1
|
Ingravallo F, Bassi C, Zenesini C, Vignatelli L, Pagotto U, Pizza F, Plazzi G. Sex disparities in clinical features and burden of narcolepsy type 1. J Sleep Res 2024; 33:e14157. [PMID: 38318948 DOI: 10.1111/jsr.14157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/28/2023] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
To investigate potential sex-related differences in patients with narcolepsy type 1, we carried out an analysis of baseline data from 93 women and 89 men with narcolepsy type 1 who participated in the TElemedicine for NARcolepsy (TENAR) trial. The following data were considered: sociodemographics; diagnostic (disease history, polysomnography, orexin, human leukocyte antigen) and clinical features, including sleepiness (Epworth Sleepiness Scale), cataplexy and other narcolepsy symptoms; disease severity (Narcolepsy Severity Scale); pharmacological treatment; depressive symptoms (Beck Depression Inventory); and self-reported relevance of eight narcolepsy-related issues. We found that, compared with men, significantly more women reported automatic behaviours (55.4% versus 40%) and had higher Epworth Sleepiness Scale (median 10 versus 9) and Beck Depression Inventory scores (median 10.5 versus 5), and there was a trend for a higher Narcolepsy Severity Scale total score in women (median 19 versus 18, p = 0.057). More women than men were officially recognized as having a disability (38% versus 22.5%) and considered 5/8 narcolepsy-related issues investigated as a relevant problem. More severe sleepiness and a greater narcolepsy-related burden in women could mirror sex differences present in the general population, or may be related to suboptimal management of narcolepsy type 1 or to more severe depressive symptoms in women. Future studies and guidelines should address these aspects.
Collapse
Affiliation(s)
- Francesca Ingravallo
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Chiara Bassi
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Corrado Zenesini
- IRCCS Istituto delle Scienze Neurologiche di Bologna (ISNB), Bologna, Italy
| | - Luca Vignatelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna (ISNB), Bologna, Italy
| | - Uberto Pagotto
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy
- Division of Endocrinology and Diabetes Prevention and Care, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), University Hospital of Bologna, Bologna, Italy
| | - Fabio Pizza
- IRCCS Istituto delle Scienze Neurologiche di Bologna (ISNB), Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Giuseppe Plazzi
- IRCCS Istituto delle Scienze Neurologiche di Bologna (ISNB), Bologna, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
2
|
Zhang J, Jin K, Chen B, Cheng S, Jin J, Yang X, Lu J, Song Q. Sex-dimorphic functions of orexin in neuropsychiatric disorders. Heliyon 2024; 10:e36402. [PMID: 39253145 PMCID: PMC11382083 DOI: 10.1016/j.heliyon.2024.e36402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
The orexin system regulates a variety of physiological functions, including the sleep-wake cycle, addiction, foraging behavior, stress and cognitive functioning. Orexin levels in central and peripheral are related to the pathogenesis of many diseases, most notably the narcolepsy, eating disorders, stress-related psychiatric disorders, and neurodegenerative diseases. Recently, it has been reported that the orexin system is distinctly sexually dimorphic, and is strongly associated with neuropsychiatric disorders. In this review, we analyzed advancements in the sex differences in the orexin system and their connection to psychoneurological conditions. Considering the scarcity of research in this domain, more research is imperative to reveal the underlying mechanisms.
Collapse
Affiliation(s)
- Jinghan Zhang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Kangyu Jin
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China
| | - Bing Chen
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China
| | - Shangping Cheng
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China
| | - Jinfan Jin
- Department of Psychiatry, Lishui Second People's Hospital, Lishui, Zhejiang, 323000, China
| | - Xiaolan Yang
- Department of Psychiatry, Lishui Second People's Hospital, Lishui, Zhejiang, 323000, China
| | - Jing Lu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China
| | - Qinghai Song
- Department of Psychiatry, Lishui Second People's Hospital, Lishui, Zhejiang, 323000, China
| |
Collapse
|
3
|
Perger E, Silvestri R, Bonanni E, Di Perri MC, Fernandes M, Provini F, Zoccoli G, Lombardi C. Gender medicine and sleep disorders: from basic science to clinical research. Front Neurol 2024; 15:1392489. [PMID: 39050129 PMCID: PMC11267506 DOI: 10.3389/fneur.2024.1392489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Several pivotal differences in sleep and sleep disorders are recognized between women and men. This is not only due to changes in hormonal balance during women's reproductive life, such as in pregnancy and menopause. Women are more likely to report insomnia and non-specific symptoms of apneas, such as fatigue or mood disturbance, compared to men. Thus, it is important for clinicians and researchers to take sex and gender differences into account when addressing sleep disorders in order to acknowledge the biology unique to women. We present a narrative review that delves into the primary sleep disorders, starting from basic science, to explore the impact of gender differences on sleep and the current status of research on women's sleep health.
Collapse
Affiliation(s)
- Elisa Perger
- Istituto Auxologico Italiano, IRCCS, Sleep Disorders Center and Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, Milan, Italy
| | - Rosalia Silvestri
- Sleep Medicine Center, Neurophysiopathology and Movement Disorders Unit, Department of Clinical and Experimental Medicine, University of Messina, AOU “G. Martino”, Messina, Italy
| | - Enrica Bonanni
- Sleep Disorder Center, Neurology Unit, Azienda Ospedaliero-Universitaria Pisana and Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Maria Caterina Di Perri
- Sleep Medicine Center, Neurophysiopathology and Movement Disorders Unit, Department of Clinical and Experimental Medicine, University of Messina, AOU “G. Martino”, Messina, Italy
| | - Mariana Fernandes
- Epilepsy Centre, Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
- Neurology Unit, University Hospital of Rome “Tor Vergata”, Rome, Italy
| | - Federica Provini
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Giovanna Zoccoli
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Carolina Lombardi
- Istituto Auxologico Italiano, IRCCS, Sleep Disorders Center and Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, Milan, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
4
|
Sex-dependent role of orexin deficiency in feeding behavior and affective state of mice following intermittent access to a Western diet - Implications for binge-like eating behavior. Physiol Behav 2023; 260:114069. [PMID: 36572152 DOI: 10.1016/j.physbeh.2022.114069] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/02/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
Binge eating disorder is a debilitating disease characterized by recurrent episodes of excessive food consumption and associated with psychiatric comorbidities. Despite a growing body of research investigating the neurobiological underpinnings of eating disorders, specific treatments are lacking. Given its fundamental role in feeding behaviors, we investigated the role of the orexin (hypocretin) neuropeptide system in binge-like eating and associated phenotypes. Specifically, we submitted female and male orexin-deficient mice to a paradigm of intermittent access (once weekly for 24 h) to a Western diet (WD) to induce binge-like eating. Additionally, we measured their anxiety-like behavior and plasma corticosterone levels. All mice showed binge-like eating in response to the intermittent WD access, but females did so to a greater extent than males. While orexin deficiency did not affect binge-like eating in this paradigm, we found that female orexin-deficient mice generally weighed more, and they expressed increased hypophagia and stress levels compared to wild-type mice following binge-like eating episodes. These detrimental effects of orexin deficiency were marginal or absent in males. Moreover, male wild-type mice expressed post-binge anxiety, but orexin-deficient mice did not. In conclusion, these results extend our knowledge of orexin's role in dysregulated eating and associated negative affective states, and contribute to the growing body of evidence indicating a sexual dimorphism of the orexin system. Considering that many human disorders, and especially eating disorders, have a strong sex bias, our findings further emphasize the importance of testing both female and male subjects.
Collapse
|
5
|
Schmidt MH, Bassetti CLA. Gender differences in narcolepsy: What are recent findings telling us? Sleep 2022; 45:6595348. [PMID: 35640640 DOI: 10.1093/sleep/zsac126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 05/24/2022] [Indexed: 12/14/2022] Open
Abstract
Three papers currently published in SLEEP using two different mouse models of narcolepsy, including either Hcrt-tTa;TetO diptheria toxin-A (DTA) or Hypocretin knock-out (Hcrt-KO) mice, suggest important gender differences in narcolepsy expression. Specifically, these recent data corroborate previous findings in mice demonstrating that females show more cataplexy events and more total cataplexy expression than males. Moreover, in the neurotoxic DTA mouse model, females show earlier onset of cataplexy expression than males during active Hcrt cell loss. Finally, females show a doubling of cataplexy during estrous compared to other phases of the estrous cycle. These findings are reviewed in the broader context of prior published literature, including reported gender differences in Hcrt expression and hormonal influences on sleep and wakefulness. Although similar findings have not been reported in humans, a systematic evaluation of gender differences in human narcolepsy has yet to be performed. Taken together, these animal data suggest that more research exploring gender differences in human narcolepsy is warranted.
Collapse
Affiliation(s)
- Markus H Schmidt
- Department of Neurology, Inselspital, University Hospital Bern, Switzerland.,Ohio Sleep Medicine Institute, 4975 Bradenton Ave., Dublin, Ohio, 43017, Switzerland
| | | |
Collapse
|
6
|
Arthaud S, Villalba M, Blondet C, Morel AL, Peyron C. Effects of sex and estrous cycle on sleep and cataplexy in narcoleptic mice. Sleep 2022; 45:6569391. [DOI: 10.1093/sleep/zsac089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 03/10/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Narcolepsy type 1 (NT1) is a rare neurology disorder caused by the loss of orexin/hypocretin neurons. NT1 is characterized by excessive daytime sleepiness, sleep and wake fragmentation, and cataplexy. These symptoms have been equally described in both women and men, although influences of gender and hormonal cycles have been poorly studied. Unfortunately, most studies with NT1 preclinical mouse models, use only male mice to limit potential variations due to the hormonal cycle. Therefore, whether gender and/or hormonal cycles impact the expression of narcoleptic symptoms remains to be determined. To address this question, we analyzed vigilance states and cataplexy in 20 female and 17 male adult orexin knock-out narcoleptic mice, with half of the females being recorded over multiple days. Mice had access to chocolate to encourage the occurrence of cataplectic episodes. A vaginal smear was performed daily in female mice to establish the state of the estrous cycle (EC) of the previous recorded night. We found that vigilance states were more fragmented in males than females, and that females had less paradoxical sleep (p = 0.0315) but more cataplexy (p = 0.0375). Interestingly, sleep and wake features were unchanged across the female EC, but the total amount of cataplexy was doubled during estrus compared to other stages of the cycle (p = 0.001), due to a large increase in the number of cataplexy episodes (p = 0.0002). Altogether these data highlight sex differences in the expression of narcolepsy symptoms in orexin knock-out mice. Notably, cataplexy occurrence was greatly influenced by estrous cycle. Whether it is due to hormonal changes would need to be further explored.
Collapse
Affiliation(s)
- Sébastien Arthaud
- Center for Research in Neuroscience of Lyon (CRNL), SLEEP Team, CNRS UMR 5292, INSERM U1028, Centre Hospitalier le Vinatier—Bâtiment 462—Neurocampus Michel Jouvet , Bron Cedex , France
- University Lyon1 , Lyon , France
| | - Manon Villalba
- Center for Research in Neuroscience of Lyon (CRNL), SLEEP Team, CNRS UMR 5292, INSERM U1028, Centre Hospitalier le Vinatier—Bâtiment 462—Neurocampus Michel Jouvet , Bron Cedex , France
- University Lyon1 , Lyon , France
| | | | - Anne-Laure Morel
- Center for Research in Neuroscience of Lyon (CRNL), SLEEP Team, CNRS UMR 5292, INSERM U1028, Centre Hospitalier le Vinatier—Bâtiment 462—Neurocampus Michel Jouvet , Bron Cedex , France
- University Lyon1 , Lyon , France
| | - Christelle Peyron
- Center for Research in Neuroscience of Lyon (CRNL), SLEEP Team, CNRS UMR 5292, INSERM U1028, Centre Hospitalier le Vinatier—Bâtiment 462—Neurocampus Michel Jouvet , Bron Cedex , France
- University Lyon1 , Lyon , France
| |
Collapse
|
7
|
Ramser A, Dridi S. Avian Orexin: Feed Intake Regulator or Something Else? Vet Sci 2022; 9:vetsci9030112. [PMID: 35324840 PMCID: PMC8950792 DOI: 10.3390/vetsci9030112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
Originally named for its expression in the posterior hypothalamus in rats and after the Greek word for “appetite”, hypocretin, or orexin, as it is known today, gained notoriety as a neuropeptide regulating feeding behavior, energy homeostasis, and sleep. Orexin has been proven to be involved in both central and peripheral control of neuroendocrine functions, energy balance, and metabolism. Since its discovery, its ability to increase appetite as well as regulate feeding behavior has been widely explored in mammalian food production animals such as cattle, pigs, and sheep. It is also linked to neurological disorders, leading to its intensive investigation in humans regarding narcolepsy, depression, and Alzheimer’s disease. However, in non-mammalian species, research is limited. In the case of avian species, orexin has been shown to have no central effect on feed-intake, however it was found to be involved in muscle energy metabolism and hepatic lipogenesis. This review provides current knowledge and summarizes orexin’s physiological roles in livestock and pinpoints the present lacuna to facilitate further investigations.
Collapse
Affiliation(s)
- Alison Ramser
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
- Cell and Molecular Biology Program, Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
- Cell and Molecular Biology Program, Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
- Correspondence: ; Tel.: +1-(479)-575-2583; Fax: +1-(479)-575-7139
| |
Collapse
|
8
|
Sun Y, Tisdale R, Park S, Ma SC, Heu J, Haire M, Allocca G, Yamanaka A, Morairty SR, Kilduff TS. The development of sleep/wake disruption and cataplexy as hypocretin/orexin neurons degenerate in male vs. female Orexin/tTA; TetO-DTA Mice. Sleep 2022; 45:6532492. [PMID: 35182424 PMCID: PMC9742901 DOI: 10.1093/sleep/zsac039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/23/2021] [Indexed: 01/10/2023] Open
Abstract
Narcolepsy Type 1 (NT1), a sleep disorder with similar prevalence in both sexes, is thought to be due to loss of the hypocretin/orexin (Hcrt) neurons. Several transgenic strains have been created to model this disorder and are increasingly being used for preclinical drug development and basic science studies, yet most studies have solely used male mice. We compared the development of narcoleptic symptomatology in male vs. female orexin-tTA; TetO-DTA mice, a model in which Hcrt neuron degeneration can be initiated by removal of doxycycline (DOX) from the diet. EEG, EMG, subcutaneous temperature, gross motor activity, and video recordings were conducted for 24-h at baseline and 1, 2, 4, and 6 weeks after DOX removal. Female DTA mice exhibited cataplexy, the pathognomonic symptom of NT1, by Week 1 in the DOX(-) condition but cataplexy was not consistently present in males until Week 2. By Week 2, both sexes showed an impaired ability to sustain long wake bouts during the active period, the murine equivalent of excessive daytime sleepiness in NT1. Subcutaneous temperature appeared to be regulated at lower levels in both sexes as the Hcrt neurons degenerated. During degeneration, both sexes also exhibited the "Delta State", characterized by sudden cessation of activity, high delta activity in the EEG, maintenance of muscle tone and posture, and the absence of phasic EMG activity. Since the phenotypes of the two sexes were indistinguishable by Week 6, we conclude that both sexes can be safely combined in future studies to reduce cost and animal use.
Collapse
Affiliation(s)
- Yu Sun
- Biosciences Division, SRI International, Menlo Park, CA, USA
| | | | | | - Shun-Chieh Ma
- Biosciences Division, SRI International, Menlo Park, CA, USA
| | - Jasmine Heu
- Biosciences Division, SRI International, Menlo Park, CA, USA
| | - Meghan Haire
- Biosciences Division, SRI International, Menlo Park, CA, USA
| | | | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Japan,Department of Neural Regulation, Nagoya University Graduate School of Medicine, Japan
| | | | - Thomas S Kilduff
- Corresponding author. Thomas S. Kilduff, Center for Neuroscience, Biosciences Division SRI International, 333 Ravenswood Ave Menlo Park, CA 94025 USA.
| |
Collapse
|
9
|
Zhang Z, Dauvilliers Y, Plazzi G, Mayer G, Lammers GJ, Santamaria J, Partinen M, Overeem S, Del Rio Villegas R, Sonka K, Peraita-Adrados R, Heinzer R, Wierzbicka A, Högl B, Manconi M, Feketeova E, da Silva AM, Bušková J, Bassetti CLA, Barateau L, Pizza F, Antelmi E, Gool JK, Fronczek R, Gaig C, Khatami R. Idling for Decades: A European Study on Risk Factors Associated with the Delay Before a Narcolepsy Diagnosis. Nat Sci Sleep 2022; 14:1031-1047. [PMID: 35669411 PMCID: PMC9166906 DOI: 10.2147/nss.s359980] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/03/2022] [Indexed: 01/31/2023] Open
Abstract
PURPOSE Narcolepsy type-1 (NT1) is a rare chronic neurological sleep disorder with excessive daytime sleepiness (EDS) as usual first and cataplexy as pathognomonic symptom. Shortening the NT1 diagnostic delay is the key to reduce disease burden and related low quality of life. Here we investigated the changes of diagnostic delay over the diagnostic years (1990-2018) and the factors associated with the delay in Europe. PATIENTS AND METHODS We analyzed 580 NT1 patients (male: 325, female: 255) from 12 European countries using the European Narcolepsy Network database. We combined machine learning and linear mixed-effect regression to identify factors associated with the delay. RESULTS The mean age at EDS onset and diagnosis of our patients was 20.9±11.8 (mean ± standard deviation) and 30.5±14.9 years old, respectively. Their mean and median diagnostic delay was 9.7±11.5 and 5.3 (interquartile range: 1.7-13.2 years) years, respectively. We did not find significant differences in the diagnostic delay over years in either the whole dataset or in individual countries, although the delay showed significant differences in various countries. The number of patients with short (≤2-year) and long (≥13-year) diagnostic delay equally increased over decades, suggesting that subgroups of NT1 patients with variable disease progression may co-exist. Younger age at cataplexy onset, longer interval between EDS and cataplexy onsets, lower cataplexy frequency, shorter duration of irresistible daytime sleep, lower daytime REM sleep propensity, and being female are associated with longer diagnostic delay. CONCLUSION Our findings contrast the results of previous studies reporting shorter delay over time which is confounded by calendar year, because they characterized the changes in diagnostic delay over the symptom onset year. Our study indicates that new strategies such as increasing media attention/awareness and developing new biomarkers are needed to better detect EDS, cataplexy, and changes of nocturnal sleep in narcolepsy, in order to shorten the diagnostic interval.
Collapse
Affiliation(s)
- Zhongxing Zhang
- Center for Sleep Medicine, Sleep Research and Epileptology, Klinik Barmelweid AG, Barmelweid, Aargau, Switzerland
| | - Yves Dauvilliers
- Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, Montpellier, France.,National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France.,Institute for Neurosciences of Montpellier INM, Univ Montpellier, INSERM, Montpellier, France
| | - Giuseppe Plazzi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Geert Mayer
- Neurology Department, Hephata Klinik, Schwalmstadt, Germany
| | - Gert Jan Lammers
- Sleep Wake Center SEIN Heemstede, Stichting Epilepsie Instellingen Nederland, Heemstede, the Netherlands.,Department of Neurology and Clinical Neurophysiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Joan Santamaria
- Neurology Service, Institut de Neurociències Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Markku Partinen
- Helsinki Sleep Clinic, Vitalmed Research Center, Helsinki, Finland
| | - Sebastiaan Overeem
- Sleep Medicine Center Kempenhaeghe, Heeze, the Netherlands.,Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Rafael Del Rio Villegas
- Neurophysiology and Sleep Disorders Unit, Hospital Vithas Nuestra Señora de América, Madrid, Spain
| | - Karel Sonka
- Neurology Department and Centre of Clinical Neurosciences, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Rosa Peraita-Adrados
- Sleep and Epilepsy Unit - Clinical Neurophysiology Service, University General Hospital Gregorio Marañón, Research Institute Gregorio Marañón, University Complutense of Madrid, Madrid, Spain
| | - Raphaël Heinzer
- Center for Investigation and Research in Sleep, Lausanne University Hospital, Lausanne, Vaud, Switzerland
| | - Aleksandra Wierzbicka
- Department of Clinical Neurophysiology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Birgit Högl
- Neurology Department, Sleep Disorders Clinic, Innsbruck Medical University, Innsbruck, Austria
| | - Mauro Manconi
- Neurology Department, EOC, Ospedale Regionale di Lugano, Lugano, Ticino, Switzerland
| | - Eva Feketeova
- Neurology Department, Medical Faculty of P. J. Safarik University, University Hospital of L. Pasteur Kosice, Kosice, Slovak Republic
| | - Antonio Martins da Silva
- Serviço de Neurofisiologia, Hospital Santo António/Centro Hospitalar Universitário do Porto and UMIB-Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Jitka Bušková
- Department of Sleep Medicine, National Institute of Mental Health, Klecany, Czech Republic
| | - Claudio L A Bassetti
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department of Neurology, Sechenov First Moscow State University, Moscow, Russia
| | - Lucie Barateau
- Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, Montpellier, France.,National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France.,Institute for Neurosciences of Montpellier INM, Univ Montpellier, INSERM, Montpellier, France
| | - Fabio Pizza
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Elena Antelmi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Jari K Gool
- Sleep Wake Center SEIN Heemstede, Stichting Epilepsie Instellingen Nederland, Heemstede, the Netherlands.,Department of Neurology and Clinical Neurophysiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Rolf Fronczek
- Sleep Wake Center SEIN Heemstede, Stichting Epilepsie Instellingen Nederland, Heemstede, the Netherlands.,Department of Neurology and Clinical Neurophysiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Carles Gaig
- Neurology Service, Institut de Neurociències Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Ramin Khatami
- Center for Sleep Medicine, Sleep Research and Epileptology, Klinik Barmelweid AG, Barmelweid, Aargau, Switzerland.,Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
10
|
Xu YX, Liu GY, Jiang Q, Bi HQ, Wang SC, Zhang PP, Gao CB, Chen GH, Cheng WH, Chen GJ, Zhu DF, Zhong MK, Xu Q. Effect of Restricted Feeding on Metabolic Health and Sleep-Wake Rhythms in Aging Mice. Front Neurosci 2021; 15:745227. [PMID: 34557073 PMCID: PMC8453873 DOI: 10.3389/fnins.2021.745227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/17/2021] [Indexed: 12/25/2022] Open
Abstract
Aging, an irreversible and unavoidable physiological process in all organisms, is often accompanied by obesity, diabetes, cardiovascular diseases, sleep disorders, and fatigue. Thus, older adults are more likely to experience metabolic symptoms and sleep disturbances than are younger adults. Restricted feeding (RF) is a dietary regimen aimed at improving metabolic health and extending longevity, as well as reorganizing sleep-wake cycles. However, the potential of RF to improve metabolic health and sleep quality in older adults who are known to show a tendency toward increased weight gain and decreased sleep is unknown. To elucidate this issue, aged mice were assigned to an RF protocol during the active phase for 2 h per day for 2 weeks. Sleep-wake cycles were recorded during the RF regime in RF group and control mice. At the end of this period, body weight and blood biochemistry profiles, including blood glucose, cholesterol, and enzyme activity, in addition to dopamine concentrations in the brain, were measured in the RF group and age-matched controls. RF for 2 weeks improved the metabolic health of aged mice by reducing their body weights and blood glucose and cholesterol levels. At the beginning of the RF regime, sleep decreased in the dark period but not in the light period. After stable food entrainment was achieved (7 days post-RF commencement), the amount of time spent in wakefulness during the light period dramatically increased for 2 h before food availability, thereby increasing the mean duration of awake episodes and decreasing the number of wakefulness episodes. There was no significant difference in the sleep-wake time during the dark period in the RF group, with similar total amounts of wakefulness and sleep in a 24-h period to those of the controls. During the RF regime, dopamine levels in the midbrain increased in the RF group, pointing to its potential as the mechanism mediating metabolic symptoms and sleep-wake regulation during RF. In conclusion, our study suggested that RF during aging might prohibit or delay the onset of age-related diseases by improving metabolic health, without having a severe deleterious effect on sleep.
Collapse
Affiliation(s)
- Yong-Xia Xu
- Department of Geriatric Endocrinology, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Guo-Ying Liu
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Qian Jiang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Han-Qi Bi
- Department of Geriatric Endocrinology, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shi-Chan Wang
- Department of Geriatric Endocrinology, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ping-Ping Zhang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Chao-Bing Gao
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Gui-Hai Chen
- Department of Sleep Disorders and Neurology, The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Wen-Hui Cheng
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Laboratory Animal Research Center, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Guan-Jun Chen
- Center for Scientific Research, Anhui Medical University, Hefei, China
| | - De-Fa Zhu
- Department of Geriatric Endocrinology, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ming-Kui Zhong
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Qi Xu
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|