1
|
Huang Z, Cheng XQ, Lu RR, Gao YP, Lv WZ, Liu K, Liu YN, Xiong L, Bi XJ, Deng YB. A Radiomics-Based Nomogram Using Ultrasound Carotid Plaque Evaluation For Predicting Cerebro-Cardiovascular Events In Asymptomatic Patients. Acad Radiol 2024; 31:5204-5216. [PMID: 38908923 DOI: 10.1016/j.acra.2024.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 06/24/2024]
Abstract
RATIONALE AND OBJECTIVES This study aims to assess whether a radiomics-based nomogram correlates with a higher risk of future cerebro-cardiovascular events in patients with asymptomatic carotid plaques. Additionally, it investigates the nomogram's contribution to the revised Framingham Stroke Risk Profile (rFSRP) for predicting cerebro-cardiovascular risk. MATERIALS AND METHODS Predictive models aimed at identifying an increased risk of future cerebro-cardiovascular events were developed and internally validated at one center, then externally validated at two other centers. Survival curves, constructed using the Kaplan-Meier method, were compared through the log-rank test. RESULTS This study included a total of 2009 patients (3946 images). The final nomogram was generated using multivariate Cox regression variables, including dyslipidemia, lumen diameter, plaque echogenicity, and ultrasonography (US)-based radiomics risk. The Harrell's concordance index (C-index) for predicting events-free survival (EFS) was 0.708 in the training cohort, 0.574 in the external validation cohort 1, 0.632 in the internal validation cohort, and 0.639 in the external validation cohort 2. The final nomogram showed a significant increase in C-index compared to the clinical, conventional US, and US-based radiomics models (all P < 0.05). Furthermore, the final nomogram-assisted method significantly improved the sensitivity and accuracy of radiologists' visual qualitative score of plaque (both P < 0.001). Among 1058 patients with corresponding 1588 plaque US images classified as low-risk by the rFSRP, 75 (7.1%) patients with corresponding 93 (5.9%) carotid plaque images were appropriately reclassified to the high-risk category by the final nomogram. CONCLUSION The radiomics-based nomogram demonstrated accurate prediction of cerebro-cardiovascular events in patients with asymptomatic carotid plaques. It also improved the sensitivity and accuracy of radiologists' visual qualitative score of carotid plaque and enhanced the risk stratification ability of rFSRP. SUMMARY The radiomics-based nomogram allowed accurate prediction of cerebro-cardiovascular events, especially ipsilateral ischemic stroke in patients with asymptomatic carotid atherosclerotic plaques. KEY RESULTS The radiomics-based nomogram allowed accurate prediction of cerebro-cardiovascular events, especially ipsilateral ischemic stroke in patients with asymptomatic carotid atherosclerotic plaques. The radiomics-based nomogram improved the sensitivity and accuracy of radiologists' visual qualitative score of carotid plaque. The radiomics-based nomogram improved the discrimination of high-risk populations from low-risk populations in asymptomatic patients with carotid atherosclerotic plaques and the risk stratification capability of the rFSRP.
Collapse
Affiliation(s)
- Zhe Huang
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Dadao, Wuhan 430030, China
| | - Xue-Qing Cheng
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Dadao, Wuhan 430030, China
| | - Rui-Rui Lu
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Dadao, Wuhan 430030, China
| | - Yi-Ping Gao
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Dadao, Wuhan 430030, China
| | - Wen-Zhi Lv
- Julei Technology, Artificial Intelligence, No. 1 R&D Building, S.&T.Park, Huazhong University of Science & Technology, East Lake Hi-Tech Development Zone, Wuhan, Hubei CN 430014, China
| | - Kun Liu
- Department of Medical Ultrasound, Hubei Province Third People's Hospital, 26 Zhongshan Avenue, Wuhan 430071, China
| | - Ya-Ni Liu
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Dadao, Wuhan 430030, China
| | - Li Xiong
- Department of Cardiovascular Ultrasound, Zhongnan Hospital, Wuhan University, 169 East Lake Road, Wuhan 430071, China
| | - Xiao-Jun Bi
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Dadao, Wuhan 430030, China
| | - You-Bin Deng
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Dadao, Wuhan 430030, China.
| |
Collapse
|
2
|
Zhou X, Meng J, Zhang K, Zheng H, Xi Q, Peng Y, Xu X, Gu J, Xia Q, Wei L, Wang P. Outcome prediction comparison of ischaemic areas' radiomics in acute anterior circulation non-lacunar infarction. Brain Commun 2024; 6:fcae393. [PMID: 39574430 PMCID: PMC11580218 DOI: 10.1093/braincomms/fcae393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/16/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024] Open
Abstract
The outcome prediction of acute anterior circulation non-lacunar infarction (AACNLI) is important for the precise clinical treatment of this disease. However, the accuracy of prognosis prediction is still limited. This study aims to develop and compare machine learning models based on MRI radiomics of multiple ischaemic-related areas for prognostic prediction in AACNLI. This retrospective multicentre study consecutively included 372 AACNLI patients receiving MRI examinations and conventional therapy between October 2020 and February 2023. These were grouped into training set, internal test set and external test set. MRI radiomics features were extracted from the mask diffusion-weighted imaging, mask apparent diffusion coefficient (ADC) and mask ADC620 by AACNLI segmentations. Grid search parameter tuning was performed on 12 feature selection and 9 machine learning algorithms, and algorithm combinations with the smallest rank-sum of area under the curve (AUC) was selected for model construction. The performances of all models were evaluated in the internal and external test sets. The AUC of radiomics model was larger than that of non-radiomics model with the same machine learning algorithm in the three mask types. The radiomics model using least absolute shrinkage and selection operator-random forest algorithm combination gained the smallest AUC rank-sum among all the algorithm combinations. The AUC of the model with ADC620 was 0.98 in the internal test set and 0.91 in the external test set, and the weighted average AUC in the three sets was 0.96, the largest among three mask types. The Shapley additive explanations values of the maximum of National Institute of Health Stroke Scale score within 7 days from onset (7-d NIHSSmax), stroke-associated pneumonia and admission Glasgow coma scale score ranked top three among the features in AACNLI outcome prediction. In conclusion, the random forest model with mask ADC620 can accurately predict the AACNLI outcome and reveal the risk factors leading to the poor prognosis.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Jinxi Meng
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Kangwei Zhang
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Hui Zheng
- Department of Radiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Qian Xi
- Department of Radiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Yifeng Peng
- Department of Radiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Xiaowen Xu
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Jianjun Gu
- Department of Radiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Qing Xia
- SenseTime Research, Shanghai 200232, China
| | - Lai Wei
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Peijun Wang
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
- Institute of Medical Imaging Artificial Intelligence, Tongji University School of Medicine, Shanghai 200065, China
| |
Collapse
|
3
|
Fujita S, Hagiwara A, Kimura K, Taniguchi Y, Ito K, Nagao H, Takizawa M, Uchida W, Kamagata K, Tateishi U, Aoki S. Three-dimensional simultaneous T1 and T2* relaxation times and quantitative susceptibility mapping at 3 T: A multicenter validation study. Magn Reson Imaging 2024; 112:100-106. [PMID: 38971266 DOI: 10.1016/j.mri.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
We aimed to determine the intra-site repeatability and cross-site reproducibility of T1 and T2* relaxation times and quantitative susceptibility (χ) values obtained through quantitative parameter mapping (QPM) at 3 T. This prospective study included three 3-T scanners with the same hardware and software platform at three sites. The brains of twelve healthy volunteers were scanned three times using QPM at three sites. Intra-site repeatability and cross-site reproducibility were evaluated based on voxel-wise and region-of-interest analyses. The within-subject coefficient of variation (wCV), within-subject standard deviation (wSD), linear regression, Bland-Altman plot, and intraclass correlation coefficient (ICC) were used for evaluation. The intra-site repeatability wCV was 11.9 ± 6.86% for T1 and 3.15 ± 0.03% for T2*, and wSD of χ at 3.35 ± 0.10 parts per billion (ppb). Intra-site ICC(1,k) values for T1, T2*, and χ were 0.878-0.904, 0.972-0.976, and 0.966-0.972, respectively, indicating high consistency within the same scanner. Linear regression analysis revealed a strong agreement between measurements from each site and the site-average measurement, with R-squared values ranging from 0.79 to 0.83 for T1, 0.94-0.95 for T2*, and 0.95-0.96 for χ. The cross-site wCV was 13.4 ± 5.47% for T1 and 3.69 ± 2.25% for T2*, and cross-site wSD of χ at 4.08 ± 3.22 ppb. The cross-site ICC(2,1) was 0.707, 0.913, and 0.902 for T1, T2*, and χ, respectively. QPM provides T1, T2*, and χ values with an intra-site repeatability of <12% and cross-site reproducibility of <14%. These findings may contribute to the development of multisite studies.
Collapse
Affiliation(s)
- Shohei Fujita
- Department of Radiology, Juntendo University, 1-2-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Department of Radiology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan.
| | - Akifumi Hagiwara
- Department of Radiology, Juntendo University, 1-2-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Koichiro Kimura
- Department of Radiology and Nuclear Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yo Taniguchi
- Medical Systems Research & Development Center, FUJIFILM Corporation
| | - Kosuke Ito
- Medical Systems Research & Development Center, FUJIFILM Healthcare Corporation
| | - Hisako Nagao
- Medical Systems Research & Development Center, FUJIFILM Healthcare Corporation
| | - Masahiro Takizawa
- Medical Systems Research & Development Center, FUJIFILM Healthcare Corporation
| | - Wataru Uchida
- Department of Radiology, Juntendo University, 1-2-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Department of Health Data Science, Faculty of Health Data Science, Juntendo University, 6-8-1 Hinode, Urayasu, Chiba 279-0013, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University, 1-2-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Ukihide Tateishi
- Department of Radiology and Nuclear Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University, 1-2-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Department of Health Data Science, Faculty of Health Data Science, Juntendo University, 6-8-1 Hinode, Urayasu, Chiba 279-0013, Japan
| |
Collapse
|
4
|
Beaudoin AM, Ho JK, Lam A, Thijs V. Radiomics Studies on Ischemic Stroke and Carotid Atherosclerotic Disease: A Reporting Quality Assessment. Can Assoc Radiol J 2024; 75:549-557. [PMID: 38420881 DOI: 10.1177/08465371241234545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
Objective: To assess the reporting quality of radiomics studies on ischemic stroke, intracranial and carotid atherosclerotic disease using the Image Biomarker Standardization Initiative (IBSI) reporting guidelines with the aim of finding avenues of improvement for future publications. Method: PubMed database was searched to identify relevant radiomics studies. Of 560 articles, 41 original research articles were included in this analysis. Based on IBSI radiomics reporting guidelines, checklists for CT-based and MRI-based studies were created to allow a structured and comprehensive evaluation of each study's adherence to these guidelines. Results: The main topics covered included radiomics studies were ischemic stroke, intracranial artery disease, and carotid atherosclerotic disease. The reporting checklist median score was 17/40 for the 20 CT-based radiomics studies and 22.5/50 for the 20 MRI-based studies. Basic items like imaging modality, region of interest, and image biomarker set utilized were included in all studies. However, details regarding image acquisition and reconstruction, post-acquisition image processing, and image biomarkers computation were inconsistently detailed across studies. Conclusion: The overall reporting quality of the included radiomics studies was suboptimal. These findings underscore a pressing need for improved reporting practices in radiomics research, to ensure validation and reproducibility of results. Our study provides insights into current reporting standards and highlights specific areas where adherence to IBSI guidelines could be significantly improved.
Collapse
Affiliation(s)
- Ann-Marie Beaudoin
- Université de Sherbrooke, Sherbrooke, QC, Canada
- The Florey, Heidelberg, VIC, Australia
| | - Jan Kee Ho
- The Florey, Heidelberg, VIC, Australia
- Department of Neurology, Austin Health, Heidelberg, VIC, Australia
| | | | - Vincent Thijs
- The Florey, Heidelberg, VIC, Australia
- Department of Neurology, Austin Health, Heidelberg, VIC, Australia
- Department of Medicine, University of Melbourne, Heidelberg, VIC, Australia
| |
Collapse
|
5
|
Guo K, Zhu B, Li R, Xi J, Wang Q, Chen K, Shao Y, Liu J, Cao W, Liu Z, Di Z, Gu N. Machine learning-based nomogram: integrating MRI radiomics and clinical indicators for prognostic assessment in acute ischemic stroke. Front Neurol 2024; 15:1379031. [PMID: 38933326 PMCID: PMC11202100 DOI: 10.3389/fneur.2024.1379031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/29/2024] [Indexed: 06/28/2024] Open
Abstract
Background Acute Ischemic Stroke (AIS) remains a leading cause of mortality and disability worldwide. Rapid and precise prognostication of AIS is crucial for optimizing treatment strategies and improving patient outcomes. This study explores the integration of machine learning-derived radiomics signatures from multi-parametric MRI with clinical factors to forecast AIS prognosis. Objective To develop and validate a nomogram that combines a multi-MRI radiomics signature with clinical factors for predicting the prognosis of AIS. Methods This retrospective study involved 506 AIS patients from two centers, divided into training (n = 277) and validation (n = 229) cohorts. 4,682 radiomic features were extracted from T1-weighted, T2-weighted, and diffusion-weighted imaging. Logistic regression analysis identified significant clinical risk factors, which, alongside radiomics features, were used to construct a predictive clinical-radiomics nomogram. The model's predictive accuracy was evaluated using calibration and ROC curves, focusing on distinguishing between favorable (mRS ≤ 2) and unfavorable (mRS > 2) outcomes. Results Key findings highlight coronary heart disease, platelet-to-lymphocyte ratio, uric acid, glucose levels, homocysteine, and radiomics features as independent predictors of AIS outcomes. The clinical-radiomics model achieved a ROC-AUC of 0.940 (95% CI: 0.912-0.969) in the training set and 0.854 (95% CI: 0.781-0.926) in the validation set, underscoring its predictive reliability and clinical utility. Conclusion The study underscores the efficacy of the clinical-radiomics model in forecasting AIS prognosis, showcasing the pivotal role of artificial intelligence in fostering personalized treatment plans and enhancing patient care. This innovative approach promises to revolutionize AIS management, offering a significant leap toward more individualized and effective healthcare solutions.
Collapse
Affiliation(s)
- Kun Guo
- Xi'an Central Hospital, Xi’an, China
| | - Bo Zhu
- Xi'an Central Hospital, Xi’an, China
| | - Rong Li
- Xi'an Central Hospital, Xi’an, China
| | - Jing Xi
- Xi'an Central Hospital, Xi’an, China
| | - Qi Wang
- China-Japan Union Hospital of Jilin University, Changchun, China
| | - KongBo Chen
- Tongchuan Mining Bureau Central Hospital, Tongchuan, China
| | - Yuan Shao
- Tongchuan Mining Bureau Central Hospital, Tongchuan, China
| | - Jiaqi Liu
- Tongchuan Mining Bureau Central Hospital, Tongchuan, China
| | - Weili Cao
- Xi'an Central Hospital, Xi’an, China
| | | | | | | |
Collapse
|
6
|
Yang Y, Guo Y. Ischemic stroke outcome prediction with diversity features from whole brain tissue using deep learning network. Front Neurol 2024; 15:1394879. [PMID: 38765270 PMCID: PMC11099238 DOI: 10.3389/fneur.2024.1394879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/12/2024] [Indexed: 05/21/2024] Open
Abstract
Objectives This study proposed an outcome prediction method to improve the accuracy and efficacy of ischemic stroke outcome prediction based on the diversity of whole brain features, without using basic information about patients and image features in lesions. Design In this study, we directly extracted dynamic radiomics features (DRFs) from dynamic susceptibility contrast perfusion-weighted imaging (DSC-PWI) and further extracted static radiomics features (SRFs) and static encoding features (SEFs) from the minimum intensity projection (MinIP) map, which was generated from the time dimension of DSC-PWI images. After selecting whole brain features Ffuse from the combinations of DRFs, SRFs, and SEFs by the Lasso algorithm, various machine and deep learning models were used to evaluate the role of Ffuse in predicting stroke outcomes. Results The experimental results show that the feature Ffuse generated from DRFs, SRFs, and SEFs (Resnet 18) outperformed other single and combination features and achieved the best mean score of 0.971 both on machine learning models and deep learning models and the 95% CI were (0.703, 0.877) and (0.92, 0.983), respectively. Besides, the deep learning models generally performed better than the machine learning models. Conclusion The method used in our study can achieve an accurate assessment of stroke outcomes without segmentation of ischemic lesions, which is of great significance for rapid, efficient, and accurate clinical stroke treatment.
Collapse
Affiliation(s)
- Yingjian Yang
- School of Electrical and Information Engineering, Northeast Petroleum University, Daqing, China
- Shenzhen Lanmage Medical Technology Co., Ltd, Shenzhen, Guangdong, China
| | - Yingwei Guo
- School of Electrical and Information Engineering, Northeast Petroleum University, Daqing, China
| |
Collapse
|
7
|
Yang TH, Su YY, Tsai CL, Lin KH, Lin WY, Sung SF. Magnetic resonance imaging-based deep learning imaging biomarker for predicting functional outcomes after acute ischemic stroke. Eur J Radiol 2024; 174:111405. [PMID: 38447430 DOI: 10.1016/j.ejrad.2024.111405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/05/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024]
Abstract
PURPOSE Clinical risk scores are essential for predicting outcomes in stroke patients. The advancements in deep learning (DL) techniques provide opportunities to develop prediction applications using magnetic resonance (MR) images. We aimed to develop an MR-based DL imaging biomarker for predicting outcomes in acute ischemic stroke (AIS) and evaluate its additional benefit to current risk scores. METHOD This study included 3338 AIS patients. We trained a DL model using deep neural network architectures on MR images and radiomics to predict poor functional outcomes at three months post-stroke. The DL model generated a DL score, which served as the DL imaging biomarker. We compared the predictive performance of this biomarker to five risk scores on a holdout test set. Additionally, we assessed whether incorporating the imaging biomarker into the risk scores improved the predictive performance. RESULTS The DL imaging biomarker achieved an area under the receiver operating characteristic curve (AUC) of 0.788. The AUCs of the five studied risk scores were 0.789, 0.793, 0.804, 0.810, and 0.826, respectively. The imaging biomarker's predictive performance was comparable to four of the risk scores but inferior to one (p = 0.038). Adding the imaging biomarker to the risk scores improved the AUCs (p-values) to 0.831 (0.003), 0.825 (0.001), 0.834 (0.003), 0.836 (0.003), and 0.839 (0.177), respectively. The net reclassification improvement and integrated discrimination improvement indices also showed significant improvements (all p < 0.001). CONCLUSIONS Using DL techniques to create an MR-based imaging biomarker is feasible and enhances the predictive ability of current risk scores.
Collapse
Affiliation(s)
- Tzu-Hsien Yang
- Department of Radiology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City, Taiwan
| | - Ying-Ying Su
- Department of Radiology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City, Taiwan
| | - Chia-Ling Tsai
- Computer Science Department, Queens College, City University of New York, Flushing, NY, USA
| | - Kai-Hsuan Lin
- Department of Computer Science and Information Engineering, National Chung Cheng University, Chiayi, Taiwan
| | - Wei-Yang Lin
- Department of Computer Science and Information Engineering, National Chung Cheng University, Chiayi, Taiwan; Advanced Institute of Manufacturing with High-Tech Innovations, National Chung Cheng University, Chiayi, Taiwan.
| | - Sheng-Feng Sung
- Division of Neurology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City, Taiwan; Department of Beauty & Health Care, Min-Hwei Junior College of Health Care Management, Tainan, Taiwan.
| |
Collapse
|
8
|
Erdoğan MŞ, Arpak ES, Keles CSK, Villagra F, Işık EÖ, Afşar N, Yucesoy CA, Mur LAJ, Akanyeti O, Saybaşılı H. Biochemical, biomechanical and imaging biomarkers of ischemic stroke: Time for integrative thinking. Eur J Neurosci 2024; 59:1789-1818. [PMID: 38221768 DOI: 10.1111/ejn.16245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/12/2023] [Accepted: 12/16/2023] [Indexed: 01/16/2024]
Abstract
Stroke is one of the leading causes of adult disability affecting millions of people worldwide. Post-stroke cognitive and motor impairments diminish quality of life and functional independence. There is an increased risk of having a second stroke and developing secondary conditions with long-term social and economic impacts. With increasing number of stroke incidents, shortage of medical professionals and limited budgets, health services are struggling to provide a care that can break the vicious cycle of stroke. Effective post-stroke recovery hinges on holistic, integrative and personalized care starting from improved diagnosis and treatment in clinics to continuous rehabilitation and support in the community. To improve stroke care pathways, there have been growing efforts in discovering biomarkers that can provide valuable insights into the neural, physiological and biomechanical consequences of stroke and how patients respond to new interventions. In this review paper, we aim to summarize recent biomarker discovery research focusing on three modalities (brain imaging, blood sampling and gait assessments), look at some established and forthcoming biomarkers, and discuss their usefulness and complementarity within the context of comprehensive stroke care. We also emphasize the importance of biomarker guided personalized interventions to enhance stroke treatment and post-stroke recovery.
Collapse
Affiliation(s)
| | - Esra Sümer Arpak
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey
| | - Cemre Su Kaya Keles
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey
- Institute of Structural Mechanics and Dynamics in Aerospace Engineering, University of Stuttgart, Stuttgart, Germany
| | - Federico Villagra
- Department of Life Sciences, Aberystwyth University, Aberystwyth, Wales, UK
| | - Esin Öztürk Işık
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey
| | - Nazire Afşar
- Neurology, Acıbadem Mehmet Ali Aydınlar University, İstanbul, Turkey
| | - Can A Yucesoy
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey
| | - Luis A J Mur
- Department of Life Sciences, Aberystwyth University, Aberystwyth, Wales, UK
| | - Otar Akanyeti
- Department of Computer Science, Llandinam Building, Aberystwyth University, Aberystwyth, UK
| | - Hale Saybaşılı
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey
| |
Collapse
|
9
|
Gupta R, Bilgin C, Jabal MS, Kandemirli S, Ghozy S, Kobeissi H, Kallmes DF. Quality Assessment of Radiomics Studies on Functional Outcomes After Acute Ischemic Stroke-A Systematic Review. World Neurosurg 2024; 183:164-171. [PMID: 38056625 DOI: 10.1016/j.wneu.2023.11.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
OBJECTIVE Radiomics is a machine-learning method that extracts features from medical images. The objective of the present systematic review was to assess the quality of existing studies that use radiomics methods to predict functional outcomes in patients after acute ischemic stroke. METHODS Studies using radiomics-extracted features to predict functional outcomes among patients with acute ischemic stroke using the modified Rankin Scale were included. PubMed, Scopus, Web of Science, and Embase were screened using the terms "radiomics" and "texture" in combination with "stroke." Quality scores were calculated based on Radiomics Quality Score, the IBSI (Image Biomarkers Standardization Initiative), and the QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies 2). RESULTS Fourteen studies were included. The median total Radiomics Quality Score was 14.5 (13-16) out of 36. Domains 1, 5, and 6 on protocol quality and stability of imaging and segmentation, level of evidence, and use of open science and data, respectively, were poor. Median IBSI score was 2.5 (1-5) out of 6. Few studies included bias-field correction algorithms, isovoxel resampling, skull stripping, or gray-level discretization. Of 14 studies, none received +6 points, 1 received +5 points, 5 received +4 points, 1 study received +3 points, 5 received +2 points, 2 received +1 points, and none received 0 points. As per the QUADAS-2, 6/14 (42.9%) studies had a risk of bias concern and 0/14 (0%) had applicability concern. CONCLUSIONS The quality of the included studies was low to moderate. With increasing use of radiomics, future studies should attempt to adhere to and report established radiomics quality guidelines.
Collapse
Affiliation(s)
- Rishabh Gupta
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA; University of Minnesota Medical School, Minneapolis, Minnesota, USA.
| | - Cem Bilgin
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Mohamed S Jabal
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Sedat Kandemirli
- Department of Radiology, University of Iowa, Iowa City, Iowa, USA
| | - Sherief Ghozy
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Hassan Kobeissi
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA; Central Michigan University College of Medicine, Mount Pleasant, Michigan, USA
| | - David F Kallmes
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
10
|
Wei L, Pan X, Deng W, Chen L, Xi Q, Liu M, Xu H, Liu J, Wang P. Predicting long-term outcomes for acute ischemic stroke using multi-model MRI radiomics and clinical variables. Front Med (Lausanne) 2024; 11:1328073. [PMID: 38495120 PMCID: PMC10940383 DOI: 10.3389/fmed.2024.1328073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/20/2024] [Indexed: 03/19/2024] Open
Abstract
Purpose The objective of this study was to create and validate a novel prediction model that incorporated both multi-modal radiomics features and multi-clinical features, with the aim of accurately identifying acute ischemic stroke (AIS) patients who faced a higher risk of poor outcomes. Methods A cohort of 461 patients diagnosed with AIS from four centers was divided into a training cohort and a validation cohort. Radiomics features were extracted and selected from diffusion-weighted imaging (DWI) and apparent diffusion coefficient (ADC) images to create a radiomic signature. Prediction models were developed using multi-clinical and selected radiomics features from DWI and ADC. Results A total of 49 radiomics features were selected from DWI and ADC images by the least absolute shrinkage and selection operator (LASSO). Additionally, 20 variables were collected as multi-clinical features. In terms of predicting poor outcomes in validation set, the area under the curve (AUC) was 0.727 for the DWI radiomics model, 0.821 for the ADC radiomics model, 0.825 for the DWI + ADC radiomics model, and 0.808 for the multi-clinical model. Furthermore, a prediction model was built using all selected features, the AUC for predicting poor outcomes increased to 0.86. Conclusion Radiomics features extracted from DWI and ADC images can serve as valuable biomarkers for predicting poor clinical outcomes in patients with AIS. Furthermore, when these radiomics features were combined with multi-clinical features, the predictive performance was enhanced. The prediction model has the potential to provide guidance for tailoring rehabilitation therapies based on individual patient risks for poor outcomes.
Collapse
Affiliation(s)
- Lai Wei
- Department of Medical Imaging, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Medical Imaging Artificial Intelligence, Tongji University School of Medicine, Shanghai, China
| | - Xianpan Pan
- Department of Research United Imaging Intelligence Co., Ltd., Shanghai, China
| | - Wei Deng
- Department of Research United Imaging Intelligence Co., Ltd., Shanghai, China
| | - Lei Chen
- Department of Research United Imaging Intelligence Co., Ltd., Shanghai, China
| | - Qian Xi
- Department of Radiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ming Liu
- Department of Radiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Huali Xu
- Department of Radiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Liu
- Department of Radiology, Zhabei Central Hospital, Shanghai, China
| | - Peijun Wang
- Department of Medical Imaging, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Medical Imaging Artificial Intelligence, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Kong J, Zhang D. Current status and quality of radiomics studies for predicting outcome in acute ischemic stroke patients: a systematic review and meta-analysis. Front Neurol 2024; 14:1335851. [PMID: 38229595 PMCID: PMC10789857 DOI: 10.3389/fneur.2023.1335851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/15/2023] [Indexed: 01/18/2024] Open
Abstract
Background Pre-treatment prediction of reperfusion and long-term prognosis in acute ischemic stroke (AIS) patients is crucial for effective treatment and decision-making. Recent studies have demonstrated that the inclusion of radiomics data can improve the performance of predictive models. This paper reviews published studies focused on radiomics-based prediction of reperfusion and long-term prognosis in AIS patients. Methods We systematically searched PubMed, Web of Science, and Cochrane databases up to September 9, 2023, for studies on radiomics-based prediction of AIS patient outcomes. The methodological quality of the included studies was evaluated using the phase classification criteria, the radiomics quality scoring (RQS) tool, and the Prediction model Risk Of Bias Assessment Tool (PROBAST). Two separate meta-analyses were performed of these studies that predict long-term prognosis and reperfusion in AIS patients. Results Sixteen studies with sample sizes ranging from 67 to 3,001 were identified. Ten studies were classified as phase II, and the remaining were categorized as phase 0 (n = 2), phase I (n = 1), and phase III (n = 3). The mean RQS score of all studies was 39.41%, ranging from 5.56 to 75%. Most studies (87.5%, 14/16) were at high risk of bias due to their retrospective design. The remaining two studies were categorized as low risk and unclear risk, respectively. The pooled area under the curve (AUC) was 0.88 [95% confidence interval (CI) 0.84-0.92] for predicting the long-term prognosis and 0.80 (95% CI 0.74-0.86) for predicting reperfusion in AIS. Conclusion Radiomics has the potential to predict immediate reperfusion and long-term outcomes in AIS patients. Further external validation and evaluation within the clinical workflow can facilitate personalized treatment for AIS patients. This systematic review provides valuable insights for optimizing radiomics prediction systems for both reperfusion and long-term outcomes in AIS patients. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023461671, identifier CRD42023461671.
Collapse
Affiliation(s)
- Jinfen Kong
- Department of Radiology, Yuhuan Second People's Hospital, Yuhuan, Taizhou, Zhejiang, China
| | | |
Collapse
|
12
|
Liang J, Feng J, Lin Z, Wei J, Luo X, Wang QM, He B, Chen H, Ye Y. Research on prognostic risk assessment model for acute ischemic stroke based on imaging and multidimensional data. Front Neurol 2023; 14:1294723. [PMID: 38192576 PMCID: PMC10773779 DOI: 10.3389/fneur.2023.1294723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024] Open
Abstract
Accurately assessing the prognostic outcomes of patients with acute ischemic stroke and adjusting treatment plans in a timely manner for those with poor prognosis is crucial for intervening in modifiable risk factors. However, there is still controversy regarding the correlation between imaging-based predictions of complications in acute ischemic stroke. To address this, we developed a cross-modal attention module for integrating multidimensional data, including clinical information, imaging features, treatment plans, prognosis, and complications, to achieve complementary advantages. The fused features preserve magnetic resonance imaging (MRI) characteristics while supplementing clinical relevant information, providing a more comprehensive and informative basis for clinical diagnosis and treatment. The proposed framework based on multidimensional data for activity of daily living (ADL) scoring in patients with acute ischemic stroke demonstrates higher accuracy compared to other state-of-the-art network models, and ablation experiments confirm the effectiveness of each module in the framework.
Collapse
Affiliation(s)
- Jiabin Liang
- Postgraduate Cultivation Base of Guangzhou University of Chinese Medicine, Panyu Central Hospital, Guangzhou, China
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, China
- Medical Imaging Institute of Panyu, Guangzhou, China
| | - Jie Feng
- Radiology Department of Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhijie Lin
- Laboratory for Intelligent Information Processing, Guangdong University of Technology, Guangzhou, China
| | - Jinbo Wei
- Postgraduate Cultivation Base of Guangzhou University of Chinese Medicine, Panyu Central Hospital, Guangzhou, China
| | - Xun Luo
- Kerry Rehabilitation Medicine Research Institute, Shenzhen, China
| | - Qing Mei Wang
- Stroke Biological Recovery Laboratory, Spaulding Rehabilitation Hospital, Teaching Affiliate of Harvard Medical School, Charlestown, MA, United States
| | - Bingjie He
- Panyu Health Management Center, Guangzhou, China
| | - Hanwei Chen
- Postgraduate Cultivation Base of Guangzhou University of Chinese Medicine, Panyu Central Hospital, Guangzhou, China
- Medical Imaging Institute of Panyu, Guangzhou, China
- Panyu Health Management Center, Guangzhou, China
| | - Yufeng Ye
- Postgraduate Cultivation Base of Guangzhou University of Chinese Medicine, Panyu Central Hospital, Guangzhou, China
- Medical Imaging Institute of Panyu, Guangzhou, China
| |
Collapse
|
13
|
Wei P, Zhong H, Xie Q, Li J, Luo S, Guan X, Liang Z, Yue D. Machine learning-based radiomics to differentiate immune-mediated necrotizing myopathy from limb-girdle muscular dystrophy R2 using MRI. Front Neurol 2023; 14:1251025. [PMID: 37936913 PMCID: PMC10627227 DOI: 10.3389/fneur.2023.1251025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023] Open
Abstract
Objectives This study aimed to assess the feasibility of a machine learning-based radiomics tools to discriminate between Limb-girdle muscular dystrophy R2 (LGMDR2) and immune-mediated necrotizing myopathy (IMNM) using lower-limb muscle magnetic resonance imaging (MRI) examination. Methods After institutional review board approval, 30 patients with genetically proven LGMDR2 (12 females; age, 34.0 ± 11.3) and 45 patients with IMNM (28 females; age, 49.2 ± 16.6) who underwent lower-limb MRI examination including T1-weighted and interactive decomposition water and fat with echos asymmetric and least-squares estimation (IDEAL) sequences between July 2014 and August 2022 were included. Radiomics features of muscles were obtained, and four machine learning algorithms were conducted to select the optimal radiomics classifier for differential diagnosis. This selected algorithm was performed to construct the T1-weighted (TM), water-only (WM), or the combined model (CM) for calf-only, thigh-only, or the calf and thigh MR images, respectively. And their diagnostic performance was studied using area under the curve (AUC) and compared to the semi-quantitative model constructed by the modified Mercuri scale of calf and thigh muscles scored by two radiologists specialized in musculoskeletal imaging. Results The logistic regression (LR) model was the optimal radiomics model. The performance of the WM and CM for thigh-only images (AUC 0.893, 0.913) was better than those for calf-only images (AUC 0.846, 0.880) except the TM. For "calf + thigh" images, the TM, WM, and CM models always performed best (AUC 0.953, 0.907, 0.953) with excellent accuracy (92.0, 84.0, 88.0%). The AUCs of the Mercuri model of the calf, thigh, and "calf + thigh" images were 0.847, 0.900, and 0.953 with accuracy (84.0, 84.0, 88.0%). Conclusion Machine learning-based radiomics models can differentiate LGMDR2 from IMNM, performing better than visual assessment. The model built by combining calf and thigh images presents excellent diagnostic efficiency.
Collapse
Affiliation(s)
- Ping Wei
- Department of Radiology, Jing’an District Center Hospital of Shanghai, Fudan University, Shanghai, China
| | - Huahua Zhong
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qian Xie
- Department of Radiology, Jing’an District Center Hospital of Shanghai, Fudan University, Shanghai, China
| | - Jin Li
- Department of Radiology, Jing’an District Center Hospital of Shanghai, Fudan University, Shanghai, China
| | - Sushan Luo
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xueni Guan
- Department of Radiology, Jing’an District Center Hospital of Shanghai, Fudan University, Shanghai, China
| | - Zonghui Liang
- Department of Radiology, Jing’an District Center Hospital of Shanghai, Fudan University, Shanghai, China
| | - Dongyue Yue
- Department of Neurology, Jing’an District Center Hospital of Shanghai, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Hagiwara A, Fujita S, Kurokawa R, Andica C, Kamagata K, Aoki S. Multiparametric MRI: From Simultaneous Rapid Acquisition Methods and Analysis Techniques Using Scoring, Machine Learning, Radiomics, and Deep Learning to the Generation of Novel Metrics. Invest Radiol 2023; 58:548-560. [PMID: 36822661 PMCID: PMC10332659 DOI: 10.1097/rli.0000000000000962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/10/2023] [Indexed: 02/25/2023]
Abstract
ABSTRACT With the recent advancements in rapid imaging methods, higher numbers of contrasts and quantitative parameters can be acquired in less and less time. Some acquisition models simultaneously obtain multiparametric images and quantitative maps to reduce scan times and avoid potential issues associated with the registration of different images. Multiparametric magnetic resonance imaging (MRI) has the potential to provide complementary information on a target lesion and thus overcome the limitations of individual techniques. In this review, we introduce methods to acquire multiparametric MRI data in a clinically feasible scan time with a particular focus on simultaneous acquisition techniques, and we discuss how multiparametric MRI data can be analyzed as a whole rather than each parameter separately. Such data analysis approaches include clinical scoring systems, machine learning, radiomics, and deep learning. Other techniques combine multiple images to create new quantitative maps associated with meaningful aspects of human biology. They include the magnetic resonance g-ratio, the inner to the outer diameter of a nerve fiber, and the aerobic glycolytic index, which captures the metabolic status of tumor tissues.
Collapse
Affiliation(s)
- Akifumi Hagiwara
- From theDepartment of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Shohei Fujita
- From theDepartment of Radiology, Juntendo University School of Medicine, Tokyo, Japan
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryo Kurokawa
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Division of Neuroradiology, Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - Christina Andica
- From theDepartment of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Koji Kamagata
- From theDepartment of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Shigeki Aoki
- From theDepartment of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
15
|
Sun Y, Zhuang Y, Zhu J, Song B, Wang H. Texture analysis of apparent diffusion coefficient maps in predicting the clinical functional outcomes of acute ischemic stroke. Front Neurol 2023; 14:1132318. [PMID: 37251234 PMCID: PMC10213640 DOI: 10.3389/fneur.2023.1132318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/11/2023] [Indexed: 05/31/2023] Open
Abstract
Purpose To investigate texture analysis (TA) based on apparent diffusion coefficient (ADC) map in predicting acute ischemic stroke (AIS) prognosis and discriminating TA features in stroke subtypes. Methods This retrospective study included patients with AIS between January 2018 and April 2021. The patients were assigned to the favorable [modified Rankin Scale (mRS) score ≤ 2] and unfavorable (mRS score > 2) outcome groups. All patients underwent stroke subtyping according to the Trial of Org 10,172 in Acute Stroke Treatment (TOAST) classification. The TA features were extracted from infarction lesions on the ADC map. The demographic characteristics, clinical characteristics, and texture features were used to construct prediction models with recurrent neural network (RNN). The receiver operating characteristic (ROC) curves were implemented to evaluate the performance of the predictive models. Results A total of 1,003 patients (682 male; mean age 65.90 ± 12.44) with AIS having documented the 90-day mRS score were identified, including 840 with favorable outcomes. In the validation set, the area under the curve (AUC) of the predictive model using only clinical characteristics achieved an AUC of 0.56, texture model 0.77, the model combining both clinical and texture features showed better with an AUC of 0.78. The texture feature profiles differed between large artery atherosclerosis (LAA) and small artery occlusion (SAO) subtypes (all p < 0.05). The AUC of combined prediction models for LAA and SAO subtypes was 0.80 and 0.81. Conclusion Texture analysis based on ADC map could be useful as an adjunctive tool for predicting ischemic stroke prognosis.
Collapse
|
16
|
Liu J, Wu Y, Jia W, Han M, Chen Y, Li J, Wu B, Yin S, Zhang X, Chen J, Yu P, Luo H, Tu J, Zhou F, Cheng X, Yi Y. Prediction of recurrence of ischemic stroke within 1 year of discharge based on machine learning MRI radiomics. Front Neurosci 2023; 17:1110579. [PMID: 37214402 PMCID: PMC10192708 DOI: 10.3389/fnins.2023.1110579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/06/2023] [Indexed: 05/24/2023] Open
Abstract
Purpose This study aimed to investigate the value of a machine learning-based magnetic resonance imaging (MRI) radiomics model in predicting the risk of recurrence within 1 year following an acute ischemic stroke (AIS). Methods The MRI and clinical data of 612 patients diagnosed with AIS at the Second Affiliated Hospital of Nanchang University from March 1, 2019, to March 5, 2021, were obtained. The patients were divided into recurrence and non-recurrence groups according to whether they had a recurrent stroke within 1 year after discharge. Randomized splitting was used to divide the data into training and validation sets using a ratio of 7:3. Two radiologists used the 3D-slicer software to label the lesions on brain diffusion-weighted (DWI) MRI sequences. Radiomics features were extracted from the annotated images using the pyradiomics software package, and the features were filtered using the Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis. Four machine learning algorithms, logistic regression (LR), Support Vector Classification (SVC), LightGBM, and Random forest (RF), were used to construct a recurrence prediction model. For each algorithm, three models were constructed based on the MRI radiomics features, clinical features, and combined MRI radiomics and clinical features. The sensitivity, specificity, and area under the receiver operating characteristic (ROC) curve (AUC) were used to compare the predictive efficacy of the models. Results Twenty features were selected from 1,037 radiomics features extracted from DWI images. The LightGBM model based on data with three different features achieved the best prediction accuracy from all 4 models in the validation set. The LightGBM model based solely on radiomics features achieved a sensitivity, specificity, and AUC of 0.65, 0.671, and 0.647, respectively, and the model based on clinical data achieved a sensitivity, specificity, and AUC of 0.7, 0.799, 0.735, respectively. The sensitivity, specificity, and AUC of the LightGBM model base on both radiomics and clinical features achieved the best performance with a sensitivity, specificity, and AUC of 0.85, 0.805, 0.789, respectively. Conclusion The ischemic stroke recurrence prediction model based on LightGBM achieved the best prediction of recurrence within 1 year following an AIS. The combination of MRI radiomics features and clinical data improved the prediction performance of the model.
Collapse
Affiliation(s)
- Jianmo Liu
- Department of Medical Big Data Research Centre, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yifan Wu
- Department of Medical Big Data Research Centre, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- School of Public Health, Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Weijie Jia
- Department of Medical Big Data Research Centre, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- School of Public Health, Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Mengqi Han
- Department of Medical Big Data Research Centre, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- School of Public Health, Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Yongsen Chen
- Department of Medical Big Data Research Centre, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- School of Public Health, Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Jingyi Li
- Department of Medical Big Data Research Centre, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- School of Public Health, Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Bin Wu
- Department of Medical Big Data Research Centre, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- School of Public Health, Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Shujuan Yin
- Department of Medical Big Data Research Centre, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- School of Public Health, Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Xiaolin Zhang
- Department of Medical Big Data Research Centre, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- School of Public Health, Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Jibiao Chen
- Department of Medical Big Data Research Centre, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- School of Public Health, Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Pengfei Yu
- Department of Medical Big Data Research Centre, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Haowen Luo
- Department of Medical Big Data Research Centre, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianglong Tu
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fan Zhou
- Department of Medical Big Data Research Centre, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xuexin Cheng
- Biological Resource Center, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yingping Yi
- Department of Medical Big Data Research Centre, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
17
|
Zhang X, Miao J, Yang J, Liu C, Huang J, Song J, Xie D, Yue C, Kong W, Hu J, Luo W, Liu S, Li F, Zi W. DWI-Based Radiomics Predicts the Functional Outcome of Endovascular Treatment in Acute Basilar Artery Occlusion. AJNR Am J Neuroradiol 2023; 44:536-542. [PMID: 37080720 PMCID: PMC10171394 DOI: 10.3174/ajnr.a7851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/15/2023] [Indexed: 04/22/2023]
Abstract
BACKGROUND AND PURPOSE Endovascular treatment is a reference treatment for acute basilar artery occlusion (ABAO). However, no established and specific methods are available for the preoperative screening of patients with ABAO suitable for endovascular treatment. This study explores the potential value of DWI-based radiomics in predicting the functional outcomes of endovascular treatment in ABAO. MATERIALS AND METHODS Patients with ABAO treated with endovascular treatment from the BASILAR registry (91 patients in the training cohort) and the hospitals in the Northwest of China (31 patients for the external testing cohort) were included in this study. The Mann-Whitney U test, random forests algorithm, and least absolute shrinkage and selection operator were used to reduce the feature dimension. A machine learning model was developed on the basis of the training cohort to predict the prognosis of endovascular treatment. The performance of the model was evaluated on the independent external testing cohort. RESULTS A subset of radiomics features (n = 6) was used to predict the functional outcomes in patients with ABAO. The areas under the receiver operating characteristic curve of the radiomics model were 0.870 and 0.781 in the training cohort and testing cohort, respectively. The accuracy of the radiomics model was 77.4%, with a sensitivity of 78.9%, specificity of 75%, positive predictive value of 83.3%, and negative predictive value of 69.2% in the testing cohort. CONCLUSIONS DWI-based radiomics can predict the prognosis of endovascular treatment in patients with ABAO, hence allowing a potentially better selection of patients who are most likely to benefit from this treatment.
Collapse
Affiliation(s)
- X Zhang
- From the Department of Neurology (X.Z., J.M., J.Y., C.L., J.H., J.S., D.X., C.Y., W.K., J.H., W.L., S.L., F.L., W.Z.), Xinqiao Hospital and The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Neurology (X.Z.), The Affiliated Hospital of Northwest University Xi'an No.3 Hospital, Xian, China
| | - J Miao
- From the Department of Neurology (X.Z., J.M., J.Y., C.L., J.H., J.S., D.X., C.Y., W.K., J.H., W.L., S.L., F.L., W.Z.), Xinqiao Hospital and The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Neurology (J.M.), Xianyang Hospital of Yan'an University, Xianyang, China
| | - J Yang
- From the Department of Neurology (X.Z., J.M., J.Y., C.L., J.H., J.S., D.X., C.Y., W.K., J.H., W.L., S.L., F.L., W.Z.), Xinqiao Hospital and The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - C Liu
- From the Department of Neurology (X.Z., J.M., J.Y., C.L., J.H., J.S., D.X., C.Y., W.K., J.H., W.L., S.L., F.L., W.Z.), Xinqiao Hospital and The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - J Huang
- From the Department of Neurology (X.Z., J.M., J.Y., C.L., J.H., J.S., D.X., C.Y., W.K., J.H., W.L., S.L., F.L., W.Z.), Xinqiao Hospital and The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - J Song
- From the Department of Neurology (X.Z., J.M., J.Y., C.L., J.H., J.S., D.X., C.Y., W.K., J.H., W.L., S.L., F.L., W.Z.), Xinqiao Hospital and The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - D Xie
- From the Department of Neurology (X.Z., J.M., J.Y., C.L., J.H., J.S., D.X., C.Y., W.K., J.H., W.L., S.L., F.L., W.Z.), Xinqiao Hospital and The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - C Yue
- From the Department of Neurology (X.Z., J.M., J.Y., C.L., J.H., J.S., D.X., C.Y., W.K., J.H., W.L., S.L., F.L., W.Z.), Xinqiao Hospital and The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - W Kong
- From the Department of Neurology (X.Z., J.M., J.Y., C.L., J.H., J.S., D.X., C.Y., W.K., J.H., W.L., S.L., F.L., W.Z.), Xinqiao Hospital and The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - J Hu
- From the Department of Neurology (X.Z., J.M., J.Y., C.L., J.H., J.S., D.X., C.Y., W.K., J.H., W.L., S.L., F.L., W.Z.), Xinqiao Hospital and The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - W Luo
- From the Department of Neurology (X.Z., J.M., J.Y., C.L., J.H., J.S., D.X., C.Y., W.K., J.H., W.L., S.L., F.L., W.Z.), Xinqiao Hospital and The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - S Liu
- From the Department of Neurology (X.Z., J.M., J.Y., C.L., J.H., J.S., D.X., C.Y., W.K., J.H., W.L., S.L., F.L., W.Z.), Xinqiao Hospital and The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - F Li
- From the Department of Neurology (X.Z., J.M., J.Y., C.L., J.H., J.S., D.X., C.Y., W.K., J.H., W.L., S.L., F.L., W.Z.), Xinqiao Hospital and The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - W Zi
- From the Department of Neurology (X.Z., J.M., J.Y., C.L., J.H., J.S., D.X., C.Y., W.K., J.H., W.L., S.L., F.L., W.Z.), Xinqiao Hospital and The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
18
|
Sohn B, Won SY. Quality assessment of stroke radiomics studies: Promoting clinical application. Eur J Radiol 2023; 161:110752. [PMID: 36878154 DOI: 10.1016/j.ejrad.2023.110752] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
PURPOSE To evaluate the quality of radiomics studies on stroke using a radiomics quality score (RQS), Minimum Information for Medial AI reporting (MINIMAR) and Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) to promote clinical application. METHODS PubMed MEDLINE and Embase were searched to identify radiomics studies on stroke. Of 464 articles, 52 relevant original research articles were included. The RQS, MINIMAR and TRIPOD were scored to evaluate the quality of the studies by neuroradiologists. RESULTS Only four studies (7.7 %) performed external validation. The mean RQS was 3.2 of 36 (8.9 %), and the basic adherence rate was 24.9 %. The adherence rate was low for conducting phantom study (1.9 %), stating comparison to 'gold standard' (1.9 %), offering potential clinical utility (13.5 %) and performing cost-effectiveness analysis (1.9 %). None of the studies performed a test-retest, stated biologic correlation, conducted prospective studies, or opened codes and data to the public, resulting in low RQS. The total MINIMAR adherence rate was 47.4 %. The overall adherence rate for TRIPOD was 54.6 %, with low scores for reporting the title (2.0 %), key elements of the study setting (6.1 %), and explaining the sample size (2.0 %). CONCLUSIONS The overall radiomics reporting quality and reporting of published radiomics studies on stoke was suboptimal. More thorough validation and open data are needed to increase clinical applicability of radiomics studies.
Collapse
Affiliation(s)
- Beomseok Sohn
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - So Yeon Won
- Department of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
19
|
MRI Radiomics and Predictive Models in Assessing Ischemic Stroke Outcome-A Systematic Review. Diagnostics (Basel) 2023; 13:diagnostics13050857. [PMID: 36900001 PMCID: PMC10000411 DOI: 10.3390/diagnostics13050857] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Stroke is a leading cause of disability and mortality, resulting in substantial socio-economic burden for healthcare systems. With advances in artificial intelligence, visual image information can be processed into numerous quantitative features in an objective, repeatable and high-throughput fashion, in a process known as radiomics analysis (RA). Recently, investigators have attempted to apply RA to stroke neuroimaging in the hope of promoting personalized precision medicine. This review aimed to evaluate the role of RA as an adjuvant tool in the prognosis of disability after stroke. We conducted a systematic review following the PRISMA guidelines, searching PubMed and Embase using the keywords: 'magnetic resonance imaging (MRI)', 'radiomics', and 'stroke'. The PROBAST tool was used to assess the risk of bias. Radiomics quality score (RQS) was also applied to evaluate the methodological quality of radiomics studies. Of the 150 abstracts returned by electronic literature research, 6 studies fulfilled the inclusion criteria. Five studies evaluated predictive value for different predictive models (PMs). In all studies, the combined PMs consisting of clinical and radiomics features have achieved the best predictive performance compared to PMs based only on clinical or radiomics features, the results varying from an area under the ROC curve (AUC) of 0.80 (95% CI, 0.75-0.86) to an AUC of 0.92 (95% CI, 0.87-0.97). The median RQS of the included studies was 15, reflecting a moderate methodological quality. Assessing the risk of bias using PROBAST, potential high risk of bias in participants selection was identified. Our findings suggest that combined models integrating both clinical and advanced imaging variables seem to better predict the patients' disability outcome group (favorable outcome: modified Rankin scale (mRS) ≤ 2 and unfavorable outcome: mRS > 2) at three and six months after stroke. Although radiomics studies' findings are significant in research field, these results should be validated in multiple clinical settings in order to help clinicians to provide individual patients with optimal tailor-made treatment.
Collapse
|
20
|
Xu Q, Zhu Y, Zhang X, Kong D, Duan S, Guo L, Yin X, Jiang L, Liu Z, Yang W. Clinical features and FLAIR radiomics nomogram for predicting functional outcomes after thrombolysis in ischaemic stroke. Front Neurosci 2023; 17:1063391. [PMID: 36908776 PMCID: PMC9992187 DOI: 10.3389/fnins.2023.1063391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/13/2023] [Indexed: 02/25/2023] Open
Abstract
Objective We explored whether radiomics features extracted from diffusion-weighted imaging (DWI) and fluid-attenuated inversion recovery (FLAIR) images can predict the clinical outcome of patients with acute ischaemic stroke. This study was conducted to investigate and validate a radiomics nomogram for predicting acute ischaemic stroke prognosis. Methods A total of 257 patients with acute ischaemic stroke from three clinical centres were retrospectively assessed from February 2019 to July 2022. According to the modified Rankin scale (mRS) at 3 months, the patients were divided into a favourable outcome group (mRS of 0-2) and an unfavourable outcome group (mRS of 3-6). The high-throughput features from the regions of interest (ROIs) within the radiologist-drawn contour by AK software were extracted. We used two feature selection methods, minimum redundancy and maximum (mRMR) and the least absolute shrinkage and selection operator algorithm (LASSO), to select the features. Three radiomics models (DWI, FLAIR, and DWI-FLAIR) were established. A radiomics nomogram with patient characteristics and radiomics signature was built using a multivariate logistic regression model. The performance of the nomogram was evaluated in the test and validation sets. Ultimately, decision curve analysis was implemented to assess the clinical value of the nomogram. Results The FLAIR, DWI, and DWI-FLAIR radiomics model exhibited good prediction performance, with area under the curve (AUCs) of 0.922 (95% CI: 0.876-0.968), 0.875 (95% CI: 0.815-0.935), and 0.895 (95% CI: 0.840-0.950). The radiomics nomogram with clinical characteristics including the overall cerebral small vessel disease (CSVD) burden score, hemorrhagic transformation (HT) and admission National Institutes of Health Stroke Scale score (NIHSS) score and the FLAIR Radscore presented good discriminatory potential in the training set (AUC = 0.94; 95% CI: 0.90-0.98) and test set (AUC = 0.94; 95% CI: 0.87-1), which was validated in the validation set 1 (AUC = 0.95; 95% CI: 0.88-1) and validation set 2 (AUC = 0.90; 95% CI: 0.768-1). In addition, it demonstrated good calibration, and decision curve analysis confirmed the clinical value of this nomogram. Conclusion This non-invasive clinical-FLIAR radiomics nomogram shows good performance in predicting ischaemic stroke prognosis after thrombolysis.
Collapse
Affiliation(s)
- Qingqing Xu
- Department of Radiology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huaian, China
| | - Yan Zhu
- Department of Radiology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huaian, China
| | - Xi Zhang
- Department of Radiology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huaian, China
| | - Dan Kong
- Department of Radiology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huaian, China
| | | | - Lili Guo
- Department of Radiology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huaian, China
| | - Xindao Yin
- Department of Radiology, Nanjing Medical University Affiliated Nanjing Hospital, Nanjing, China
| | - Liang Jiang
- Department of Radiology, Nanjing Medical University Affiliated Nanjing Hospital, Nanjing, China
| | - Zaiyi Liu
- Department of Radiology, Guangdong Academy of Medical Sciences, Guangdong Provincial People’s Hospital, Guangzhou, China
| | - Wanqun Yang
- Department of Radiology, Guangdong Academy of Medical Sciences, Guangdong Provincial People’s Hospital, Guangzhou, China
| |
Collapse
|
21
|
Jiang L, Miao Z, Chen H, Geng W, Yong W, Chen YC, Zhang H, Duan S, Yin X, Zhang Z. Radiomics Analysis of Diffusion-Weighted Imaging and Long-Term Unfavorable Outcomes Risk for Acute Stroke. Stroke 2023; 54:488-498. [PMID: 36472198 DOI: 10.1161/strokeaha.122.040418] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Diffusion-weighted imaging radiomics could be used as prognostic biomarkers in acute ischemic stroke. We aimed to identify a clinical and diffusion-weighted imaging radiomics model for individual unfavorable outcomes risk assessment in acute ischemic stroke. METHODS A total of 1716 patients with acute ischemic stroke from 2 centers were divided into a training cohort and a validation cohort. Patient outcomes were measured with the modified Rankin Scale score. An unfavorable outcome was defined as a modified Rankin Scale score greater than 2. The primary end point was all-cause mortality or outcomes 1 year after stroke. The MRI-DRAGON score was calculated based on previous publications. We extracted and selected the infarct features on diffusion-weighted imaging to construct a radiomic signature. The clinic-radiomics signature was built by measuring the Cox proportional risk regression score (CrrScore) and compared with the MRI-DRAGON score and the ClinicScore. CrrScore model performance was estimated by 1-year unfavorable outcomes prediction. RESULTS A high radiomic signature predicted a higher probability of unfavorable outcomes than a low radiomic signature in the training (hazard ratio, 3.19 [95% CI, 2.51-4.05]; P<0.0001) and validation (hazard ratio, 3.25 [95% CI, 2.20-4.80]; P<0.0001) cohorts. The diffusion-weighted imaging Alberta Stroke Program Early CT Score, age, glucose level before therapy, National Institutes of Health Stroke Scale score on admission, glycated hemoglobin' radiomic signature, hemorrhagic infarction, and malignant cerebral edema were associated with an unfavorable outcomes risk after multivariable adjustment. A CrrScore nomogram was developed to predict outcomes and had the best performance in the training (area under the curve, 0.862) and validation cohorts (area under the curve, 0.858). The CrrScore model time-dependent areas under the curve of the probability of unfavorable outcomes at 1 year in the training and validation cohorts were 0.811 and 0.801, respectively. CONCLUSIONS The CrrScore model allows the accurate prediction of patients with acute ischemic stroke outcomes and can potentially guide rehabilitation therapies for patients with different risks of unfavorable outcomes.
Collapse
Affiliation(s)
- Liang Jiang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, China (L.J., Z.M., H.C., W.G., W.Y., Y.-C.C., X.Y.)
| | - Zhengfei Miao
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, China (L.J., Z.M., H.C., W.G., W.Y., Y.-C.C., X.Y.)
| | - Huiyou Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, China (L.J., Z.M., H.C., W.G., W.Y., Y.-C.C., X.Y.)
| | - Wen Geng
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, China (L.J., Z.M., H.C., W.G., W.Y., Y.-C.C., X.Y.)
| | - Wei Yong
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, China (L.J., Z.M., H.C., W.G., W.Y., Y.-C.C., X.Y.)
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, China (L.J., Z.M., H.C., W.G., W.Y., Y.-C.C., X.Y.)
| | - Hong Zhang
- Department of Radiology, Affiliated Jiangning Hospital of Nanjing Medical University, China (H.Z.)
| | - Shaofeng Duan
- GE Healthcare' Precision Health Institution' China (S.D.)
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, China (L.J., Z.M., H.C., W.G., W.Y., Y.-C.C., X.Y.)
| | - Zhiqiang Zhang
- Department of Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, China (Z.Z.)
| |
Collapse
|
22
|
Ma Y, Wang J, Zhang H, Li H, Wang F, Lv P, Ye J. A CT-based radiomics nomogram for classification of intraparenchymal hyperdense areas in patients with acute ischemic stroke following mechanical thrombectomy treatment. Front Neurosci 2023; 16:1061745. [PMID: 36703995 PMCID: PMC9871784 DOI: 10.3389/fnins.2022.1061745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
Objectives To develop and validate a radiomic-based model for differentiating hemorrhage from iodinated contrast extravasation of intraparenchymal hyperdense areas (HDA) following mechanical thrombectomy treatment in acute ischemic stroke. Methods A total of 100 and four patients with intraparenchymal HDA on initial post-operative CT were included in this study. The patients who met criteria were divided into a primary and a validation cohort. A training cohort was constructed using Synthetic Minority Oversampling Technique on the primary cohort to achieve group balance. Thereafter, a radiomics score was calculated and the radiomic model was constructed. Clinical factors were assessed to build clinical model. Combined with the Rad-score and independent clinical factors, a combined model was constructed. Different models were assessed using the area under the receiver operator characteristic curves. The combined model was visualized as nomogram, and assessed with calibration and clinical usefulness. Results Cardiogenic diseases, intraoperative tirofiban administration and preoperative national institute of health stroke scale were selected as independent predictors to construct the clinical model with area under curve (AUC) of 0.756 and 0.693 in the training and validation cohort, respectively. Our data demonstrated that the radiomic model showed good discrimination in the training (AUC, 0.955) and validation cohort (AUC, 0.869). The combined nomogram model showed optimal discrimination in the training (AUC, 0.972) and validation cohort (AUC, 0.926). Decision curve analysis demonstrated the combined model had a higher overall net benefit in differentiating hemorrhage from iodinated contrast extravasation in terms of clinical usefulness. Conclusions The nomogram shows favorable efficacy for differentiating hemorrhage from iodinated contrast extravasation, which might provide an individualized tool for precision therapy.
Collapse
Affiliation(s)
- Yuan Ma
- Department of Interventional Radiology, Northern Jiangsu People's Hospital, Yangzhou, China,Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Jia Wang
- Clinical Medical College, Yangzhou University, Yangzhou, China,Department of Radiology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Hongying Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, China,Department of Radiology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Hongmei Li
- Clinical Medical College, Yangzhou University, Yangzhou, China,Department of Radiology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Fu'an Wang
- Department of Interventional Radiology, Northern Jiangsu People's Hospital, Yangzhou, China,Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Penghua Lv
- Department of Interventional Radiology, Northern Jiangsu People's Hospital, Yangzhou, China,Clinical Medical College, Yangzhou University, Yangzhou, China,*Correspondence: Penghua Lv ✉
| | - Jing Ye
- Clinical Medical College, Yangzhou University, Yangzhou, China,Department of Radiology, Northern Jiangsu People's Hospital, Yangzhou, China,Jing Ye ✉
| |
Collapse
|
23
|
Yu H, Wang Z, Sun Y, Bo W, Duan K, Song C, Hu Y, Zhou J, Mu Z, Wu N. Prognosis of ischemic stroke predicted by machine learning based on multi-modal MRI radiomics. Front Psychiatry 2022; 13:1105496. [PMID: 36699499 PMCID: PMC9868394 DOI: 10.3389/fpsyt.2022.1105496] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/12/2022] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE Increased risk of stroke is highly associated with psychiatric disorders. We aimed to conduct the machine learning model based on multi-modal magnetic resonance imaging (MRI) radiomics predicting the prognosis of ischemic stroke. METHODS This study retrospectively analyzed 148 patients with acute ischemic stroke due to anterior circulation artery occlusion. Based on the modified Rankin Scale (mRS) score, patients were divided into good (mRS ≤ 2) and poor (mRS > 2) outcome groups. Segmentation of the infarct region was performed by manually outlining a mask of the lesion on diffusion-weighted images (DWI) using MRIcron software. The apparent diffusion coefficient (ADC), fluid decay inversion recoverage (FLAIR), susceptibility weighted imaging (SWI) and T1-weighted (T1w) images were aligned to the DWI images and the radiomic features within the lesion area were extracted for each image modality. The calculations were done using pyradiomics software and a total of 4,744 stroke-related imaging features were automatically calculated. Next, feature selection based on recursive feature elimination was used for each modality and three radiomic features were extracted from each modality plus one feature from the lesion mask, for a total of 16 radiomic features. At last, five machine learning (ML) models were trained and tested to predict stroke prognosis, calculate the received operating characteristic (ROC) curves and other parameters, evaluate the performance of the models and validate their predictive efficacy by five-fold cross-validation. RESULTS Sixteen radiomic features were selected to construct the ML models for prognostic classification. By five-fold cross-validation, light gradient boosting machine (LightGBM) model-based muti-modal MRI radiomic features performed best in binary prognostic classification with accuracy of 0.831, sensitivity of 0.739, specificity of 0.902, F1-score of 0.788 and an area under the curve (AUC) of 0.902. CONCLUSION The ML models based on muti-modal MRI radiomics are of high value for predicting clinical outcomes in acute stroke patients.
Collapse
Affiliation(s)
- Huan Yu
- Department of Radiology, Liangxiang Hospital, Beijing, China
| | - Zhenwei Wang
- Department of Radiology, Liangxiang Hospital, Beijing, China
| | - Yiqing Sun
- Department of Radiology, Liangxiang Hospital, Beijing, China
| | - Wenwei Bo
- Department of Radiology, Liangxiang Hospital, Beijing, China
| | - Kai Duan
- Department of Radiology, Liangxiang Hospital, Beijing, China
| | - Chunhua Song
- Department of Radiology, Liangxiang Hospital, Beijing, China
| | - Yi Hu
- Department of Radiology, Liangxiang Hospital, Beijing, China
| | - Jie Zhou
- Department of Radiology, Liangxiang Hospital, Beijing, China
| | - Zizhang Mu
- Department of Neurology, Liangxiang Hospital, Beijing, China
| | - Ning Wu
- Department of Medical Imaging, Yanjing Medical College, Capital Medical University, Beijing, China
| |
Collapse
|