analysis of whole-brain normal appearing white matter (NAWM); region of interest (ROI) analysis of NAWM and lesions within three critical white matter tracts, namely, corpus callosum, corticospinal tract, and optic radiation; and along-tract statistics. Furthermore, by calculating the z-score of core-rim pathology within lesions based on diffusion measures, we developed a novel method to define chronic active lesions and compared them between cohorts. Results Histogram features from diffusion and all but one texture measure differentiated between RRMS and SPMS. Within-tract ROI analysis detected cohort differences in both NAWM and lesions of the corpus callosum body in three measures of neurite orientation and anisotropy. Along-tract statistics detected cohort differences from multiple measures, particularly lesion extent, which increased significantly in SPMS in posterior corpus callosum and optic radiations. The number of chronic active lesions were also significantly higher (by 5-20% over z-scores 0.5 and 1.0) in SPMS than RRMS based on diffusion anisotropy, neurite content, and diameter. Conclusion Advanced diffusion MRI and texture analysis may be promising approaches for thorough understanding of brain structural changes from RRMS to SPMS, thereby providing new insight into disease development mechanisms in MS.
Collapse
Affiliation(s)
- Olayinka Oladosu
- Department of Neuroscience, Faculty of Graduate Studies, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Wei-Qiao Liu
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Lenora Brown
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Bruce G. Pike
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Luanne M. Metz
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Yunyan Zhang
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
5
|
De Stefano N, Battaglini M, Pareto D, Cortese R, Zhang J, Oesingmann N, Prados F, Rocca MA, Valsasina P, Vrenken H, Gandini Wheeler-Kingshott CAM, Filippi M, Barkhof F, Rovira À. MAGNIMS recommendations for harmonization of MRI data in MS multicenter studies. Neuroimage Clin 2022; 34:102972. [PMID: 35245791 PMCID: PMC8892169 DOI: 10.1016/j.nicl.2022.102972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/24/2022]
Abstract
Sharing data from cooperative studies is essential to develop new biomarkers in MS. Differences in MRI acquisition, analysis, storage represent a substantial constraint. We review the state of the art and developments in the harmonization of MRI. We provide recommendations to harmonize large MRI datasets in the MS field.
There is an increasing need of sharing harmonized data from large, cooperative studies as this is essential to develop new diagnostic and prognostic biomarkers. In the field of multiple sclerosis (MS), the issue has become of paramount importance due to the need to translate into the clinical setting some of the most recent MRI achievements. However, differences in MRI acquisition parameters, image analysis and data storage across sites, with their potential bias, represent a substantial constraint. This review focuses on the state of the art, recent technical advances, and desirable future developments of the harmonization of acquisition, analysis and storage of large-scale multicentre MRI data of MS cohorts. Huge efforts are currently being made to achieve all the requirements needed to provide harmonized MRI datasets in the MS field, as proper management of large imaging datasets is one of our greatest opportunities and challenges in the coming years. Recommendations based on these achievements will be provided here. Despite the advances that have been made, the complexity of these tasks requires further research by specialized academical centres, with dedicated technical and human resources. Such collective efforts involving different professional figures are of crucial importance to offer to MS patients a personalised management while minimizing consumption of resources.
Collapse
Affiliation(s)
- Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy.
| | - Marco Battaglini
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Deborah Pareto
- Section of Neuroradiology, Department of Radiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rosa Cortese
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Jian Zhang
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | | | - Ferran Prados
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Center for Medical Imaging Computing, Medical Physics and Biomedical Engineering, UCL, London, WC1V 6LJ, United Kingdom; e-Health Center, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, and Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Paola Valsasina
- Neuroimaging Research Unit, Division of Neuroscience, and Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Hugo Vrenken
- Amsterdam Neuroscience, MS Center Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam, Netherlands
| | - Claudia A M Gandini Wheeler-Kingshott
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Brain MRI 3T Research Center, C. Mondino National Neurological Institute, Pavia, Italy; Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, and Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy; Neurorehabilitation Unit, and Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Frederik Barkhof
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Center for Medical Imaging Computing, Medical Physics and Biomedical Engineering, UCL, London, WC1V 6LJ, United Kingdom; Amsterdam Neuroscience, MS Center Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam, Netherlands
| | - Àlex Rovira
- Section of Neuroradiology, Department of Radiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
6
|
Luo YQ, Liang RB, Xu SH, Pan YC, Li QY, Shu HY, Kang M, Yin P, Zhang LJ, Shao Y. Altered regional brain white matter in dry eye patients: a brain imaging study. Aging (Albany NY) 2022; 14:2805-2818. [PMID: 35332110 PMCID: PMC9004581 DOI: 10.18632/aging.203976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/15/2022] [Indexed: 12/03/2022]
Abstract
This study aimed to investigate the regional changes of brain white matter (WM) in DE patients using diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI). A total of 25 dry eye patients (PAT) and 25 healthy controls (HC) were recruited. All subjects underwent DTI and NODDI, fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), isotropic volume fraction (FISO), intra-cellular volume fraction (FICVF), and orientation dispersion index (ODI) were obtained respectively. Then complete Hospital Anxiety and Depression Scale (HADS), anxiety score (AS) or depression scores (DS) were obtained. Receiver operating characteristic (ROC) curve analysis was used to evaluate the reliability of DTI and NODDI in distinguishing the two groups. DTI revealed that PAT had lower FA in both the left superior longitudinal fasciculus (LSLF) and the corpus callosum (CC), and higher MD in the LSLF, the right posterior limb of the internal capsule and the right posterior thalamic radiation. PAT had significant AD changes in regions including the genu of the CC, the right posterior limb of internal capsule, and the right splenium of the CC. From NODDI, PAT showed increased ODI in the LSLF and increased FISO in the right splenium of the CC. FICVF showed a significant decrease in the LSLF while increased in the left anterior corona radiata and the CC. Furthermore, the average values of MD and FICVF were significantly correlated with DS and AS. Hence the results of this study suggest that there are regional changes in WM in DE patients which may contribute to further understanding of the pathological mechanism of DE.
Collapse
Affiliation(s)
- Yun-Qing Luo
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang 330006, Jiangxi, PR China
| | - Rong-Bin Liang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Medical Imaging Research Institute, Nanchang 330006, Jiangxi, PR China
| | - San-Hua Xu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Medical Imaging Research Institute, Nanchang 330006, Jiangxi, PR China
| | - Yi-Cong Pan
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Medical Imaging Research Institute, Nanchang 330006, Jiangxi, PR China
| | - Qiu-Yu Li
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Medical Imaging Research Institute, Nanchang 330006, Jiangxi, PR China
| | - Hui-Ye Shu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Medical Imaging Research Institute, Nanchang 330006, Jiangxi, PR China
| | - Min Kang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Medical Imaging Research Institute, Nanchang 330006, Jiangxi, PR China
| | - Pin Yin
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Medical Imaging Research Institute, Nanchang 330006, Jiangxi, PR China
| | - Li-Juan Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Medical Imaging Research Institute, Nanchang 330006, Jiangxi, PR China
| | - Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Medical Imaging Research Institute, Nanchang 330006, Jiangxi, PR China
| |
Collapse
|
7
|
Hori M, Maekawa T, Kamiya K, Hagiwara A, Goto M, Takemura MY, Fujita S, Andica C, Kamagata K, Cohen-Adad J, Aoki S. Advanced Diffusion MR Imaging for Multiple Sclerosis in the Brain and Spinal Cord. Magn Reson Med Sci 2022; 21:58-70. [PMID: 35173096 PMCID: PMC9199983 DOI: 10.2463/mrms.rev.2021-0091] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Diffusion tensor imaging (DTI) has been established its usefulness in evaluating normal-appearing white matter (NAWM) and other lesions that are difficult to evaluate with routine clinical MRI in the evaluation of the brain and spinal cord lesions in multiple sclerosis (MS), a demyelinating disease. With the recent advances in the software and hardware of MRI systems, increasingly complex and sophisticated MRI and analysis methods, such as q-space imaging, diffusional kurtosis imaging, neurite orientation dispersion and density imaging, white matter tract integrity, and multiple diffusion encoding, referred to as advanced diffusion MRI, have been proposed. These are capable of capturing in vivo microstructural changes in the brain and spinal cord in normal and pathological states in greater detail than DTI. This paper reviews the current status of recent advanced diffusion MRI for assessing MS in vivo as part of an issue celebrating two decades of magnetic resonance in medical sciences (MRMS), an official journal of the Japanese Society of Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Masaaki Hori
- Department of Radiology, Toho University Omori Medical Center.,Department of Radiology, Juntendo University School of Medicine
| | - Tomoko Maekawa
- Department of Radiology, Juntendo University School of Medicine
| | - Kouhei Kamiya
- Department of Radiology, Toho University Omori Medical Center.,Department of Radiology, Juntendo University School of Medicine
| | | | - Masami Goto
- Department of Radiological Technology, Faculty of Health Science, Juntendo University
| | | | - Shohei Fujita
- Department of Radiology, Juntendo University School of Medicine
| | | | - Koji Kamagata
- Department of Radiology, Juntendo University School of Medicine
| | | | - Shigeki Aoki
- Department of Radiology, Juntendo University School of Medicine
| |
Collapse
|
8
|
Dzefi-Tettey K, Edzie EM, Brakohiapa E, Kekessie K, Piersson A, Acheampong F, Gorleku P, Nixon H, Asemah A, Kusodzi H. Seizures in children: Spectrum of findings on brain magnetic resonance imaging at the Korle Bu Teaching Hospital, Ghana. WEST AFRICAN JOURNAL OF RADIOLOGY 2022. [DOI: 10.4103/wajr.wajr_11_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|