1
|
Alshehri RS, Abuzinadah AR, Alrawaili MS, Alotaibi MK, Alsufyani HA, Alshanketi RM, AlShareef AA. A Review of Biomarkers of Amyotrophic Lateral Sclerosis: A Pathophysiologic Approach. Int J Mol Sci 2024; 25:10900. [PMID: 39456682 PMCID: PMC11507293 DOI: 10.3390/ijms252010900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive degeneration of upper and lower motor neurons. The heterogeneous nature of ALS at the clinical, genetic, and pathological levels makes it challenging to develop diagnostic and prognostic tools that fit all disease phenotypes. Limitations associated with the functional scales and the qualitative nature of mainstay electrophysiological testing prompt the investigation of more objective quantitative assessment. Biofluid biomarkers have the potential to fill that gap by providing evidence of a disease process potentially early in the disease, its progression, and its response to therapy. In contrast to other neurodegenerative diseases, no biomarker has yet been validated in clinical use for ALS. Several fluid biomarkers have been investigated in clinical studies in ALS. Biofluid biomarkers reflect the different pathophysiological processes, from protein aggregation to muscle denervation. This review takes a pathophysiologic approach to summarizing the findings of clinical studies utilizing quantitative biofluid biomarkers in ALS, discusses the utility and shortcomings of each biomarker, and highlights the superiority of neurofilaments as biomarkers of neurodegeneration over other candidate biomarkers.
Collapse
Affiliation(s)
- Rawiah S. Alshehri
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (R.S.A.); (H.A.A.)
| | - Ahmad R. Abuzinadah
- Department of Neurology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (M.S.A.); (A.A.A.)
- Neuromuscular Medicine Unit, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Moafaq S. Alrawaili
- Department of Neurology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (M.S.A.); (A.A.A.)
- Neuromuscular Medicine Unit, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Muteb K. Alotaibi
- Neurology Department, Prince Sultan Military Medical City, Riyadh 12233, Saudi Arabia;
| | - Hadeel A. Alsufyani
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (R.S.A.); (H.A.A.)
| | - Rajaa M. Alshanketi
- Internal Medicine Department, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 22252, Saudi Arabia;
| | - Aysha A. AlShareef
- Department of Neurology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (M.S.A.); (A.A.A.)
- Neuromuscular Medicine Unit, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| |
Collapse
|
2
|
Tian X, Zhao Y, Zhu Y, Cui M. Association between elevated blood-brain barrier permeability and the risk of progressive cognitive decline: A longitudinal study. Arch Gerontol Geriatr 2024; 124:105441. [PMID: 38643666 DOI: 10.1016/j.archger.2024.105441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/30/2024] [Accepted: 04/08/2024] [Indexed: 04/23/2024]
Abstract
BACKGROUND The breakdown of the blood-brain barrier (BBB) is intricately linked to the onset and advancement of cognitive impairment and dementia. This investigation explores the correlation between blood-brain barrier permeability, assessed through the cerebrospinal fluid/serum albumin ratio (QAlb), in a clinical cohort and the evolution of cognitive decline. METHODS This prospective observational cohort study included 295 participants. Cognitive decline progression was characterized by an escalation in the overall deterioration scale and/or clinical dementia rating scores. The investigation delves into the correlation between blood-brain barrier permeability and the advancement of cognitive impairment among patients. RESULTS The APOE 4 allele and diabetes mellitus among individuals exhibited increased BBB permeability (P < 0.05). Moreover, AD patients exhibited the highest QAlb levels, signifying elevated BBB permeability compared to individuals with MCI and SCD (P < 0.05). After mean 17 months following up, 117 patients (51.31 %) were identified as experiencing cognitive decline progression, and we found that only AD diagnosis, CDR, and QAlb (All P < 0.05) were significant predictors of cognitive decline progression. CONCLUSION Our study emphasizes the clinical relevance of QAlb in detecting individuals with an elevated risk of cognitive decline. It suggests that heightened BBB permeability could contribute to clinical deterioration and serves as a plausible therapeutic target.
Collapse
Affiliation(s)
- Xiaorui Tian
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou university, Zhengzhou, China.
| | - Yuanzheng Zhao
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou university, Zhengzhou, China
| | - Yinghui Zhu
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou university, Zhengzhou, China
| | - Ming Cui
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou university, Zhengzhou, China
| |
Collapse
|
3
|
Wasielewska JM, Chaves JCS, Cabral-da-Silva MC, Pecoraro M, Viljoen SJ, Nguyen TH, Bella VL, Oikari LE, Ooi L, White AR. A patient-derived amyotrophic lateral sclerosis blood-brain barrier model for focused ultrasound-mediated anti-TDP-43 antibody delivery. Fluids Barriers CNS 2024; 21:65. [PMID: 39138578 PMCID: PMC11323367 DOI: 10.1186/s12987-024-00565-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a rapidly progressing neurodegenerative disorder with minimally effective treatment options. An important hurdle in ALS drug development is the non-invasive therapeutic access to the motor cortex currently limited by the presence of the blood-brain barrier (BBB). Focused ultrasound and microbubble (FUS+ MB) treatment is an emerging technology that was successfully used in ALS patients to temporarily open the cortical BBB. However, FUS+ MB-mediated drug delivery across ALS patients' BBB has not yet been reported. Similarly, the effects of FUS+ MB on human ALS BBB cells remain unexplored. METHODS Here we established the first FUS+ MB-compatible, fully-human ALS patient-cell-derived BBB model based on induced brain endothelial-like cells (iBECs) to study anti-TDP-43 antibody delivery and FUS+ MB bioeffects in vitro. RESULTS Generated ALS iBECs recapitulated disease-specific hallmarks of BBB pathology, including reduced BBB integrity and permeability, and TDP-43 proteinopathy. The results also identified differences between sporadic ALS and familial (C9orf72 expansion carrying) ALS iBECs reflecting patient heterogeneity associated with disease subgroups. Studies in these models revealed successful ALS iBEC monolayer opening in vitro with no adverse cellular effects of FUS+ MB as reflected by lactate dehydrogenase (LDH) release viability assay and the lack of visible monolayer damage or morphology change in FUS+ MB treated cells. This was accompanied by the molecular bioeffects of FUS+ MB in ALS iBECs including changes in expression of tight and adherens junction markers, and drug transporter and inflammatory mediators, with sporadic and C9orf72 ALS iBECs generating transient specific responses. Additionally, we demonstrated an effective increase in the delivery of anti-TDP-43 antibody with FUS+ MB in C9orf72 (2.7-fold) and sporadic (1.9-fold) ALS iBECs providing the first proof-of-concept evidence that FUS+ MB can be used to enhance the permeability of large molecule therapeutics across the BBB in a human ALS in vitro model. CONCLUSIONS Together, this study describes the first characterisation of cellular and molecular responses of ALS iBECs to FUS+ MB and provides a fully-human platform for FUS+ MB-mediated drug delivery screening on an ALS BBB in vitro model.
Collapse
Affiliation(s)
- Joanna M Wasielewska
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, St. Lucia, QLD, Australia
| | - Juliana C S Chaves
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Mauricio Castro Cabral-da-Silva
- Molecular Horizons, School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, NSW, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute (MCRI), Parkville, VIC, Australia
| | - Martina Pecoraro
- ALS Clinical Research Centre and Laboratory of Neurochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnosis, University of Palermo, Palermo, Italy
| | - Stephani J Viljoen
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Science, University of Queensland, St. Lucia, QLD, Australia
| | - Tam Hong Nguyen
- Flow Cytometry and Imaging Facility, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Vincenzo La Bella
- ALS Clinical Research Centre and Laboratory of Neurochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnosis, University of Palermo, Palermo, Italy
| | - Lotta E Oikari
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Lezanne Ooi
- Molecular Horizons, School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, NSW, Australia
| | - Anthony R White
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia.
- School of Biomedical Science, University of Queensland, St. Lucia, QLD, Australia.
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
4
|
Aragón-González A, Shaw AC, Kok JR, Roussel FS, Santos Souza CD, Granger SM, Vetter T, de Diego Y, Meyer KC, Beal SN, Shaw PJ, Ferraiuolo L. C9ORF72 patient-derived endothelial cells drive blood-brain barrier disruption and contribute to neurotoxicity. Fluids Barriers CNS 2024; 21:34. [PMID: 38605366 PMCID: PMC11007886 DOI: 10.1186/s12987-024-00528-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/02/2024] [Indexed: 04/13/2024] Open
Abstract
The blood-brain barrier (BBB) serves as a highly intricate and dynamic interface connecting the brain and the bloodstream, playing a vital role in maintaining brain homeostasis. BBB dysfunction has been associated with multiple neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS); however, the role of the BBB in neurodegeneration is understudied. We developed an ALS patient-derived model of the BBB by using cells derived from 5 patient donors carrying C9ORF72 mutations. Brain microvascular endothelial-like cells (BMEC-like cells) derived from C9ORF72-ALS patients showed altered gene expression, compromised barrier integrity, and increased P-glycoprotein transporter activity. In addition, mitochondrial metabolic tests demonstrated that C9ORF72-ALS BMECs display a significant decrease in basal glycolysis accompanied by increased basal and ATP-linked respiration. Moreover, our study reveals that C9-ALS derived astrocytes can further affect BMECs function and affect the expression of the glucose transporter Glut-1. Finally, C9ORF72 patient-derived BMECs form leaky barriers through a cell-autonomous mechanism and have neurotoxic properties towards motor neurons.
Collapse
Affiliation(s)
- Ana Aragón-González
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385 Glossop Road, S10 2HQ, Sheffield, UK.
- Facultad de Medicina, Universidad de Málaga, 29010, Malaga, Spain.
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, OH 43205, Columbus, USA.
| | - Allan C Shaw
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385 Glossop Road, S10 2HQ, Sheffield, UK
| | - Jannigje R Kok
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385 Glossop Road, S10 2HQ, Sheffield, UK
| | - Florence S Roussel
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, OH 43205, Columbus, USA
| | - Cleide Dos Santos Souza
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385 Glossop Road, S10 2HQ, Sheffield, UK
| | - Sarah M Granger
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385 Glossop Road, S10 2HQ, Sheffield, UK
| | - Tatyana Vetter
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, OH 43205, Columbus, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Yolanda de Diego
- Research Group PAIDI CTS-546, Institute of Biomedical Research of Málaga (IBIMA), 29010, Malaga, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Campus Rabanales, Cordoba, Spain
| | - Kathrin C Meyer
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, OH 43205, Columbus, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Selina N Beal
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385 Glossop Road, S10 2HQ, Sheffield, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385 Glossop Road, S10 2HQ, Sheffield, UK
- NIHR Sheffield Biomedical Research Centre, Sheffield Teaching Hospitals NHS Foundation Trust, Glossop Road, Sheffield, UK
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385 Glossop Road, S10 2HQ, Sheffield, UK.
| |
Collapse
|
5
|
Terrabuio E, Zenaro E, Constantin G. The role of the CD8+ T cell compartment in ageing and neurodegenerative disorders. Front Immunol 2023; 14:1233870. [PMID: 37575227 PMCID: PMC10416633 DOI: 10.3389/fimmu.2023.1233870] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023] Open
Abstract
CD8+ lymphocytes are adaptive immunity cells with the particular function to directly kill the target cell following antigen recognition in the context of MHC class I. In addition, CD8+ T cells may release pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ), and a plethora of other cytokines and chemoattractants modulating immune and inflammatory responses. A role for CD8+ T cells has been suggested in aging and several diseases of the central nervous system (CNS), including Alzheimer's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, limbic encephalitis-induced temporal lobe epilepsy and Susac syndrome. Here we discuss the phenotypic and functional alterations of CD8+ T cell compartment during these conditions, highlighting similarities and differences between CNS disorders. Particularly, we describe the pathological changes in CD8+ T cell memory phenotypes emphasizing the role of senescence and exhaustion in promoting neuroinflammation and neurodegeneration. We also discuss the relevance of trafficking molecules such as selectins, mucins and integrins controlling the extravasation of CD8+ T cells into the CNS and promoting disease development. Finally, we discuss how CD8+ T cells may induce CNS tissue damage leading to neurodegeneration and suggest that targeting detrimental CD8+ T cells functions may have therapeutic effect in CNS disorders.
Collapse
Affiliation(s)
- Eleonora Terrabuio
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | | | | |
Collapse
|
6
|
Alarcan H, Vourc'h P, Berton L, Benz-De Bretagne I, Piver E, Andres CR, Corcia P, Veyrat-Durebex C, Blasco H. Implication of Central Nervous System Barrier Impairment in Amyotrophic Lateral Sclerosis: Gender-Related Difference in Patients. Int J Mol Sci 2023; 24:11196. [PMID: 37446372 DOI: 10.3390/ijms241311196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Central nervous system (CNS) barrier impairment has been reported in amyotrophic lateral sclerosis (ALS), highlighting its potential significance in the disease. In this context, we aim to shed light on its involvement in the disease, by determining albumin quotient (QAlb) at the time of diagnosis of ALS in a large cohort of patients. Patients from the university hospital of Tours (n = 307) were included in this monocentric, retrospective study. In total, 92 patients (30%) had elevated QAlb levels. This percentage was higher in males (43%) than in females (15%). Interestingly, QAlb was not associated with age of onset, age at sampling or diagnostic delay. However, we found an association with ALS functional rating scale-revised (ALSFRS-r) at diagnosis but this was significant only in males. The QAlb levels were not linked to the presence of a pathogenic mutation. Finally, we performed a multivariate survival analysis and found that QAlb was significantly associated with survival in male patients (HR = 2.3, 95% CI = 1.2-4.3, p = 0.009). A longitudinal evaluation of markers of barrier impairment, in combination with inflammatory biomarkers, could give insight into the involvement of CNS barrier impairment in the pathogenesis of the disease. The gender difference might guide the development of new drugs and help personalise the treatment of ALS.
Collapse
Affiliation(s)
- Hugo Alarcan
- Laboratoire de Biochimie et Biologie Moléculaire, CHRU Bretonneau, 2 Boulevard Tonnellé, 37000 Tours, France
- UMR 1253 iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37000 Tours, France
| | - Patrick Vourc'h
- Laboratoire de Biochimie et Biologie Moléculaire, CHRU Bretonneau, 2 Boulevard Tonnellé, 37000 Tours, France
- UMR 1253 iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37000 Tours, France
| | - Lise Berton
- Laboratoire de Biochimie et Biologie Moléculaire, CHRU Bretonneau, 2 Boulevard Tonnellé, 37000 Tours, France
| | - Isabelle Benz-De Bretagne
- Laboratoire de Biochimie et Biologie Moléculaire, CHRU Bretonneau, 2 Boulevard Tonnellé, 37000 Tours, France
| | - Eric Piver
- Laboratoire de Biochimie et Biologie Moléculaire, CHRU Bretonneau, 2 Boulevard Tonnellé, 37000 Tours, France
| | - Christian R Andres
- Laboratoire de Biochimie et Biologie Moléculaire, CHRU Bretonneau, 2 Boulevard Tonnellé, 37000 Tours, France
- UMR 1253 iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37000 Tours, France
| | - Philippe Corcia
- UMR 1253 iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37000 Tours, France
- Service de Neurologie, CHRU Bretonneau, 2 Boulevard Tonnellé, 37000 Tours, France
| | - Charlotte Veyrat-Durebex
- Laboratoire de Biochimie et Biologie Moléculaire, CHRU Bretonneau, 2 Boulevard Tonnellé, 37000 Tours, France
- UMR 1253 iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37000 Tours, France
| | - Hélène Blasco
- Laboratoire de Biochimie et Biologie Moléculaire, CHRU Bretonneau, 2 Boulevard Tonnellé, 37000 Tours, France
- UMR 1253 iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37000 Tours, France
| |
Collapse
|
7
|
Wang Y, Wu J, Wang J, He L, Lai H, Zhang T, Wang X, Li W. Mitochondrial oxidative stress in brain microvascular endothelial cells: Triggering blood-brain barrier disruption. Mitochondrion 2023; 69:71-82. [PMID: 36709855 DOI: 10.1016/j.mito.2023.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/02/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023]
Abstract
Blood-brain barrier disruption plays an important role in central nervous system diseases. This review provides information on the role of mitochondrial oxidative stress in brain microvascular endothelial cells in cellular dysfunction, the disruption of intercellular junctions, transporter dysfunction, abnormal angiogenesis, neurovascular decoupling, and the involvement and aggravation of vascular inflammation and illustrates related molecular mechanisms. In addition, recent drug and nondrug therapies targeting cerebral vascular endothelial cell mitochondria to repair the blood-brain barrier are discussed. This review shows that mitochondrial oxidative stress disorder in brain microvascular endothelial cells plays a key role in the occurrence and development of blood-brain barrier damage and may be critical in various pathological mechanisms of blood-brain barrier damage. These new findings suggest a potential new strategy for the treatment of central nervous system diseases through mitochondrial modulation of cerebral vascular endothelial cells.
Collapse
Affiliation(s)
- Yi Wang
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China.
| | - Jing Wu
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China.
| | - Jiexin Wang
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China.
| | - Linxi He
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China.
| | - Han Lai
- School of Foreign Languages, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China.
| | - Tian Zhang
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China.
| | - Xin Wang
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China.
| | - Weihong Li
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China.
| |
Collapse
|
8
|
Relationship between cerebrospinal fluid/serum albumin quotient and phenotype in amyotrophic lateral sclerosis: a retrospective study on 328 patients. Neurol Sci 2023; 44:1679-1685. [PMID: 36646859 DOI: 10.1007/s10072-023-06604-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 01/05/2023] [Indexed: 01/18/2023]
Abstract
BACKGROUND We analysed the relationship between cerebrospinal fluid (CSF)/serum albumin quotient (Q-Alb) and phenotype in a large cohort of patients with amyotrophic lateral sclerosis (ALS). METHODS Three hundred twenty-eight single-centre consecutive patients with ALS were evaluated for Q-Alb, basic epidemiological and clinical data, motor phenotype, cognitive/behavioural impairment, clinical staging, clinical and neurophysiological indexes of upper (UMN) and lower motor neuron (LMN) dysfunction, and presence of ALS gene mutations. RESULTS Q-Alb did not correlate with age but was independently associated with sex, with male patients having higher levels than female ones; the site of onset was not independently associated with Q-Alb. Q-Alb was not associated with motor phenotype, cognitive/behavioural impairment, disease stage, progression rate, survival, or genetic mutations. Among measures of UMN and LMN dysfunction, Q-Alb only had a weak positive correlation with an electromyography-based index of active limb denervation. CONCLUSION Previous work has documented increased Q-Alb in ALS compared to unaffected individuals. This, together with the absence of associations with nearly all ALS phenotypic features in our cohort, suggests dysfunction of the blood-CSF barrier as a shared, phenotype-independent element in ALS pathophysiology. However, correlation with the active denervation index could point to barrier dysfunction as a local driver of LMN degeneration.
Collapse
|
9
|
Elevated Cerebrospinal Fluid Proteins and Albumin Determine a Poor Prognosis for Spinal Amyotrophic Lateral Sclerosis. Int J Mol Sci 2022; 23:ijms231911063. [PMID: 36232365 PMCID: PMC9570498 DOI: 10.3390/ijms231911063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/10/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a heterogeneous disease, both in its onset phenotype and in its rate of progression. The aim of this study was to establish whether the dysfunction of the blood–brain barrier (BBB) and blood–spinal cord barrier (BSCB) measured through cerebrospinal fluid (CSF) proteins and the albumin-quotient (QAlb) are related to the speed of disease progression. An amount of 246 patients diagnosed with ALS were included. CSF and serum samples were determined biochemically for different parameters. Survival analysis based on phenotype shows higher probability of death for bulbar phenotype compared to spinal phenotype (p-value: 0.0006). For the effect of CSF proteins, data shows an increased risk of death for spinal ALS patients as the value of CSF proteins increases. The same model replicated for CSF albumin yielded similar results. Statistical models determined that the lowest cut-off value for CSF proteins able to differentiate patients with a good prognosis and worse prognosis corresponds to CSF proteins ≥ 0.5 g/L (p-value: 0.0189). For the CSF albumin, the QAlb ≥0.65 is associated with elevated probability of death (p-value: 0.0073). High levels of QAlb are a bad prognostic indicator for the spinal phenotype, in addition to high CSF proteins levels that also act as a marker of poor prognosis.
Collapse
|
10
|
The Cell Autonomous and Non-Cell Autonomous Aspects of Neuronal Vulnerability and Resilience in Amyotrophic Lateral Sclerosis. BIOLOGY 2022; 11:biology11081191. [PMID: 36009818 PMCID: PMC9405388 DOI: 10.3390/biology11081191] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/14/2022] [Accepted: 07/30/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Amyotrophic lateral sclerosis (ALS) is a fatal disease characterized by a progressive paralysis due to the loss of particular neurons in our nervous system called motor neurons, that exert voluntary control of all our skeletal muscles. It is not entirely understood why motor neurons are particularly vulnerable in ALS, neither is it completely clear why certain groups of motor neurons, including those that regulate eye movement, are rather resilient to this disease. However, both vulnerability and resilience to ALS likely reflect cell intrinsic properties of different motor neuron subpopulations as well as non-cell autonomous events regulated by surrounding cell types. In this review we dissect the particular properties of different motor neuron types and their responses to disease that may underlie their respective vulnerabilities and resilience. Disease progression in ALS involves multiple cell types that are closely connected to motor neurons and we here also discuss their contributions to the differential vulnerability of motor neurons. Abstract Amyotrophic lateral sclerosis (ALS) is defined by the loss of upper motor neurons (MNs) that project from the cerebral cortex to the brain stem and spinal cord and of lower MNs in the brain stem and spinal cord which innervate skeletal muscles, leading to spasticity, muscle atrophy, and paralysis. ALS involves several disease stages, and multiple cell types show dysfunction and play important roles during distinct phases of disease initiation and progression, subsequently leading to selective MN loss. Why MNs are particularly vulnerable in this lethal disease is still not entirely clear. Neither is it fully understood why certain MNs are more resilient to degeneration in ALS than others. Brain stem MNs of cranial nerves III, IV, and VI, which innervate our eye muscles, are highly resistant and persist until the end-stage of the disease, enabling paralyzed patients to communicate through ocular tracking devices. MNs of the Onuf’s nucleus in the sacral spinal cord, that innervate sphincter muscles and control urogenital functions, are also spared throughout the disease. There is also a differential vulnerability among MNs that are intermingled throughout the spinal cord, that directly relate to their physiological properties. Here, fast-twitch fatigable (FF) MNs, which innervate type IIb muscle fibers, are affected early, before onset of clinical symptoms, while slow-twitch (S) MNs, that innervate type I muscle fibers, remain longer throughout the disease progression. The resilience of particular MN subpopulations has been attributed to intrinsic determinants and multiple studies have demonstrated their unique gene regulation and protein content in health and in response to disease. Identified factors within resilient MNs have been utilized to protect more vulnerable cells. Selective vulnerability may also, in part, be driven by non-cell autonomous processes and the unique surroundings and constantly changing environment close to particular MN groups. In this article, we review in detail the cell intrinsic properties of resilient and vulnerable MN groups, as well as multiple additional cell types involved in disease initiation and progression and explain how these may contribute to the selective MN resilience and vulnerability in ALS.
Collapse
|
11
|
Alarcan H, Al Ojaimi Y, Lanznaster D, Escoffre JM, Corcia P, Vourc'h P, Andres CR, Veyrat-Durebex C, Blasco H. Taking Advantages of Blood–Brain or Spinal Cord Barrier Alterations or Restoring Them to Optimize Therapy in ALS? J Pers Med 2022; 12:jpm12071071. [PMID: 35887567 PMCID: PMC9319288 DOI: 10.3390/jpm12071071] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/21/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder that still lacks an efficient therapy. The barriers between the central nervous system (CNS) and the blood represent a major limiting factor to the development of drugs for CNS diseases, including ALS. Alterations of the blood–brain barrier (BBB) or blood–spinal cord barrier (BSCB) have been reported in this disease but still require further investigations. Interestingly, these alterations might be involved in the complex etiology and pathogenesis of ALS. Moreover, they can have potential consequences on the diffusion of candidate drugs across the brain. The development of techniques to bypass these barriers is continuously evolving and might open the door for personalized medical approaches. Therefore, identifying robust and non-invasive markers of BBB and BSCB alterations can help distinguish different subgroups of patients, such as those in whom barrier disruption can negatively affect the delivery of drugs to their CNS targets. The restoration of CNS barriers using innovative therapies could consequently present the advantage of both alleviating the disease progression and optimizing the safety and efficiency of ALS-specific therapies.
Collapse
Affiliation(s)
- Hugo Alarcan
- Laboratoire de Biochimie et Biologie Moleculaire, CHRU Bretonneau, 2 Boulevard Tonnellé, 37000 Tours, France
- UMR 1253 iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37000 Tours, France
| | - Yara Al Ojaimi
- UMR 1253 iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37000 Tours, France
| | - Debora Lanznaster
- UMR 1253 iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37000 Tours, France
| | - Jean-Michel Escoffre
- UMR 1253 iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37000 Tours, France
| | - Philippe Corcia
- UMR 1253 iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37000 Tours, France
- Service de Neurologie, CHRU Bretonneau, 2 Boulevard Tonnellé, 37000 Tours, France
| | - Patrick Vourc'h
- Laboratoire de Biochimie et Biologie Moleculaire, CHRU Bretonneau, 2 Boulevard Tonnellé, 37000 Tours, France
- UMR 1253 iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37000 Tours, France
| | - Christian R Andres
- Laboratoire de Biochimie et Biologie Moleculaire, CHRU Bretonneau, 2 Boulevard Tonnellé, 37000 Tours, France
- UMR 1253 iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37000 Tours, France
| | - Charlotte Veyrat-Durebex
- Laboratoire de Biochimie et Biologie Moleculaire, CHRU Bretonneau, 2 Boulevard Tonnellé, 37000 Tours, France
- UMR 1253 iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37000 Tours, France
| | - Hélène Blasco
- Laboratoire de Biochimie et Biologie Moleculaire, CHRU Bretonneau, 2 Boulevard Tonnellé, 37000 Tours, France
- UMR 1253 iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37000 Tours, France
| |
Collapse
|
12
|
Godoy-Corchuelo JM, Fernández-Beltrán LC, Ali Z, Gil-Moreno MJ, López-Carbonero JI, Guerrero-Sola A, Larrad-Sainz A, Matias-Guiu J, Matias-Guiu JA, Cunningham TJ, Corrochano S. Lipid Metabolic Alterations in the ALS-FTD Spectrum of Disorders. Biomedicines 2022; 10:1105. [PMID: 35625841 PMCID: PMC9138405 DOI: 10.3390/biomedicines10051105] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 02/06/2023] Open
Abstract
There is an increasing interest in the study of the relation between alterations in systemic lipid metabolism and neurodegenerative disorders, in particular in Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD). In ALS these alterations are well described and evident not only with the progression of the disease but also years before diagnosis. Still, there are some discrepancies in findings relating to the causal nature of lipid metabolic alterations, partly due to the great clinical heterogeneity in ALS. ALS presentation is within a disorder spectrum with Frontotemporal Dementia (FTD), and many patients present mixed forms of ALS and FTD, thus increasing the variability. Lipid metabolic and other systemic metabolic alterations have not been well studied in FTD, or in ALS-FTD mixed forms, as has been in pure ALS. With the recent development in lipidomics and the integration with other -omics platforms, there is now emerging data that not only facilitates the identification of biomarkers but also enables understanding of the underlying pathological mechanisms. Here, we reviewed the recent literature to compile lipid metabolic alterations in ALS, FTD, and intermediate mixed forms, with a view to appraising key commonalities or differences within the spectrum.
Collapse
Affiliation(s)
- Juan Miguel Godoy-Corchuelo
- Neurological Disorders Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (J.M.G.-C.); (L.C.F.-B.); (M.J.G.-M.); (J.I.L.-C.); (A.G.-S.); (J.M.-G.); (J.A.M.-G.)
| | - Luis C. Fernández-Beltrán
- Neurological Disorders Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (J.M.G.-C.); (L.C.F.-B.); (M.J.G.-M.); (J.I.L.-C.); (A.G.-S.); (J.M.-G.); (J.A.M.-G.)
| | - Zeinab Ali
- MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD, UK; (Z.A.); (T.J.C.)
| | - María J. Gil-Moreno
- Neurological Disorders Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (J.M.G.-C.); (L.C.F.-B.); (M.J.G.-M.); (J.I.L.-C.); (A.G.-S.); (J.M.-G.); (J.A.M.-G.)
| | - Juan I. López-Carbonero
- Neurological Disorders Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (J.M.G.-C.); (L.C.F.-B.); (M.J.G.-M.); (J.I.L.-C.); (A.G.-S.); (J.M.-G.); (J.A.M.-G.)
| | - Antonio Guerrero-Sola
- Neurological Disorders Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (J.M.G.-C.); (L.C.F.-B.); (M.J.G.-M.); (J.I.L.-C.); (A.G.-S.); (J.M.-G.); (J.A.M.-G.)
| | - Angélica Larrad-Sainz
- Nutrition and Endocrinology Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain;
| | - Jorge Matias-Guiu
- Neurological Disorders Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (J.M.G.-C.); (L.C.F.-B.); (M.J.G.-M.); (J.I.L.-C.); (A.G.-S.); (J.M.-G.); (J.A.M.-G.)
| | - Jordi A. Matias-Guiu
- Neurological Disorders Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (J.M.G.-C.); (L.C.F.-B.); (M.J.G.-M.); (J.I.L.-C.); (A.G.-S.); (J.M.-G.); (J.A.M.-G.)
| | - Thomas J. Cunningham
- MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD, UK; (Z.A.); (T.J.C.)
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London W1W 7FF, UK
| | - Silvia Corrochano
- Neurological Disorders Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (J.M.G.-C.); (L.C.F.-B.); (M.J.G.-M.); (J.I.L.-C.); (A.G.-S.); (J.M.-G.); (J.A.M.-G.)
| |
Collapse
|
13
|
Mirian A, Moszczynski A, Soleimani S, Aubert I, Zinman L, Abrahao A. Breached Barriers: A Scoping Review of Blood-Central Nervous System Barrier Pathology in Amyotrophic Lateral Sclerosis. Front Cell Neurosci 2022; 16:851563. [PMID: 35431812 PMCID: PMC9009245 DOI: 10.3389/fncel.2022.851563] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Recent studies have implicated changes in the blood-central nervous system barriers (BCNSB) in amyotrophic lateral sclerosis (ALS). The objective of this scoping review is to synthesize the current evidence for BCNSB structure and functional abnormalities in ALS studies and propose how BCNSB pathology may impact therapeutic development. Methods A literature search was conducted using Ovid Medline, EMBASE, and Web of Science, from inception to November 2021 and limited to entries in English language. Simplified search strategy included the terms ALS/motor neuron disease and [BCNSB or blood-brain barrier (BBB) or blood-spinal cord barrier (BSCB)]. Henceforth, BCNSB is used as a term that is inclusive of the BBB and BSCB. Four independent reviewers conducted a title and abstract screening, hand-searched the reference lists of review papers, and performed a full text review of eligible studies. Included studies were original peer-reviewed full text publications, evaluating the structure and function of the BCNSB in preclinical models of ALS, clinical ALS, or postmortem human ALS tissue. There was no restriction on study design. The four reviewers independently extracted the data. Results The search retrieved 2,221 non-duplicated articles and 48 original studies were included in the synthesis. There was evidence that the integrity of the BCNSB is disrupted throughout the course of the disease in rodent models, beginning prior to symptom onset and detectable neurodegeneration. Increased permeability, pharmacoresistance with upregulated efflux transporters, and morphological changes in the supporting cells of the BCNSB, including pericytes, astrocytes, and endothelial cells were observed in animal models. BCNSB abnormalities were also demonstrated in postmortem studies of ALS patients. Therapeutic interventions targeting BCNSB dysfunction were associated with improved motor neuron survival in animal models of ALS. Conclusion BCNSB structural and functional abnormalities are likely implicated in ALS pathophysiology and may occur upstream to neurodegeneration. Promising therapeutic strategies targeting BCNSB dysfunction have been tested in animals and can be translated into ALS clinical trials.
Collapse
Affiliation(s)
- Ario Mirian
- Clinical Neurological Sciences, Western University, London Health Sciences, London, ON, Canada
| | | | - Serena Soleimani
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI, United States
| | - Isabelle Aubert
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Lorne Zinman
- Division of Neurology, Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Science Centre, Toronto, ON, Canada
- Evaluative Clinical Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Agessandro Abrahao
- Division of Neurology, Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Science Centre, Toronto, ON, Canada
- Evaluative Clinical Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Toronto, ON, Canada
- *Correspondence: Agessandro Abrahao
| |
Collapse
|