1
|
Luo B, Zou Y, Yan J, Sun J, Wei X, Chang L, Lu Y, Zhao L, Dong W, Qiu C, Yan J, Zhang Y, Zhang W. Altered Cognitive Networks Connectivity in Parkinson's Disease During the Microlesion Period After Deep Brain Stimulation. CNS Neurosci Ther 2024; 30:e70184. [PMID: 39722165 DOI: 10.1111/cns.70184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/05/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024] Open
Abstract
AIMS Cognitive functions are reduced in Parkinson's disease (PD) patients after deep brain stimulation (DBS) surgery. However, the underlying mechanisms remain unclear. The current study attempted to elucidate whether DBS alters the functional connectivity (FC) pattern of cognitive networks in PD patients. METHODS The study obtained fMRI and cognitive scale data from 37 PD patients before and after the DBS surgery. Seed-based FC analysis helped demonstrate the FC changes of the default mode network (DMN), executive control network (ECN), and dorsal attention network (DAN). RESULTS PD patients indicated significant network connectivity decline in DMN [such as in right precuneus, left angular gyrus, and left middle frontal gyrus (MFG)], ECN [such as in left inferior parietal gyrus, left MFG, and left supplementary motor area (SMA)], and DAN [such as in left inferior frontal gyrus and left MFG] post-DBS surgery. The phonemic fluency score was positively associated with the FC value of the right precuneus and left angular gyrus in DMN before DBS. CONCLUSION The general reduction in FC in the major cognitive networks after DBS surgery depicted the presence of the corresponding network reorganization. Further research can help explore the mechanism of impaired cognitive function post-DBS.
Collapse
Affiliation(s)
- Bei Luo
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yanxiang Zou
- School of Nursing, Nanjing Medical University, Nanjing, China
| | - Jiuqi Yan
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jian Sun
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xiang Wei
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Chang
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Lu
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Liang Zhao
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenwen Dong
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chang Qiu
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Yan
- Department of Geriatric Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yanhong Zhang
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenbin Zhang
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Wang X, Wang L, Wu Y, Lv X, Xu Y, Dou W, Zhang H, Wu J, Shang S. Intracerebral hemodynamic abnormalities in patients with Parkinson's disease: Comparison between multi-delay arterial spin labelling and conventional single-delay arterial spin labelling. Diagn Interv Imaging 2024; 105:281-291. [PMID: 38310001 DOI: 10.1016/j.diii.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
PURPOSE The purpose of this study was to analyze the intracerebral abnormalities of hemodynamics in patients with Parkinson's disease (PD) through arterial spin labelling (ASL) technique with multi-delay ASL (MDASL) and conventional single-delay ASL (SDASL) protocols and to verify the potential clinical application of these features for the diagnosis of PD. MATERIALS AND METHODS Perfusion data of the brain obtained using MDASL and SDASL in patients with PD were compared to those obtained in healthy control (HC) subjects. Intergroup comparisons of z-scored cerebral blood flow (zCBF), arterial transit time (zATT) and cerebral blood volume (zCBV) were performed via voxel-based analysis. Performance of these perfusion metrics were estimated using area under the receiver operating characteristic curve (AUC) and compared using Delong test. RESULTS A total of 47 patients with PD (29 men; 18 women; mean age, 69.0 ± 7.6 (standard deviation, [SD]) years; range: 50.0-84.0 years) and 50 HC subjects (28 men; 22 women; mean age, 70.1 ± 6.2 [SD] years; range: 50.0-93.0 years) were included. Relative to the uncorrected-zCBF map, the corrected-zCBF map further refined the distributed brain regions in the PD group versus the HC group, manifested as the extension of motor-related regions (PFWE < 0.001). Compared to the HC subjects, patients with PD had elevated zATT and zCBV in the right putamen, a shortened zATT in the superior frontal gyrus, and specific zCBV variations in the left precuneus and the right supplementary motor area (PFWE < 0.001). The corrected-zCBF (AUC, 0.90; 95% confidence interval [CI]: 0.84-0.96) showed better classification performance than uncorrected-zCBF (AUC, 0.84; 95% CI: 0.75-0.92) (P = 0.035). zCBV achieved an AUC of 0.89 (95% CI: 0.82-0.96) and zATT achieved an AUC of 0.66 (95% CI: 0.55-0.77). The integration model of hemodynamic features from MDASL provided improved performance (AUC, 0.97; 95% CI: 0.95-0.98) for the diagnosis of PD by comparison with each perfusion model (P < 0.001). CONCLUSION ASL identifies impaired hemodynamics in patients with PD including regional abnormalities of CBF, CBV and ATT, which can better be mapped with MDASL compared to SDASL. These findings provide complementary depictions of perfusion abnormalities in patients with PD and highlight the clinical feasibility of MDASL.
Collapse
Affiliation(s)
- Xue Wang
- Graduate school of Dalian Medical University, Dalian 116000, China; Department of Medical imaging center, Clinical Medical College, Yangzhou University, Yangzhou 225009, China
| | - Lijuan Wang
- Department of Radiology, Jintang First People's Hospital, Sichuan University, Chengdu 610499, China
| | - Yating Wu
- Graduate school of Dalian Medical University, Dalian 116000, China; Department of Medical imaging center, Clinical Medical College, Yangzhou University, Yangzhou 225009, China
| | - Xiang Lv
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou 225009, China
| | - Yao Xu
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou 225009, China
| | - Weiqiang Dou
- MR Research China, GE Healthcare, Beijing 100176, China
| | - Hongying Zhang
- Department of Medical imaging center, Clinical Medical College, Yangzhou University, Yangzhou 225009, China
| | - Jingtao Wu
- Department of Medical imaging center, Clinical Medical College, Yangzhou University, Yangzhou 225009, China
| | - Song'an Shang
- Department of Medical imaging center, Clinical Medical College, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
3
|
Hamani C, Davidson B, Lipsman N, Abrahao A, Nestor SM, Rabin JS, Giacobbe P, Pagano RL, Campos ACP. Insertional effect following electrode implantation: an underreported but important phenomenon. Brain Commun 2024; 6:fcae093. [PMID: 38707711 PMCID: PMC11069120 DOI: 10.1093/braincomms/fcae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/08/2023] [Accepted: 03/26/2024] [Indexed: 05/07/2024] Open
Abstract
Deep brain stimulation has revolutionized the treatment of movement disorders and is gaining momentum in the treatment of several other neuropsychiatric disorders. In almost all applications of this therapy, the insertion of electrodes into the target has been shown to induce some degree of clinical improvement prior to stimulation onset. Disregarding this phenomenon, commonly referred to as 'insertional effect', can lead to biased results in clinical trials, as patients receiving sham stimulation may still experience some degree of symptom amelioration. Similar to the clinical scenario, an improvement in behavioural performance following electrode implantation has also been reported in preclinical models. From a neurohistopathologic perspective, the insertion of electrodes into the brain causes an initial trauma and inflammatory response, the activation of astrocytes, a focal release of gliotransmitters, the hyperexcitability of neurons in the vicinity of the implants, as well as neuroplastic and circuitry changes at a distance from the target. Taken together, it would appear that electrode insertion is not an inert process, but rather triggers a cascade of biological processes, and, as such, should be considered alongside the active delivery of stimulation as an active part of the deep brain stimulation therapy.
Collapse
Affiliation(s)
- Clement Hamani
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Benjamin Davidson
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Nir Lipsman
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Agessandro Abrahao
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Sean M Nestor
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Jennifer S Rabin
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto M5G 1V7, Canada
| | - Peter Giacobbe
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Rosana L Pagano
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo, SP CEP 01308-060, Brazil
| | - Ana Carolina P Campos
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo, SP CEP 01308-060, Brazil
| |
Collapse
|
4
|
Xie H, Yang Y, Sun Q, Li ZY, Ni MH, Chen ZH, Li SN, Dai P, Cui YY, Cao XY, Jiang N, Du LJ, Yu Y, Yan LF, Cui GB. Abnormalities of cerebral blood flow and the regional brain function in Parkinson's disease: a systematic review and multimodal neuroimaging meta-analysis. Front Neurol 2023; 14:1289934. [PMID: 38162449 PMCID: PMC10755479 DOI: 10.3389/fneur.2023.1289934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/15/2023] [Indexed: 01/03/2024] Open
Abstract
Background Parkinson's disease (PD) is a neurodegenerative disease with high incidence rate. Resting state functional magnetic resonance imaging (rs-fMRI), as a widely used method for studying neurodegenerative diseases, has not yet been combined with two important indicators, amplitude low-frequency fluctuation (ALFF) and cerebral blood flow (CBF), for standardized analysis of PD. Methods In this study, we used seed-based d-mapping and permutation of subject images (SDM-PSI) software to investigate the changes in ALFF and CBF of PD patients. After obtaining the regions of PD with changes in ALFF or CBF, we conducted a multimodal analysis to identify brain regions where ALFF and CBF changed together or could not synchronize. Results The final study included 31 eligible trials with 37 data sets. The main analysis results showed that the ALFF of the left striatum and left anterior thalamic projection decreased in PD patients, while the CBF of the right superior frontal gyrus decreased. However, the results of multimodal analysis suggested that there were no statistically significant brain regions. In addition, the decrease of ALFF in the left striatum and the decrease of CBF in the right superior frontal gyrus was correlated with the decrease in clinical cognitive scores. Conclusion PD patients had a series of spontaneous brain activity abnormalities, mainly involving brain regions related to the striatum-thalamic-cortex circuit, and related to the clinical manifestations of PD. Among them, the left striatum and right superior frontal gyrus are more closely related to cognition. Systematic review registration https://www.crd.york.ac.uk/ PROSPERO (CRD42023390914).
Collapse
Affiliation(s)
- Hao Xie
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Yang Yang
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Qian Sun
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Ze-Yang Li
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Min-Hua Ni
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Zhu-Hong Chen
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Si-Ning Li
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
- Faculty of Medical Technology, Xi’an Medical University, Xi’an, Shaanxi, China
| | - Pan Dai
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
- Faculty of Medical Technology, Xi’an Medical University, Xi’an, Shaanxi, China
| | - Yan-Yan Cui
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
- Faculty of Medical Technology, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Xin-Yu Cao
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
- Faculty of Medical Technology, Medical School of Yan’an University, Yan’an, Shaanxi, China
| | - Nan Jiang
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Li-Juan Du
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Ying Yu
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Lin-Feng Yan
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Guang-Bin Cui
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| |
Collapse
|
5
|
Campos ACP, Pagano RL, Lipsman N, Hamani C. What do we know about astrocytes and the antidepressant effects of DBS? Exp Neurol 2023; 368:114501. [PMID: 37558154 DOI: 10.1016/j.expneurol.2023.114501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/29/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
Treatment-resistant depression (TRD) is a debilitating condition that affects millions of individuals worldwide. Deep brain stimulation (DBS) has been widely used with excellent outcomes in neurological disorders such as Parkinson's disease, tremor, and dystonia. More recently, DBS has been proposed as an adjuvant therapy for TRD. To date, the antidepressant efficacy of DBS is still controversial, and its mechanisms of action remain poorly understood. Astrocytes are the most abundant cells in the nervous system. Once believed to be a "supporting" element for neuronal function, astrocytes are now recognized to play a major role in brain homeostasis, neuroinflammation and neuroplasticity. Because of its many roles in complex multi-factorial disorders, including TRD, understanding the effect of DBS on astrocytes is pivotal to improve our knowledge about the antidepressant effects of this therapy. In depression, the number of astrocytes and the expression of astrocytic markers are decreased. One of the potential consequences of this reduced astrocytic function is the development of aberrant glutamatergic neurotransmission, which has been documented in several models of depression-like behavior. Evidence from preclinical work suggests that DBS may directly influence astrocytic activity, modulating the release of gliotransmitters, reducing neuroinflammation, and altering structural tissue organization. Compelling evidence for an involvement of astrocytes in potential mechanisms of DBS derive from studies suggesting that pharmacological lesions or the inhibition of these cells abolishes the antidepressant-like effect of DBS. In this review, we summarize preclinical data suggesting that the modulation of astrocytes may be an important mechanism for the antidepressant-like effects of DBS.
Collapse
Affiliation(s)
- Ana Carolina P Campos
- Sunnybrook Research Institute, Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Centre, Toronto, Canada; Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo, SP, Brazil
| | - Rosana L Pagano
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo, SP, Brazil
| | - Nir Lipsman
- Sunnybrook Research Institute, Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Centre, Toronto, Canada; Division of Neurosurgery, University of Toronto, Toronto, Canada
| | - Clement Hamani
- Sunnybrook Research Institute, Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Centre, Toronto, Canada; Division of Neurosurgery, University of Toronto, Toronto, Canada.
| |
Collapse
|
6
|
Luo B, Qiu C, Chang L, Lu Y, Dong W, Liu D, Xue C, Yan J, Zhang W. Altered brain network centrality in Parkinson's disease patients after deep brain stimulation: a functional MRI study using a voxel-wise degree centrality approach. J Neurosurg 2023; 138:1712-1719. [PMID: 36334296 DOI: 10.3171/2022.9.jns221640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/16/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE After deep brain stimulation (DBS), patients with Parkinson's disease (PD) show improved motor symptoms and decreased verbal fluency, an effect that occurs before the initiation of DBS in the subthalamic nucleus. However, the underlying mechanism remains unclear. This study aimed to evaluate the effects of DBS on whole-brain degree centrality (DC) and seed-based functional connectivity (FC) in PD patients. METHODS The authors obtained resting-state functional MRI data of 28 PD patients before and after DBS surgery. All patients underwent MRI scans in the off-stimulation state. The DC method was used to evaluate the effects of DBS on whole-brain FC at the voxel level. Seed-based FC analysis was used to examine network function changes after DBS. RESULTS After DBS surgery, PD patients showed significantly weaker DC values in the left middle temporal gyrus, left supramarginal gyrus, and left middle frontal gyrus, but significantly stronger DC values in the midbrain, left precuneus, and right precentral gyrus. FC analysis revealed decreased FC values within the default mode network (DMN). CONCLUSIONS This study demonstrated that the DC of DMN-related brain regions decreased in PD patients after DBS surgery, whereas the DC of the motor cortex increased. These findings provide new evidence for the neural effects of DBS on voxel-based whole-brain networks in PD patients.
Collapse
Affiliation(s)
- Bei Luo
- Departments of1Functional Neurosurgery
| | - Chang Qiu
- Departments of1Functional Neurosurgery
| | - Lei Chang
- Departments of1Functional Neurosurgery
| | - Yue Lu
- Departments of1Functional Neurosurgery
| | | | | | | | - Jun Yan
- 4Geriatric Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | | |
Collapse
|
7
|
Li T, Wang L, Piao Z, Chen K, Yu X, Wen Q, Suo D, Zhang C, Funahashi S, Pei G, Fang B, Yan T. Altered Neurovascular Coupling for Multidisciplinary Intensive Rehabilitation in Parkinson's Disease. J Neurosci 2023; 43:1256-1266. [PMID: 36609454 PMCID: PMC9962778 DOI: 10.1523/jneurosci.1204-22.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
Effective rehabilitation in Parkinson's disease (PD) is related to brain reorganization with restoration of cortico-subcortical networks and compensation of frontoparietal networks; however, further neural rehabilitation evidence from a multidimensional perspective is needed. To investigate how multidisciplinary intensive rehabilitation treatment affects neurovascular coupling, 31 PD patients (20 female) before and after treatment and 30 healthy controls (17 female) underwent blood oxygenation level-dependent functional magnetic resonance imaging and arterial spin labeling scans. Cerebral blood flow (CBF) was used to measure perfusion, and fractional amplitude of low-frequency fluctuation (fALFF) was used to measure neural activity. The global CBF-fALFF correlation and regional CBF/fALFF ratio were calculated as neurovascular coupling. Dynamic causal modeling (DCM) was used to evaluate treatment-related alterations in the strength and directionality of information flow. Treatment reduced CBF-fALFF correlations. The altered CBF/fALFF exhibited increases in the left angular gyrus and the right inferior parietal gyrus and decreases in the bilateral thalamus and the right superior frontal gyrus. The CBF/fALFF alteration in right superior frontal gyrus showed correlations with motor improvement. Further, DCM indicated increases in connectivity from the superior frontal gyrus and decreases from the thalamus to the inferior parietal gyrus. The benefits of rehabilitation were reflected in the dual mechanism, with restoration of executive control occurring in the initial phase of motor learning and compensation of information integration occurring in the latter phase. These findings may yield multimodal insights into the role of rehabilitation in disease modification and identify the dorsolateral superior frontal gyrus as a potential target for noninvasive neuromodulation in PD.SIGNIFICANCE STATEMENT Although rehabilitation has been proposed as a promising supplemental treatment for PD as it results in brain reorganization, restoring cortico-subcortical networks and eliciting compensatory activation of frontoparietal networks, further multimodal evidence of the neural mechanisms underlying rehabilitation is needed. We measured the ratio of perfusion and neural activity derived from arterial spin labeling and blood oxygenation level-dependent fMRI data and found that benefits of rehabilitation seem to be related to the dual mechanism, restoring executive control in the initial phase of motor learning and compensating for information integration in the latter phase. We also identified the dorsolateral superior frontal gyrus as a potential target for noninvasive neuromodulation in PD patients.
Collapse
Affiliation(s)
- Ting Li
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Li Wang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Zhixin Piao
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Keke Chen
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Xin Yu
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Qiping Wen
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Dingjie Suo
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Chunyu Zhang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Shintaro Funahashi
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Guangying Pei
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Boyan Fang
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Tianyi Yan
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
8
|
Sure M, Mertiens S, Vesper J, Schnitzler A, Florin E. Alterations of resting-state networks of Parkinson's disease patients after subthalamic DBS surgery. Neuroimage Clin 2023; 37:103317. [PMID: 36610312 PMCID: PMC9850202 DOI: 10.1016/j.nicl.2023.103317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 12/27/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
The implantation of deep brain stimulation (DBS) electrodes in Parkinson's disease (PD) patients can lead to a temporary improvement in motor symptoms, known as the stun effect. However, the network alterations induced by the stun effect are not well characterized. As therapeutic DBS is known to alter resting-state networks (RSN) and subsequent motor symptoms in patients with PD, we aimed to investigate whether the DBS-related stun effect also modulated RSNs. Therefore, we analyzed RSNs of 27 PD patients (8 females, 59.0 +- 8.7 years) using magnetoencephalography and compared them to RSNs of 24 age-matched healthy controls (8 females, 62.8 +- 5.1 years). We recorded 30 min of resting-state activity two days before and one day after implantation of the electrodes with and without dopaminergic medication. RSNs were determined by use of phase-amplitude coupling between a low frequency phase and a high gamma amplitude and examined for differences between conditions (i.e., pre vs post surgery). We identified four RSNs across all conditions: sensory-motor, visual, fronto-occipital, and frontal. Each RSN was altered due to electrode implantation. Importantly, these changes were not restricted to spatially close areas to the electrode trajectory. Interestingly, pre-operative RSNs corresponded better with healthy control RSNs regarding the spatial overlap, although the stun effect is associated with motor improvement. Our findings reveal that the stun effect induced by implantation of electrodes exerts brain wide changes in different functional RSNs.
Collapse
Affiliation(s)
- Matthias Sure
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany.
| | - Sean Mertiens
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany.
| | - Jan Vesper
- Department of Functional Neurosurgery and Stereotaxy, Medical Faculty, University Hospital, Düsseldorf, Germany.
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany; Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty, University Hospital, Düsseldorf, Germany.
| | - Esther Florin
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany.
| |
Collapse
|
9
|
Jiang Z, Cai Y, Zhang X, Lv Y, Zhang M, Li S, Lin G, Bao Z, Liu S, Gu W. Predicting Delayed Neurocognitive Recovery After Non-cardiac Surgery Using Resting-State Brain Network Patterns Combined With Machine Learning. Front Aging Neurosci 2021; 13:715517. [PMID: 34867266 PMCID: PMC8633536 DOI: 10.3389/fnagi.2021.715517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/25/2021] [Indexed: 01/14/2023] Open
Abstract
Delayed neurocognitive recovery (DNR) is a common subtype of postoperative neurocognitive disorders. An objective approach for identifying subjects at high risk of DNR is yet lacking. The present study aimed to predict DNR using the machine learning method based on multiple cognitive-related brain network features. A total of 74 elderly patients (≥ 60-years-old) undergoing non-cardiac surgery were subjected to resting-state functional magnetic resonance imaging (rs-fMRI) before the surgery. Seed-based whole-brain functional connectivity (FC) was analyzed with 18 regions of interest (ROIs) located in the default mode network (DMN), limbic network, salience network (SN), and central executive network (CEN). Multiple machine learning models (support vector machine, decision tree, and random forest) were constructed to recognize the DNR based on FC network features. The experiment has three parts, including performance comparison, feature screening, and parameter adjustment. Then, the model with the best predictive efficacy for DNR was identified. Finally, independent testing was conducted to validate the established predictive model. Compared to the non-DNR group, the DNR group exhibited aberrant whole-brain FC in seven ROIs, including the right posterior cingulate cortex, right medial prefrontal cortex, and left lateral parietal cortex in the DMN, the right insula in the SN, the left anterior prefrontal cortex in the CEN, and the left ventral hippocampus and left amygdala in the limbic network. The machine learning experimental results identified a random forest model combined with FC features of DMN and CEN as the best prediction model. The area under the curve was 0.958 (accuracy = 0.935, precision = 0.899, recall = 0.900, F1 = 0.890) on the test set. Thus, the current study indicated that the random forest machine learning model based on rs-FC features of DMN and CEN predicts the DNR following non-cardiac surgery, which could be beneficial to the early prevention of DNR. Clinical Trial Registration: The study was registered at the Chinese Clinical Trial Registry (Identification number: ChiCTR-DCD-15006096).
Collapse
Affiliation(s)
- Zhaoshun Jiang
- Department of Anesthesiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China
| | - Yuxi Cai
- Department of Anesthesiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China
| | - Xixue Zhang
- Department of Anesthesiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China
| | - Yating Lv
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Mengting Zhang
- Department of Anesthesiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China
| | - Shihong Li
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Guangwu Lin
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Zhijun Bao
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China.,Department of Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China.,Research Center on Aging and Medicine, Fudan University, Shanghai, China
| | - Songbin Liu
- Department of Anesthesiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China
| | - Weidong Gu
- Department of Anesthesiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China
| |
Collapse
|
10
|
Altered Regional Homogeneity and Functional Connectivity during Microlesion Period after Deep Brain Stimulation in Parkinson's Disease. PARKINSON'S DISEASE 2021; 2021:2711365. [PMID: 34512944 PMCID: PMC8429001 DOI: 10.1155/2021/2711365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/10/2021] [Accepted: 08/23/2021] [Indexed: 11/28/2022]
Abstract
Background Patients with Parkinson's disease (PD) undergoing deep brain electrode implantation experience a temporary improvement in motor symptoms before the electrical stimulation begins. We usually call this the microlesion effect (MLE), but the mechanism behind it is not clear. Purpose This study aimed to assess the alterations in brain functions at the regional and whole-brain levels, using regional homogeneity (ReHo) and functional connectivity (FC), during the postoperative microlesion period after deep brain stimulation (DBS) in PD patients. Method Resting-state functional MRI data were collected from 27 PD patients before and after the first day of DBS and 12 healthy controls (HCs) in this study. The ReHo in combination with FC analysis was used to investigate the alterations of regional brain activity in all the subjects. Results There were increased ReHo in the basal ganglia-thalamocortical circuit (left supplementary motor area and bilateral paracentral lobule), whereas decreased ReHo in the default mode network (DMN) (left angular gyrus, bilateral precuneus), prefrontal cortex (bilateral middle frontal gyrus), and the cerebello-thalamocortical (CTC) circuit (Cerebellum_crus2/1_L) after DBS. In addition, we also found abnormal FC in the lingual gyrus, cerebellum, and DMN. Conclusion Microlesion of the thalamus caused by electrode implantation can alter the activity of the basal ganglia-thalamocortical circuit, prefrontal cortex, DMN, and CTC circuit and induce abnormal FC in the lingual gyrus, cerebellum, prefrontal cortex, and DMN among PD patients. The findings of this study contribute to the understanding of the mechanism of MLE.
Collapse
|