1
|
Lambert T, Niknejad HR, Kil D, Brunner C, Nuttin B, Montaldo G, Urban A. Functional ultrasound imaging and neuronal activity: how accurate is the spatiotemporal match? BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602912. [PMID: 39026833 PMCID: PMC11257620 DOI: 10.1101/2024.07.10.602912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Over the last decade, functional ultrasound (fUS) has risen as a critical tool in functional neuroimaging, leveraging hemodynamic changes to infer neural activity indirectly. Recent studies have established a strong correlation between neural spike rates (SR) and functional ultrasound signals. However, understanding their spatial distribution and variability across different brain areas is required to thoroughly interpret fUS signals. In this regard, we conducted simultaneous fUS imaging and Neuropixels recordings during stimulus-evoked activity in awake mice within three regions the visual pathway. Our findings indicate that the temporal dynamics of fUS and SR signals are linearly correlated, though the correlation coefficients vary among visual regions. Conversely, the spatial correlation between the two signals remains consistent across all regions with a spread of approximately 300 micrometers. Finally, we introduce a model that integrates the spatial and temporal components of the fUS signal, allowing for a more accurate interpretation of fUS images.
Collapse
Affiliation(s)
- Théo Lambert
- Neuro-Electronics Research Flanders, Leuven, Belgium
- VIB, Leuven, Belgium
- Imec, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Hamid Reza Niknejad
- Neuro-Electronics Research Flanders, Leuven, Belgium
- VIB, Leuven, Belgium
- Imec, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
- Department of Neurosurgery, UZ Leuven, Leuven, Belgium
- University Medical Center Utrecht, Utrecht, The Netherlands (current affiliation)
| | - Dries Kil
- Neuro-Electronics Research Flanders, Leuven, Belgium
- VIB, Leuven, Belgium
- Imec, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Clément Brunner
- Neuro-Electronics Research Flanders, Leuven, Belgium
- VIB, Leuven, Belgium
- Imec, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Bart Nuttin
- Department of Neurosciences, KU Leuven, Leuven, Belgium
- Department of Neurosurgery, UZ Leuven, Leuven, Belgium
| | - Gabriel Montaldo
- Neuro-Electronics Research Flanders, Leuven, Belgium
- VIB, Leuven, Belgium
- Imec, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Alan Urban
- Neuro-Electronics Research Flanders, Leuven, Belgium
- VIB, Leuven, Belgium
- Imec, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Huang LJ, Jiao JF, He Q, Luo JW, Guo Y. Ultrafast power Doppler imaging for ischemic encephalopathy: A case report. World J Clin Cases 2023; 11:7640-7646. [DOI: 10.12998/wjcc.v11.i31.7640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/26/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Severely elevated intracranial pressure due to various reasons, such as decreased cerebral perfusion, can lead to devastating neurological outcomes, such as brain herniation. Decompression craniectomy is a life-saving procedure that is commonly performed for such a critical situation, but the changes in cerebral microvessels after brain herniation and decompression are unclear. Ultrafast power Doppler imaging (uPDI) is a new microvascular imaging technology that utilizes high frame rate plane/diverging wave transmission and advanced clutter filters. uPDI significantly improves Doppler sensitivity and can detect microvessels, which are usually invisible using traditional ultrasound Doppler imaging.
CASE SUMMARY In this report, uPDI was used for the first time to observe the brain blood flow of a hypoperfusion area in a 4-year-old girl who underwent decompression craniectomy due to refractory intracranial hypertension (ICP) after malignant brain tumor surgery. B-mode imaging was used to verify the increased densities of the cerebral cortex and basal ganglia that were observed by computed tomography.
CONCLUSION uPDI showed the local blood supplies and anatomical structures of the patient after decompressive craniectomy. uPDI is potentially a more intuitive and noninvasive method for evaluating the effects of severe ICP on cerebral microvessels.
Collapse
Affiliation(s)
- Li-Jie Huang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jian-Feng Jiao
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 102218, China
| | - Qiong He
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jian-Wen Luo
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yi Guo
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 102218, China
| |
Collapse
|