1
|
Norbom LB, Syed B, Kjelkenes R, Rokicki J, Beauchamp A, Nerland S, Kushki A, Anagnostou E, Arnold P, Crosbie J, Kelley E, Nicolson R, Schachar R, Taylor MJ, Westlye LT, Tamnes CK, Lerch JP. Probing Autism and ADHD subtypes using cortical signatures of the T1w/T2w-ratio and morphometry. Neuroimage Clin 2025; 45:103736. [PMID: 39837011 PMCID: PMC11788868 DOI: 10.1016/j.nicl.2025.103736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/09/2024] [Accepted: 01/15/2025] [Indexed: 01/23/2025]
Abstract
Autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD) are neurodevelopmental conditions that share genetic etiology and frequently co-occur. Given this comorbidity and well-established clinical heterogeneity, identifying individuals with similar brain signatures may be valuable for predicting clinical outcomes and tailoring treatment strategies. Cortical myelination is a prominent developmental process, and its disruption is a candidate mechanism for both disorders. Yet, no studies have attempted to identify subtypes using T1w/T2w-ratio, a magnetic resonance imaging (MRI) based proxy for intracortical myelin. Moreover, cortical variability arises from numerous biological pathways, and multimodal approaches can integrate cortical metrics into a single network. We analyzed data from 310 individuals aged 2.6-23.6 years, obtained from the Province of Ontario Neurodevelopmental (POND) Network consisting of individuals diagnosed with ASD (n = 136), ADHD (n = 100), and typically developing (TD) individuals (n = 74). We first tested for differences in T1w/T2w-ratio between diagnostic categories and controls. We then performed unimodal (T1w/T2w-ratio) and multimodal (T1w/T2w-ratio, cortical thickness, and surface area) spectral clustering to identify diagnostic-blind subgroups. Linear models revealed no statistically significant case-control differences in T1w/T2w-ratio. Unimodal clustering mostly isolated single individual- or minority clusters, driven by image quality and intensity outliers. Multimodal clustering suggested three distinct subgroups, which transcended diagnostic boundaries, showing separate cortical patterns but similar clinical and cognitive profiles. T1w/T2w-ratio features were the most relevant for demarcation, followed by surface area. While our analysis revealed no significant case-control differences, multimodal clustering incorporating the T1w/T2w-ratio among cortical features holds promise for identifying biologically similar subsets of individuals with neurodevelopmental conditions.
Collapse
Affiliation(s)
- Linn B Norbom
- PROMENTA Research Center, Department of Psychology, University of Oslo, Norway.
| | - Bilal Syed
- The Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rikka Kjelkenes
- Department of Psychology, University of Oslo, Norway; Section for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Jaroslav Rokicki
- Centre of Research and Education in Forensic Psychiatry, Oslo University Hospital, Oslo, Norway
| | - Antoine Beauchamp
- The Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Psychiatry, Western University, London, Canada
| | - Stener Nerland
- Division of Mental Health and Substance Abuse, Diakonhjemmet Hospital, Oslo, Norway
| | - Azadeh Kushki
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada; University of Toronto, Institute of Biomedical Engineering, Toronto, Canada
| | - Evdokia Anagnostou
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
| | - Paul Arnold
- Hotchkiss Brain Institute, Departments of Psychiatry & Medical Genetics, University of Calgary, Calgary, Canada
| | - Jennifer Crosbie
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, The Hospital for Sick Children, Toronto, ON, Canada
| | - Elizabeth Kelley
- Department of Psychology and Centre for Neuroscience Studies, Queen's University, Kingston, Canada
| | - Robert Nicolson
- Department of Psychiatry, Western University, London, Canada
| | - Russell Schachar
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, The Hospital for Sick Children, Toronto, ON, Canada
| | - Margot J Taylor
- Diagnostic & Interventional Radiology, The Hospital for Sick Children, Toronto, Canada; Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Lars T Westlye
- Department of Psychology, University of Oslo, Norway; Section for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; K.G Jebsen Center for Neurodevelopmental Disorders, University of Oslo, Norway
| | - Christian K Tamnes
- PROMENTA Research Center, Department of Psychology, University of Oslo, Norway; Division of Mental Health and Substance Abuse, Diakonhjemmet Hospital, Oslo, Norway
| | - Jason P Lerch
- The Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Canada; Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
Ortug A, Guo Y, Feldman HA, Ou Y, Warren JLA, Dieuveuil H, Baumer NT, Faja SK, Takahashi E. Autism-associated brain differences can be observed in utero using MRI. Cereb Cortex 2024; 34:bhae117. [PMID: 38602735 PMCID: PMC11008691 DOI: 10.1093/cercor/bhae117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 04/12/2024] Open
Abstract
Developmental changes that occur before birth are thought to be associated with the development of autism spectrum disorders. Identifying anatomical predictors of early brain development may contribute to our understanding of the neurobiology of autism spectrum disorders and allow for earlier and more effective identification and treatment of autism spectrum disorders. In this study, we used retrospective clinical brain magnetic resonance imaging data from fetuses who were diagnosed with autism spectrum disorders later in life (prospective autism spectrum disorders) in order to identify the earliest magnetic resonance imaging-based regional volumetric biomarkers. Our results showed that magnetic resonance imaging-based autism spectrum disorder biomarkers can be found as early as in the fetal period and suggested that the increased volume of the insular cortex may be the most promising magnetic resonance imaging-based fetal biomarker for the future emergence of autism spectrum disorders, along with some additional, potentially useful changes in regional volumes and hemispheric asymmetries.
Collapse
Affiliation(s)
- Alpen Ortug
- Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, United States
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, United States
- Department of Radiology, Harvard Medical School, Boston, MA 02115, United States
| | - Yurui Guo
- Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Henry A Feldman
- Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Yangming Ou
- Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, United States
- Department of Radiology, Harvard Medical School, Boston, MA 02115, United States
| | - Jose Luis Alatorre Warren
- Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, United States
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, United States
- Department of Radiology, Harvard Medical School, Boston, MA 02115, United States
| | - Harrison Dieuveuil
- Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Nicole T Baumer
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, United States
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Susan K Faja
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, United States
- Division of Developmental Medicine, Laboratories of Cognitive Neuroscience, Boston Children's Hospital, Harvard Medical School, Brookline, MA 02115, United States
| | - Emi Takahashi
- Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, United States
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, United States
- Department of Radiology, Harvard Medical School, Boston, MA 02115, United States
| |
Collapse
|
3
|
Al-Beltagi M. Pre-autism: What a paediatrician should know about early diagnosis of autism. World J Clin Pediatr 2023; 12:273-294. [PMID: 38178935 PMCID: PMC10762597 DOI: 10.5409/wjcp.v12.i5.273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/07/2023] [Accepted: 09/25/2023] [Indexed: 12/08/2023] Open
Abstract
Autism, also known as an autism spectrum disorder, is a complex neurodevelopmental disorder usually diagnosed in the first three years of a child's life. A range of symptoms characterizes it and can be diagnosed at any age, including adolescence and adulthood. However, early diagnosis is crucial for effective management, prognosis, and care. Unfortunately, there are no established fetal, prenatal, or newborn screening programs for autism, making early detection difficult. This review aims to shed light on the early detection of autism prenatally, natally, and early in life, during a stage we call as "pre-autism" when typical symptoms are not yet apparent. Some fetal, neonatal, and infant biomarkers may predict an increased risk of autism in the coming baby. By developing a biomarker array, we can create an objective diagnostic tool to diagnose and rank the severity of autism for each patient. These biomarkers could be genetic, immunological, hormonal, metabolic, amino acids, acute phase reactants, neonatal brainstem function biophysical activity, behavioral profile, body measurements, or radiological markers. However, every biomarker has its accuracy and limitations. Several factors can make early detection of autism a real challenge. To improve early detection, we need to overcome various challenges, such as raising community awareness of early signs of autism, improving access to diagnostic tools, reducing the stigma attached to the diagnosis of autism, and addressing various culturally sensitive concepts related to the disorder.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatric, Faculty of Medicine, Tanta University, Tanta 31511, Algahrbia, Egypt
- Department of Pediatric, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Dr. Sulaiman Al Habib Medical Group, Manama 26671, Manama, Bahrain
| |
Collapse
|
4
|
Pretzsch CM, Ecker C. Structural neuroimaging phenotypes and associated molecular and genomic underpinnings in autism: a review. Front Neurosci 2023; 17:1172779. [PMID: 37457001 PMCID: PMC10347684 DOI: 10.3389/fnins.2023.1172779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
Autism has been associated with differences in the developmental trajectories of multiple neuroanatomical features, including cortical thickness, surface area, cortical volume, measures of gyrification, and the gray-white matter tissue contrast. These neuroimaging features have been proposed as intermediate phenotypes on the gradient from genomic variation to behavioral symptoms. Hence, examining what these proxy markers represent, i.e., disentangling their associated molecular and genomic underpinnings, could provide crucial insights into the etiology and pathophysiology of autism. In line with this, an increasing number of studies are exploring the association between neuroanatomical, cellular/molecular, and (epi)genetic variation in autism, both indirectly and directly in vivo and across age. In this review, we aim to summarize the existing literature in autism (and neurotypicals) to chart a putative pathway from (i) imaging-derived neuroanatomical cortical phenotypes to (ii) underlying (neuropathological) biological processes, and (iii) associated genomic variation.
Collapse
Affiliation(s)
- Charlotte M. Pretzsch
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom
| | - Christine Ecker
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| |
Collapse
|
5
|
Kim GW, Farabaugh AH, Vetterman R, Holmes A, Nyer M, Nasiriavanaki Z, Fava M, Holt DJ. Diminished frontal pole size and functional connectivity in young adults with high suicidality. J Affect Disord 2022; 310:484-492. [PMID: 35427718 DOI: 10.1016/j.jad.2022.04.069] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/06/2022] [Accepted: 04/10/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Suicide rates among young people have been increasing in recent years, yet no validated methods are available for identifying those who are at greatest risk for suicide. Abnormalities in the medial prefrontal cortex have been previously observed in suicidal individuals, but confounding factors such as treatment and chronic illness may have contributed to these findings. Thus, in this study we tested whether the size of the medial prefrontal cortex is altered in suicidal young adults who have received no treatment with psychotropic medications. METHODS Suicidality was evaluated using the Suicide Behaviors Questionnaire-Revised (SBQ-R) and surface areas of four regions-of-interest (ROIs) within the medial prefrontal cortex were measured using magnetic resonance imaging (MRI) in a cohort of college students (n = 102). In addition, a secondary seed-based functional connectivity analysis was conducted using resting-state functional MRI data. Areas and functional connectivity of the medial prefrontal cortex of young adults with high suicidality (HS; SBQ-R score > 7; n = 20) were compared to those with low suicidality (LS; SBQ-R score = 3, n = 37). RESULTS Compared to the LS group, the HS group had a significantly lower surface area of the right frontal pole (p < 0.05, Bonferroni-corrected) and significantly lower functional connectivity of the right frontal pole with the bilateral inferior frontal cortex (p < 0.001, Monte-Carlo corrected). LIMITATION These findings require replication in a larger sample and extension in younger (adolescent) populations. CONCLUSION Diminished frontal pole surface area and functional connectivity may be linked to elevated levels of suicidality in young people.
Collapse
Affiliation(s)
- Gwang-Won Kim
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, United States of America; Advanced Institute of Aging Science, Chonnam National University, Republic of Korea
| | - Amy H Farabaugh
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Richard Vetterman
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Avram Holmes
- Department of Psychology, Yale University, United States of America
| | - Maren Nyer
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Zahra Nasiriavanaki
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Maurizio Fava
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Daphne J Holt
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, United States of America; Athinoula A. Martinos Center for Biomedical Imaging, United States of America.
| |
Collapse
|
6
|
Chen B, Linke A, Olson L, Kohli J, Kinnear M, Sereno M, Müller RA, Carper R, Fishman I. Cortical Myelination in Toddlers and Preschoolers with Autism Spectrum Disorder. Dev Neurobiol 2022; 82:261-274. [PMID: 35348301 PMCID: PMC9325547 DOI: 10.1002/dneu.22874] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 02/22/2022] [Accepted: 03/17/2022] [Indexed: 11/07/2022]
Abstract
Intracortical myelin is thought to play a significant role in the development of neural circuits and functional networks, with consistent evidence of atypical network connectivity in children with autism spectrum disorders (ASD). However, little is known about the development of intracortical myelin in the first years of life in ASD, during the critical neurodevelopmental period when autism symptoms first emerge. Using T1-weighted (T1w) and T2-weighted (T2w) structural magnetic resonance imaging (MRI) in 21 young children with ASD and 16 typically developing (TD) children, ages 1.5 to 5.5 years, we demonstrate the feasibility of estimating intracortical myelin in vivo using the T1w/T2w ratio as a proxy. The resultant T1w/T2w maps were largely comparable with those reported in prior T1w/T2w studies in typically developing children and adults, and revealed no group differences between TD children and those with ASD. However, differential associations between T1w/T2w and age were identified in several early myelinated regions (e.g., visual, posterior cingulate, precuneus cortices) in the ASD and TD groups, with age-related increase in estimated myelin content across the toddler and preschool years detected in TD children, but not in children with ASD. The atypical age-related effects in intracortical myelin, suggesting a disrupted myelination in the first years of life in ASD, may be related to the aberrant brain network connectivity reported in young children with ASD in some of the same cortical regions and circuits. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Bosi Chen
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University.,Joint Doctoral Program in Clinical Psychology, San Diego State University and University of California, San Diego, USA
| | - Annika Linke
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University
| | - Lindsay Olson
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University.,Joint Doctoral Program in Clinical Psychology, San Diego State University and University of California, San Diego, USA
| | - Jiwandeep Kohli
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University.,Joint Doctoral Program in Clinical Psychology, San Diego State University and University of California, San Diego, USA
| | - Mikaela Kinnear
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University
| | - Martin Sereno
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University.,Joint Doctoral Program in Clinical Psychology, San Diego State University and University of California, San Diego, USA
| | - Ralph-Axel Müller
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University.,Joint Doctoral Program in Clinical Psychology, San Diego State University and University of California, San Diego, USA.,Center for Autism and Developmental Disorders, San Diego State University
| | - Ruth Carper
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University.,Joint Doctoral Program in Clinical Psychology, San Diego State University and University of California, San Diego, USA.,Center for Autism and Developmental Disorders, San Diego State University
| | - Inna Fishman
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University.,Joint Doctoral Program in Clinical Psychology, San Diego State University and University of California, San Diego, USA.,Center for Autism and Developmental Disorders, San Diego State University
| |
Collapse
|