1
|
Vaithianathan K, Pernabas JB, Parthiban L, Rashid M, Alshamrani SS. Normalized group activations based feature extraction technique using heterogeneous data for Alzheimer's disease classification. PeerJ Comput Sci 2024; 10:e2502. [PMID: 39650458 PMCID: PMC11622987 DOI: 10.7717/peerj-cs.2502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/21/2024] [Indexed: 12/11/2024]
Abstract
Several deep learning networks are developed to identify the complex atrophic patterns of Alzheimer's disease (AD). Among various activation functions used in deep neural networks, the rectifier linear unit is the most used one. Even though these functions are analyzed individually, group activations and their interpretations are still not explored for neuroimaging analysis. In this study, a unique feature extraction technique based on normalized group activations that can be applied to both structural MRI and resting-state-fMRI (rs-fMRI) is proposed. This method is split into two phases: multi-trait condensed feature extraction networks and regional association networks. The initial phase involves extracting features from various brain regions using different multi-layered convolutional networks. Then, multiple regional association networks with normalized group activations for all the regional pairs are trained and the output of these networks is given as input to a classifier. To provide an unbiased estimate, an automated diagnosis system equipped with the proposed feature extraction is designed and analyzed on multi-cohort Alzheimer's Disease Neuroimaging Initiative (ADNI) data to predict multi-stages of AD. This system is also trained/tested on heterogeneous features such as non-transformed features, curvelets, wavelets, shearlets, textures, and scattering operators. Baseline scans of 185 rs-fMRIs and 1442 MRIs from ADNI-1, ADNI-2, and ADNI-GO datasets are used for validation. For MCI (mild cognitive impairment) classifications, there is an increase of 1-4% in performance. The outcome demonstrates the good discriminatory behaviour of the proposed features and its efficiency on rs-fMRI time-series and MRI data to classify multiple stages of AD.
Collapse
Affiliation(s)
- Krishnakumar Vaithianathan
- Department of Computer Engineering, Karaikal Polytechnic College, Varichikudy, Karaikal, Puducherry, India
| | - Julian Benadit Pernabas
- Department of Computer Science and Engineering, CHRIST (Deemed to be University), Kengeri Campus, Karnataka, India
| | - Latha Parthiban
- Department of Computer Science and Engineering, Community College, Pondicherry University, Puducherry, India
| | - Mamoon Rashid
- School of Information Communication and Technology, Bahrain Polytechnic, Isa Town, Kingdom of Bahrain
| | - Sultan S. Alshamrani
- Department of Information Technology, College of Computers and Information Technology, Taif University, Taif, Saudi Arabia
| | | |
Collapse
|
2
|
Chu Y, Ren H, Qiao L, Liu M. Resting-State Functional MRI Adaptation with Attention Graph Convolution Network for Brain Disorder Identification. Brain Sci 2022; 12:1413. [PMID: 36291346 PMCID: PMC9599902 DOI: 10.3390/brainsci12101413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Multi-site resting-state functional magnetic resonance imaging (rs-fMRI) data can facilitate learning-based approaches to train reliable models on more data. However, significant data heterogeneity between imaging sites, caused by different scanners or protocols, can negatively impact the generalization ability of learned models. In addition, previous studies have shown that graph convolution neural networks (GCNs) are effective in mining fMRI biomarkers. However, they generally ignore the potentially different contributions of brain regions- of-interest (ROIs) to automated disease diagnosis/prognosis. In this work, we propose a multi-site rs-fMRI adaptation framework with attention GCN (A2GCN) for brain disorder identification. Specifically, the proposed A2GCN consists of three major components: (1) a node representation learning module based on GCN to extract rs-fMRI features from functional connectivity networks, (2) a node attention mechanism module to capture the contributions of ROIs, and (3) a domain adaptation module to alleviate the differences in data distribution between sites through the constraint of mean absolute error and covariance. The A2GCN not only reduces data heterogeneity across sites, but also improves the interpretability of the learning algorithm by exploring important ROIs. Experimental results on the public ABIDE database demonstrate that our method achieves remarkable performance in fMRI-based recognition of autism spectrum disorders.
Collapse
Affiliation(s)
- Ying Chu
- School of Mathematics Science, Liaocheng University, Liaocheng 252000, China
| | - Haonan Ren
- School of Mathematics Science, Liaocheng University, Liaocheng 252000, China
| | - Lishan Qiao
- School of Mathematics Science, Liaocheng University, Liaocheng 252000, China
| | - Mingxia Liu
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
3
|
Wang Q, Li L, Qiao L, Liu M. Adaptive Multimodal Neuroimage Integration for Major Depression Disorder Detection. Front Neuroinform 2022; 16:856175. [PMID: 35571867 PMCID: PMC9100686 DOI: 10.3389/fninf.2022.856175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Major depressive disorder (MDD) is one of the most common mental health disorders that can affect sleep, mood, appetite, and behavior of people. Multimodal neuroimaging data, such as functional and structural magnetic resonance imaging (MRI) scans, have been widely used in computer-aided detection of MDD. However, previous studies usually treat these two modalities separately, without considering their potentially complementary information. Even though a few studies propose integrating these two modalities, they usually suffer from significant inter-modality data heterogeneity. In this paper, we propose an adaptive multimodal neuroimage integration (AMNI) framework for automated MDD detection based on functional and structural MRIs. The AMNI framework consists of four major components: (1) a graph convolutional network to learn feature representations of functional connectivity networks derived from functional MRIs, (2) a convolutional neural network to learn features of T1-weighted structural MRIs, (3) a feature adaptation module to alleviate inter-modality difference, and (4) a feature fusion module to integrate feature representations extracted from two modalities for classification. To the best of our knowledge, this is among the first attempts to adaptively integrate functional and structural MRIs for neuroimaging-based MDD analysis by explicitly alleviating inter-modality heterogeneity. Extensive evaluations are performed on 533 subjects with resting-state functional MRI and T1-weighted MRI, with results suggesting the efficacy of the proposed method.
Collapse
Affiliation(s)
- Qianqian Wang
- School of Mathematics Science, Liaocheng University, Liaocheng, China
| | - Long Li
- Taian Tumor Prevention and Treatment Hospital, Taian, China
| | - Lishan Qiao
- School of Mathematics Science, Liaocheng University, Liaocheng, China
| | - Mingxia Liu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
4
|
Chen L, Qiao H, Zhu F. Alzheimer's Disease Diagnosis With Brain Structural MRI Using Multiview-Slice Attention and 3D Convolution Neural Network. Front Aging Neurosci 2022; 14:871706. [PMID: 35557839 PMCID: PMC9088013 DOI: 10.3389/fnagi.2022.871706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/17/2022] [Indexed: 01/01/2023] Open
Abstract
Numerous artificial intelligence (AI) based approaches have been proposed for automatic Alzheimer's disease (AD) prediction with brain structural magnetic resonance imaging (sMRI). Previous studies extract features from the whole brain or individual slices separately, ignoring the properties of multi-view slices and feature complementarity. For this reason, we present a novel AD diagnosis model based on the multiview-slice attention and 3D convolution neural network (3D-CNN). Specifically, we begin by extracting the local slice-level characteristic in various dimensions using multiple sub-networks. Then we proposed a slice-level attention mechanism to emphasize specific 2D-slices to exclude the redundancy features. After that, a 3D-CNN was employed to capture the global subject-level structural changes. Finally, all these 2D and 3D features were fused to obtain more discriminative representations. We conduct the experiments on 1,451 subjects from ADNI-1 and ADNI-2 datasets. Experimental results showed the superiority of our model over the state-of-the-art approaches regarding dementia classification. Specifically, our model achieves accuracy values of 91.1 and 80.1% on ADNI-1 for AD diagnosis and mild cognitive impairment (MCI) convention prediction, respectively.
Collapse
Affiliation(s)
- Lin Chen
- Chongqing Key Laboratory of Big Data and Intelligent Computing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Hezhe Qiao
- Chongqing Key Laboratory of Big Data and Intelligent Computing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fan Zhu
- Chongqing Key Laboratory of Big Data and Intelligent Computing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| |
Collapse
|
5
|
Chu Y, Wang G, Cao L, Qiao L, Liu M. Multi-Scale Graph Representation Learning for Autism Identification With Functional MRI. Front Neuroinform 2022; 15:802305. [PMID: 35095453 PMCID: PMC8792610 DOI: 10.3389/fninf.2021.802305] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022] Open
Abstract
Resting-state functional MRI (rs-fMRI) has been widely used for the early diagnosis of autism spectrum disorder (ASD). With rs-fMRI, the functional connectivity networks (FCNs) are usually constructed for representing each subject, with each element representing the pairwise relationship between brain region-of-interests (ROIs). Previous studies often first extract handcrafted network features (such as node degree and clustering coefficient) from FCNs and then construct a prediction model for ASD diagnosis, which largely requires expert knowledge. Graph convolutional networks (GCNs) have recently been employed to jointly perform FCNs feature extraction and ASD identification in a data-driven manner. However, existing studies tend to focus on the single-scale topology of FCNs by using one single atlas for ROI partition, thus ignoring potential complementary topology information of FCNs at different spatial scales. In this paper, we develop a multi-scale graph representation learning (MGRL) framework for rs-fMRI based ASD diagnosis. The MGRL consists of three major components: (1) multi-scale FCNs construction using multiple brain atlases for ROI partition, (2) FCNs representation learning via multi-scale GCNs, and (3) multi-scale feature fusion and classification for ASD diagnosis. The proposed MGRL is evaluated on 184 subjects from the public Autism Brain Imaging Data Exchange (ABIDE) database with rs-fMRI scans. Experimental results suggest the efficacy of our MGRL in FCN feature extraction and ASD identification, compared with several state-of-the-art methods.
Collapse
Affiliation(s)
- Ying Chu
- School of Mathematics Science, Liaocheng University, Liaocheng, China
- Department of Information Science and Technology, Taishan University, Taian, China
| | - Guangyu Wang
- School of Mathematics Science, Liaocheng University, Liaocheng, China
| | - Liang Cao
- Taian Tumor Prevention and Treatment Hospital, Taian, China
| | - Lishan Qiao
- School of Mathematics Science, Liaocheng University, Liaocheng, China
- *Correspondence: Lishan Qiao
| | - Mingxia Liu
- Department of Information Science and Technology, Taishan University, Taian, China
- Mingxia Liu
| |
Collapse
|
6
|
Guo L, Zhang Y, Liu Q, Guo K, Wang Z. Multi-band network fusion for Alzheimer's disease identification with functional MRI. Front Psychiatry 2022; 13:1070198. [PMID: 36590604 PMCID: PMC9798220 DOI: 10.3389/fpsyt.2022.1070198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION The analysis of functional brain networks (FBNs) has become a promising and powerful tool for auxiliary diagnosis of brain diseases, such as Alzheimer's disease (AD) and its prodromal stage. Previous studies usually estimate FBNs using full band Blood Oxygen Level Dependent (BOLD) signal. However, a single band is not sufficient to capture the diagnostic and prognostic information contained in multiple frequency bands. METHOD To address this issue, we propose a novel multi-band network fusion framework (MBNF) to combine the various information (e.g., the diversification of structural features) of multi-band FBNs. We first decompose the BOLD signal adaptively into two frequency bands named high-frequency band and low-frequency band by the ensemble empirical mode decomposition (EEMD). Then the similarity network fusion (SNF) is performed to blend two networks constructed by two frequency bands together into a multi-band fusion network. In addition, we extract the features of the fused network towards a better classification performance. RESULT To verify the validity of the scheme, we conduct our MBNF method on the public ADNI database for identifying subjects with AD/MCI from normal controls. DISCUSSION Experimental results demonstrate that the proposed scheme extracts rich multi-band network features and biomarker information, and also achieves better classification accuracy.
Collapse
Affiliation(s)
- Lingyun Guo
- School of Computer Science and Technology, Hainan University, Haikou, China
| | - Yangyang Zhang
- School of Computer Science and Technology, Hainan University, Haikou, China
| | - Qinghua Liu
- School of Computer Science and Technology, Hainan University, Haikou, China
| | - Kaiyu Guo
- School of Computer Science and Technology, Hainan University, Haikou, China
| | - Zhengxia Wang
- School of Computer Science and Technology, Hainan University, Haikou, China
| |
Collapse
|