1
|
Mari S, Lecomte CG, Merlet AN, Audet J, Yassine S, Arab RA, Harnie J, Rybak IA, Prilutsky BI, Frigon A. Changes in intra- and interlimb reflexes from forelimb cutaneous afferents after staggered thoracic lateral hemisections during locomotion in cats. J Physiol 2024. [PMID: 39340178 DOI: 10.1113/jp286808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
In quadrupeds, such as cats, cutaneous afferents from the forepaw dorsum signal external perturbations and send inputs to spinal circuits to co-ordinate the activity in muscles of all four limbs. How these cutaneous reflex pathways from forelimb afferents are reorganized after an incomplete spinal cord injury is not clear. Using a staggered thoracic lateral hemisections paradigm, we investigated changes in intralimb and interlimb reflex pathways by electrically stimulating the left and right superficial radial nerves in seven adult cats and recording reflex responses in five forelimb and ten hindlimb muscles. After the first (right T5-T6) and second (left T10-T11) hemisections, forelimb-hindlimb co-ordination was altered and weakened. After the second hemisection, cats required balance assistance to perform quadrupedal locomotion. Short-, mid- and long-latency homonymous and crossed reflex responses in forelimb muscles and their phase modulation remained largely unaffected after staggered hemisections. The occurrence of homolateral and diagonal mid- and long-latency responses in hindlimb muscles evoked with left and right superficial radial nerve stimulation was significantly reduced at the first time point after the first hemisection, but partially recovered at the second time point with left superficial radial nerve stimulation. These responses were lost or reduced after the second hemisection. When present, all reflex responses, including homolateral and diagonal, maintained their phase-dependent modulation. Therefore, our results show a considerable loss in cutaneous reflex transmission from cervical to lumbar levels after incomplete spinal cord injury, albeit with preservation of phase modulation, probably affecting functional responses to external perturbations. KEY POINTS: Cutaneous afferent inputs co-ordinate muscle activity in the four limbs during locomotion when the forepaw dorsum contacts an obstacle. Thoracic spinal cord injury disrupts communication between spinal locomotor centres located at cervical and lumbar levels, impairing balance and limb co-ordination. We investigated cutaneous reflexes from forelimb afferents during quadrupedal locomotion by electrically stimulating the superficial radial nerve bilaterally, before and after staggered lateral thoracic hemisections in cats. We showed a loss/reduction of mid- and long-latency homolateral and diagonal reflex responses in hindlimb muscles early after the first hemisection that partially recovered with left superficial radial nerve stimulation, before being reduced after the second hemisection. Targeting cutaneous reflex pathways from forelimb afferents projecting to the four limbs could help develop therapeutic approaches aimed at restoring transmission in ascending and descending spinal pathways.
Collapse
Affiliation(s)
- Stephen Mari
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Charly G Lecomte
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Angèle N Merlet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Johannie Audet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Sirine Yassine
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Rasha Al Arab
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Jonathan Harnie
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Ilya A Rybak
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Boris I Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
2
|
Garcia-Ramirez DL, McGrath JR, Ha NT, Wheel JH, Atoche SJ, Yao L, Stachowski NJ, Giszter SF, Dougherty KJ. Covert actions of epidural stimulation on spinal locomotor circuits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599598. [PMID: 38948733 PMCID: PMC11213016 DOI: 10.1101/2024.06.18.599598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Spinal circuitry produces the rhythm and patterning of locomotion. However, both descending and sensory inputs are required to initiate and adapt locomotion to the environment. Spinal cord injury (SCI) disrupts descending controls of the spinal cord, producing paralysis. Epidural stimulation (ES) is a promising clinical therapy for motor control recovery and is capable of reactivating the lumbar spinal locomotor networks, yet little is known about the effects of ES on locomotor neurons. Previously, we found that both sensory afferent pathways and serotonin exert mixed excitatory and inhibitory actions on lumbar interneurons involved in the generation of the locomotor rhythm, identified by the transcription factor Shox2. However, after chronic complete SCI, sensory afferent inputs to Shox2 interneurons become almost exclusively excitatory and Shox2 interneurons are supersensitive to serotonin. Here, we investigated the effects of ES on these SCI-induced changes. Inhibitory input from sensory pathways to Shox2 interneurons was maintained and serotonin supersensitivity was not observed in SCI mice that received daily sub-motor threshold ES. Interestingly, the effects of ES were maintained for at least three weeks after the ES was discontinued. In contrast, the effects of ES were not observed in Shox2 interneurons from mice that received ES after the establishment of the SCI-induced changes. Our results demonstrate mechanistic actions of ES at the level of identified spinal locomotor circuit neurons and the effectiveness of early treatment with ES on preservation of spinal locomotor circuitry after SCI, suggesting possible therapeutic benefits prior to the onset of motor rehabilitation.
Collapse
|
3
|
Mari S, Lecomte CG, Merlet AN, Audet J, Yassine S, Eddaoui O, Genois G, Nadeau C, Harnie J, Rybak IA, Prilutsky BI, Frigon A. Changes in intra- and interlimb reflexes from hindlimb cutaneous afferents after staggered thoracic lateral hemisections during locomotion in cats. J Physiol 2024; 602:1987-2017. [PMID: 38593215 PMCID: PMC11068482 DOI: 10.1113/jp286151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/04/2024] [Indexed: 04/11/2024] Open
Abstract
When the foot dorsum contacts an obstacle during locomotion, cutaneous afferents signal central circuits to coordinate muscle activity in the four limbs. Spinal cord injury disrupts these interactions, impairing balance and interlimb coordination. We evoked cutaneous reflexes by electrically stimulating left and right superficial peroneal nerves before and after two thoracic lateral hemisections placed on opposite sides of the cord at 9- to 13-week interval in seven adult cats (4 males and 3 females). We recorded reflex responses in ten hindlimb and five forelimb muscles bilaterally. After the first (right T5-T6) and second (left T10-T11) hemisections, coordination of the fore- and hindlimbs was altered and/or became less consistent. After the second hemisection, cats required balance assistance to perform quadrupedal locomotion. Short-latency reflex responses in homonymous and crossed hindlimb muscles largely remained unaffected after staggered hemisections. However, mid- and long-latency homonymous and crossed responses in both hindlimbs occurred less frequently after staggered hemisections. In forelimb muscles, homolateral and diagonal mid- and long-latency response occurrence significantly decreased after the first and second hemisections. In all four limbs, however, when present, short-, mid- and long-latency responses maintained their phase-dependent modulation. We also observed reduced durations of short-latency inhibitory homonymous responses in left hindlimb extensors early after the first hemisection and delayed short-latency responses in the right ipsilesional hindlimb after the first hemisection. Therefore, changes in cutaneous reflex responses correlated with impaired balance/stability and interlimb coordination during locomotion after spinal cord injury. Restoring reflex transmission could be used as a biomarker to facilitate locomotor recovery. KEY POINTS: Cutaneous afferent inputs coordinate muscle activity in the four limbs during locomotion when the foot dorsum contacts an obstacle. Thoracic spinal cord injury disrupts communication between spinal locomotor centres located at cervical and lumbar levels, impairing balance and limb coordination. We investigated cutaneous reflexes during quadrupedal locomotion by electrically stimulating the superficial peroneal nerve bilaterally, before and after staggered lateral thoracic hemisections of the spinal cord in cats. We showed a loss/reduction of mid- and long-latency responses in all four limbs after staggered hemisections, which correlated with altered coordination of the fore- and hindlimbs and impaired balance. Targeting cutaneous reflex pathways projecting to the four limbs could help develop therapeutic approaches aimed at restoring transmission in ascending and descending spinal pathways.
Collapse
Affiliation(s)
- Stephen Mari
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Charly G. Lecomte
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Angèle N. Merlet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Johannie Audet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Sirine Yassine
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Oussama Eddaoui
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Gabriel Genois
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Charlène Nadeau
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Jonathan Harnie
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Ilya A. Rybak
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Boris I. Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
4
|
Audet J, Lecomte CG, Harnie J, Yassine S, Al Arab R, Soucy F, Morency C, Mari S, Jéhannin P, Merlet AN, Frigon A. Simultaneous control of forward and backward locomotion by spinal sensorimotor circuits. J Physiol 2024; 602:183-204. [PMID: 38016922 DOI: 10.1113/jp285473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/01/2023] [Indexed: 11/30/2023] Open
Abstract
Mammals walk in different directions, such as forward and backward. In human infants/adults and decerebrate cats, one leg can walk forward and the other backward simultaneously on a split-belt treadmill, termed hybrid or bidirectional locomotion. The purpose of the present study was to determine if spinal sensorimotor circuits generate hybrid locomotion and if so, how the limbs remain coordinated. We tested hybrid locomotion in 11 intact cats and in five following complete spinal thoracic transection (spinal cats) at three treadmill speeds with the hindlimbs moving forward, backward or bidirectionally. All intact cats generated hybrid locomotion with the forelimbs on a stationary platform. Four of five spinal cats generated hybrid locomotion, also with the forelimbs on a stationary platform, but required perineal stimulation. During hybrid locomotion, intact and spinal cats positioned their forward and backward moving hindlimbs caudal and rostral to the hip, respectively. The hindlimbs maintained consistent left-right out-of-phase alternation in the different stepping directions. Our results suggest that spinal locomotor networks generate hybrid locomotion by following certain rules at phase transitions. We also found that stance duration determined cycle duration in the different locomotor directions/conditions, consistent with a common rhythm-generating mechanism for different locomotor directions. Our findings provide additional insight on how left-right spinal networks and sensory feedback from the limbs interact to coordinate the hindlimbs and provide stability during locomotion in different directions. KEY POINTS: Terrestrial mammals can walk forward and backward, which is controlled in part by spinal sensorimotor circuits. Humans and cats also perform bidirectional or hybrid locomotion on a split-belt treadmill with one leg going forward and the other going backward. We show that cats with a spinal transection can perform hybrid locomotion and maintain left-right out-of-phase coordination, indicating that spinal sensorimotor circuits can perform simultaneous forward and backward locomotion. We also show that the regulation of cycle duration and phase duration is conserved across stepping direction, consistent with a common rhythm-generating mechanism for different stepping directions. The results help us better understand how spinal networks controlling the left and right legs enable locomotion in different directions.
Collapse
Affiliation(s)
- Johannie Audet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de recherche du Centre Hospitalier de l'Université de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Charly G Lecomte
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de recherche du Centre Hospitalier de l'Université de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Jonathan Harnie
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de recherche du Centre Hospitalier de l'Université de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Sirine Yassine
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de recherche du Centre Hospitalier de l'Université de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Rasha Al Arab
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de recherche du Centre Hospitalier de l'Université de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Félix Soucy
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de recherche du Centre Hospitalier de l'Université de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Caroline Morency
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de recherche du Centre Hospitalier de l'Université de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Stephen Mari
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de recherche du Centre Hospitalier de l'Université de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Pierre Jéhannin
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de recherche du Centre Hospitalier de l'Université de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Angèle N Merlet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de recherche du Centre Hospitalier de l'Université de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de recherche du Centre Hospitalier de l'Université de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
5
|
Otani Y, Katagiri Y, Imai E, Kowa H. Action-rule-based cognitive control enables efficient execution of stimulus-response conflict tasks: a model validation of Simon task performance. Front Hum Neurosci 2023; 17:1239207. [PMID: 38034070 PMCID: PMC10687480 DOI: 10.3389/fnhum.2023.1239207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction The human brain can flexibly modify behavioral rules to optimize task performance (speed and accuracy) by minimizing cognitive load. To show this flexibility, we propose an action-rule-based cognitive control (ARC) model. The ARC model was based on a stochastic framework consistent with an active inference of the free energy principle, combined with schematic brain network systems regulated by the dorsal anterior cingulate cortex (dACC), to develop several hypotheses for demonstrating the validity of the ARC model. Methods A step-motion Simon task was developed involving congruence or incongruence between important symbolic information (illustration of a foot labeled "L" or "R," where "L" requests left and "R" requests right foot movement) and irrelevant spatial information (whether the illustration is actually of a left or right foot). We made predictions for behavioral and brain responses to testify to the theoretical predictions. Results Task responses combined with event-related deep-brain activity (ER-DBA) measures demonstrated a key contribution of the dACC in this process and provided evidence for the main prediction that the dACC could reduce the Shannon surprise term in the free energy formula by internally reversing the irrelevant rapid anticipatory postural adaptation. We also found sequential effects with modulated dip depths of ER-DBA waveforms that support the prediction that repeated stimuli with the same congruency can promote remodeling of the internal model through the information gain term while counterbalancing the surprise term. Discussion Overall, our results were consistent with experimental predictions, which may support the validity of the ARC model. The sequential effect accompanied by dip modulation of ER-DBA waveforms suggests that cognitive cost is saved while maintaining cognitive performance in accordance with the framework of the ARC based on 1-bit congruency-dependent selective control.
Collapse
Affiliation(s)
- Yoshitaka Otani
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
- Faculty of Rehabilitation, Kobe International University, Kobe, Japan
| | - Yoshitada Katagiri
- Department of Bioengineering, School of Engineering, The University of Tokyo, Bunkyō, Japan
| | - Emiko Imai
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Hisatomo Kowa
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| |
Collapse
|
6
|
Audet J, Yassine S, Lecomte CG, Mari S, Soucy F, Morency C, Merlet AN, Harnie J, Beaulieu C, Gendron L, Rybak IA, Prilutsky BI, Frigon A. Spinal Sensorimotor Circuits Play a Prominent Role in Hindlimb Locomotor Recovery after Staggered Thoracic Lateral Hemisections but Cannot Restore Posture and Interlimb Coordination during Quadrupedal Locomotion in Adult Cats. eNeuro 2023; 10:ENEURO.0191-23.2023. [PMID: 37328297 PMCID: PMC10288532 DOI: 10.1523/eneuro.0191-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/18/2023] Open
Abstract
Spinal sensorimotor circuits interact with supraspinal and peripheral inputs to generate quadrupedal locomotion. Ascending and descending spinal pathways ensure coordination between the forelimbs and hindlimbs. Spinal cord injury (SCI) disrupts these pathways. To investigate the control of interlimb coordination and hindlimb locomotor recovery, we performed two lateral thoracic hemisections on opposite sides of the cord (right T5-T6 and left T10-T11) at an interval of approximately two months in eight adult cats. In three cats, the spinal cord was transected at T12-T13. We collected electromyography (EMG) and kinematic data during quadrupedal and hindlimb-only locomotion before and after spinal lesions. We show that (1) cats spontaneously recover quadrupedal locomotion following staggered hemisections but require balance assistance after the second one, (2) coordination between the forelimbs and hindlimbs displays 2:1 patterns (two cycles of one forelimb within one hindlimb cycle) and becomes weaker and more variable after both hemisections, (3) left-right asymmetries in hindlimb stance and swing durations appear after the first hemisection and reverse after the second, and (4) support periods reorganize after staggered hemisections to favor support involving both forelimbs and diagonal limbs. Cats expressed hindlimb locomotion the day following spinal transection, indicating that lumbar sensorimotor circuits play a prominent role in hindlimb locomotor recovery after staggered hemisections. These results reflect a series of changes in spinal sensorimotor circuits that allow cats to maintain and recover some level of quadrupedal locomotor functionality with diminished motor commands from the brain and cervical cord, although the control of posture and interlimb coordination remains impaired.
Collapse
Affiliation(s)
- Johannie Audet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Sirine Yassine
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Charly G Lecomte
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Stephen Mari
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Félix Soucy
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Caroline Morency
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Angèle N Merlet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Jonathan Harnie
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Claudie Beaulieu
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Louis Gendron
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Ilya A Rybak
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA 19129
| | - Boris I Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
| | - Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| |
Collapse
|
7
|
Audet J, Yassine S, Lecomte CG, Mari S, Félix S, Caroline M, Merlet AN, Harnie J, Beaulieu C, Gendron L, Rybak IA, Prilutsky BI, Frigon A. Spinal sensorimotor circuits play a prominent role in hindlimb locomotor recovery after staggered thoracic lateral hemisections but cannot restore posture and interlimb coordination during quadrupedal locomotion in adult cats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.533936. [PMID: 36993268 PMCID: PMC10055434 DOI: 10.1101/2023.03.23.533936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Spinal sensorimotor circuits interact with supraspinal and peripheral inputs to generate quadrupedal locomotion. Ascending and descending spinal pathways ensure coordination between the fore-and hindlimbs. Spinal cord injury disrupts these pathways. To investigate the control of interlimb coordination and hindlimb locomotor recovery, we performed two lateral thoracic hemisections placed on opposite sides of the cord (right T5-T6 and left T10-T11) at an interval of approximately two months in eight adult cats. In three cats, we then made a complete spinal transection caudal to the second hemisection at T12-T13. We collected electromyography and kinematic data during quadrupedal and hindlimb-only locomotion before and after spinal lesions. We show that 1) cats spontaneously recover quadrupedal locomotion following staggered hemisections but require balance assistance after the second one, 2) coordination between the fore-and hindlimbs displays 2:1 patterns and becomes weaker and more variable after both hemisections, 3) left-right asymmetries in hindlimb stance and swing durations appear after the first hemisection and reverse after the second, and 4) support periods reorganize after staggered hemisections to favor support involving both forelimbs and diagonal limbs. Cats expressed hindlimb locomotion the day following spinal transection, indicating that lumbar sensorimotor circuits play a prominent role in hindlimb locomotor recovery after staggered hemisections. These results reflect a series of changes in spinal sensorimotor circuits that allow cats to maintain and recover some level of quadrupedal locomotor functionality with diminished motor commands from the brain and cervical cord, although the control of posture and interlimb coordination remains impaired. Significance Statement Coordinating the limbs during locomotion depends on pathways in the spinal cord. We used a spinal cord injury model that disrupts communication between the brain and spinal cord by sectioning half of the spinal cord on one side and then about two months later, half the spinal cord on the other side at different levels of the thoracic cord in cats. We show that despite a strong contribution from neural circuits located below the second spinal cord injury in the recovery of hindlimb locomotion, the coordination between the forelimbs and hindlimbs weakens and postural control is impaired. We can use our model to test approaches to restore the control of interlimb coordination and posture during locomotion after spinal cord injury.
Collapse
Affiliation(s)
- Johannie Audet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Sirine Yassine
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Charly G Lecomte
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Stephen Mari
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Soucy Félix
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Morency Caroline
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Angèle N Merlet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Jonathan Harnie
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Claudie Beaulieu
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Louis Gendron
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Ilya A. Rybak
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania 19129, USA
| | - Boris I. Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| |
Collapse
|
8
|
Audet J, Harnie J, Lecomte CG, Mari S, Merlet AN, Prilutsky BI, Rybak IA, Frigon A. Control of Forelimb and Hindlimb Movements and Their Coordination during Quadrupedal Locomotion across Speeds in Adult Spinal Cats. J Neurotrauma 2022; 39:1113-1131. [PMID: 35343245 PMCID: PMC9347373 DOI: 10.1089/neu.2022.0042] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Coordinating the four limbs is critical for terrestrial mammalian locomotion. Thoracic spinal transection abolishes neural communication between the brain and spinal networks controlling hindlimb/leg movements. Several studies have shown that animal models of spinal transection (spinalization), such as mice, rats, cats, and dogs recover hindlimb locomotion with the forelimbs stationary or suspended. We know less on the ability to generate quadrupedal locomotion after spinal transection, however. We collected kinematic and electromyography data in four adult cats during quadrupedal locomotion at five treadmill speeds before (intact cats) and after low-thoracic spinal transection (spinal cats). We show that adult spinal cats performed quadrupedal treadmill locomotion and modulated their speed from 0.4 m/sec to 0.8 m/sec but required perineal stimulation. During quadrupedal locomotion, several compensatory strategies occurred, such as postural adjustments of the head and neck and the appearance of new coordination patterns between the forelimbs and hindlimbs, where the hindlimbs took more steps than the forelimbs. We also observed temporal changes, such as shorter forelimb cycle/swing durations and shorter hindlimb cycle/stance durations in the spinal state. Forelimb double support periods occupied a greater proportion of the cycle in the spinal state, and hindlimb stride length was shorter. Coordination between the forelimbs and hindlimbs was weakened and more variable in the spinal state. Changes in muscle activity reflected spatiotemporal changes in the locomotor pattern. Despite important changes in the pattern, our results indicate that biomechanical properties of the musculoskeletal system play an important role in quadrupedal locomotion and offset some of the loss in neural communication between networks controlling the forelimbs and hindlimbs after spinal transection.
Collapse
Affiliation(s)
- Johannie Audet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Jonathan Harnie
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Charly G. Lecomte
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Stephen Mari
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Angèle N. Merlet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Boris I. Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Ilya A. Rybak
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania, USA
| | - Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
9
|
Novel Noninvasive Spinal Neuromodulation Strategy Facilitates Recovery of Stepping after Motor Complete Paraplegia. J Clin Med 2022; 11:jcm11133670. [PMID: 35806954 PMCID: PMC9267673 DOI: 10.3390/jcm11133670] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/03/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
It has been suggested that neuroplasticity-promoting neuromodulation can restore sensory-motor pathways after spinal cord injury (SCI), reactivating the dormant locomotor neuronal circuitry. We introduce a neuro-rehabilitative approach that leverages locomotor training with multi-segmental spinal cord transcutaneous electrical stimulation (scTS). We hypothesized that scTS neuromodulates spinal networks, complementing the neuroplastic effects of locomotor training, result in a functional progression toward recovery of locomotion. We conducted a case-study to test this approach on a 27-year-old male classified as AIS A with chronic SCI. The training regimen included task-driven non-weight-bearing training (1 month) followed by weight-bearing training (2 months). Training was paired with multi-level continuous and phase-dependent scTS targeting function-specific motor pools. Results suggest a convergence of cross-lesional networks, improving kinematics during voluntary non-weight-bearing locomotor-like stepping. After weight-bearing training, coordination during stepping improved, suggesting an important role of afferent feedback in further improvement of voluntary control and reorganization of the sensory-motor brain-spinal connectome.
Collapse
|
10
|
Le Ray D, Guayasamin M. How Does the Central Nervous System for Posture and Locomotion Cope With Damage-Induced Neural Asymmetry? Front Syst Neurosci 2022; 16:828532. [PMID: 35308565 PMCID: PMC8927091 DOI: 10.3389/fnsys.2022.828532] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/07/2022] [Indexed: 12/28/2022] Open
Abstract
In most vertebrates, posture and locomotion are achieved by a biomechanical apparatus whose effectors are symmetrically positioned around the main body axis. Logically, motor commands to these effectors are intrinsically adapted to such anatomical symmetry, and the underlying sensory-motor neural networks are correspondingly arranged during central nervous system (CNS) development. However, many developmental and/or life accidents may alter such neural organization and acutely generate asymmetries in motor operation that are often at least partially compensated for over time. First, we briefly present the basic sensory-motor organization of posturo-locomotor networks in vertebrates. Next, we review some aspects of neural plasticity that is implemented in response to unilateral central injury or asymmetrical sensory deprivation in order to substantially restore symmetry in the control of posturo-locomotor functions. Data are finally discussed in the context of CNS structure-function relationship.
Collapse
|