1
|
Piramide N, De Micco R, Siciliano M, Silvestro M, Tessitore A. Resting-State Functional MRI Approaches to Parkinsonisms and Related Dementia. Curr Neurol Neurosci Rep 2024; 24:461-477. [PMID: 39046642 DOI: 10.1007/s11910-024-01365-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2024] [Indexed: 07/25/2024]
Abstract
PURPOSE OF THE REVIEW In this review, we attempt to summarize the most updated studies that applied resting-state functional magnetic resonance imaging (rs-fMRI) in the field of Parkinsonisms and related dementia. RECENT FINDINGS Over the past decades, increasing interest has emerged on investigating the presence and pathophysiology of cognitive symptoms in Parkinsonisms and their possible role as predictive biomarkers of neurodegenerative brain processes. In recent years, evidence has been provided, applying mainly three methodological approaches (i.e. seed-based, network-based and graph-analysis) on rs-fMRI data, with promising results. Neural correlates of cognitive impairment and dementia have been detected in patients with Parkinsonisms along the diseases course. Interestingly, early functional connectivity signatures were proposed to track and predict future progression of neurodegenerative processes. However, longitudinal studies are still sparce and further investigations are needed to overcome this knowledge gap.
Collapse
Affiliation(s)
- Noemi Piramide
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Rosa De Micco
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Mattia Siciliano
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy
- Neuropsychology Laboratory, Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Marcello Silvestro
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Alessandro Tessitore
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy.
| |
Collapse
|
2
|
Hou X, Liu R, Zhou Y, Guan L, Zhou J, Liu J, Liu M, Yuan X, Feng Y, Chen X, Yu A. Shared and unique alterations of large-scale network connectivity in drug-free adolescent-onset and adult-onset major depressive disorder. Transl Psychiatry 2024; 14:255. [PMID: 38866779 PMCID: PMC11169372 DOI: 10.1038/s41398-024-02974-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/22/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024] Open
Abstract
Differences in clinical manifestations and biological underpinnings between Major Depressive Disorder (MDD) onset during adolescence and adulthood have been posited in previous studies, implying an influential role of age of onset (AOO) in the clinical subtyping and therapeutic approaches to MDD. However, direct comparisons between the two cohorts and their age-matched controls have been lacking in extant investigations. In this investigation, 156 volunteers participated, comprising 46 adolescents with MDD (adolescent-onset group), 35 adults with MDD (adult-onset group), 19 healthy adolescents, and 56 healthy adults. Resting-state functional MRI scans were undergone by all participants. Large-scale network analyses were applied. Subsequently, a 2 × 2 ANOVA was employed to analyze the main effects of diagnosis, age, and their interaction effect on functional connectivity (FC). Furthermore, regression analysis was employed to scrutinize the association between anomalous FC and HAMD sub-scores. Increased FC in visual network (VN), limbic network (LN), VN-dorsal attention network (DAN), VN-LN, and LN-Default Mode (DMN) was found in both adolescent-onset and adult-onset MDD; however, the increased FC in DAN and LN were only found in adult-onset MDD and the decreased FC in DAN was only found in adolescent-onset MDD. Additionally, the relationship between HAMD factor 1 anxiety somatization and altered FC of DAN, VN, and VN-DAN was moderated by AOO. In conclusion, shared and distinctive large-scale network alterations in adolescent-onset and adult-onset MDD patients were suggested by our findings, providing valuable contributions towards refining clinical subtyping and treatment approaches for MDD.
Collapse
Affiliation(s)
- Ximan Hou
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
- Department of Radiology, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Rui Liu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yuan Zhou
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Lin Guan
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Jingjing Zhou
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Jing Liu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Mengqi Liu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Xiaofei Yuan
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yuan Feng
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Xu Chen
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| | - Aihong Yu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
- Department of Radiology, Beijing Anding Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Wang H, Zhan X, Xu J, Yu M, Guo Z, Zhou G, Ren J, Zhang R, Liu W. Disrupted topologic efficiency of brain functional connectome in de novo Parkinson's disease with depression. Eur J Neurosci 2023; 58:4371-4383. [PMID: 37857484 DOI: 10.1111/ejn.16176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/23/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023]
Abstract
Growing evidence supports that depression in Parkinson's disease (PD) depends on disruptions in specific neural networks rather than regional dysfunction. According to the resting-state functional magnetic resonance imaging data, the study attempted to decipher the alterations in the topological properties of brain networks in de novo depression in PD (DPD). The study also explored the neural network basis for depressive symptoms in PD. We recruited 20 DPD, 37 non-depressed PD and 41 healthy controls (HC). The Graph theory and network-based statistical methods helped analyse the topological properties of brain functional networks and anomalous subnetworks across these groups. The relationship between altered properties and depression severity was also investigated. DPD revealed significantly reduced nodal efficiency in the left superior temporal gyrus. Additionally, DPD decreased five hubs, primarily located in the temporal-occipital cortex, and increased seven hubs, mainly distributed in the limbic cortico-basal ganglia circuit. The betweenness centrality of the left Medio Ventral Occipital Cortex was positively associated with depressive scores in DPD. In contrast to HC, DPD had a multi-connected subnetwork with significantly lower connectivity, primarily distributed in the visual, somatomotor, dorsal attention and default networks. Regional topological disruptions in the temporal-occipital region are critical in the DPD neurological mechanism. It might suggest a potential network biomarker among newly diagnosed DPD patients.
Collapse
Affiliation(s)
- Hui Wang
- Department of Neurology, Lianyungang Hospital of Traditional Chinese Medicine, Lianyungang Affiliated Hospital of Nanjing University of Chinese Medicine, Lianyungang, China
| | - Xiaoyan Zhan
- Department of Clinical Laboratory, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Jianxia Xu
- Department of Neurology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| | - Miao Yu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zhiying Guo
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Gaiyan Zhou
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jingru Ren
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Ronggui Zhang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Weiguo Liu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Li J, Tan C, Zhang L, Cai S, Shen Q, Liu Q, Wang M, Song C, Zhou F, Yuan J, Liu Y, Lan B, Liao H. Neural functional network of early Parkinson's disease based on independent component analysis. Cereb Cortex 2023; 33:11025-11035. [PMID: 37746803 DOI: 10.1093/cercor/bhad342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/08/2023] [Indexed: 09/26/2023] Open
Abstract
This work explored neural network changes in early Parkinson's disease: Resting-state functional magnetic resonance imaging was used to investigate functional alterations in different stages of Parkinson's disease (PD). Ninety-five PD patients (50 early/mild and 45 early/moderate) and 37 healthy controls (HCs) were included. Independent component analysis revealed significant differences in intra-network connectivity, specifically in the default mode network (DMN) and right frontoparietal network (RFPN), in both PD groups compared to HCs. Inter-network connectivity analysis showed reduced connectivity between the executive control network (ECN) and DMN, as well as ECN-left frontoparietal network (LFPN), in early/mild PD. Early/moderate PD exhibited decreased connectivity in ECN-LFPN, ECN-RFPN, ECN-DMN, and DMN-auditory network, along with increased connectivity in LFPN-cerebellar network. Correlations were found between ECN-DMN and ECN-LFPN connections with UPDRS-III scores in early/mild PD. These findings suggest that PD progression involves dysfunction in multiple intra- and inter-networks, particularly implicating the ECN, and a wider range of abnormal functional networks may mark the progression of the disease.
Collapse
Affiliation(s)
- Junli Li
- Department of Medical Imaging, Huizhou Central People's Hospital, Eling North Road, Huicheng District, Huizhou, Guangdong 516001, China
| | - Changlian Tan
- Department of Radiology, The Second Xiangya Hospital, Central South University, Renmin Middle Road, Furong District, Changsha, Hunan 410011, China
| | - Lin Zhang
- Department of Radiology, Chengdu Fifth People's Hospital, Mashi Street, Wenjiang District, Chengdu, Sichuan 611130, China
| | - Sainan Cai
- Department of Radiology, The Second Xiangya Hospital, Central South University, Renmin Middle Road, Furong District, Changsha, Hunan 410011, China
| | - Qin Shen
- Department of Radiology, The Second Xiangya Hospital, Central South University, Renmin Middle Road, Furong District, Changsha, Hunan 410011, China
| | - Qinru Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Renmin Middle Road, Furong District, Changsha, Hunan 410011, China
| | - Min Wang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Renmin Middle Road, Furong District, Changsha, Hunan 410011, China
| | - ChenDie Song
- Department of Radiology, The Second Xiangya Hospital, Central South University, Renmin Middle Road, Furong District, Changsha, Hunan 410011, China
| | - Fan Zhou
- Department of Radiology, The Second Xiangya Hospital, Central South University, Renmin Middle Road, Furong District, Changsha, Hunan 410011, China
| | - Jiaying Yuan
- Department of Radiology, The Second Xiangya Hospital, Central South University, Renmin Middle Road, Furong District, Changsha, Hunan 410011, China
| | - Yujing Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Renmin Middle Road, Furong District, Changsha, Hunan 410011, China
| | - Bowen Lan
- Department of Medical Imaging, Huizhou Central People's Hospital, Eling North Road, Huicheng District, Huizhou, Guangdong 516001, China
| | - Haiyan Liao
- Department of Radiology, The Second Xiangya Hospital, Central South University, Renmin Middle Road, Furong District, Changsha, Hunan 410011, China
| |
Collapse
|
5
|
Huang T, Tang L, Zhao J, Shang S, Chen Y, Tian Y, Zhang Y. Drooling disrupts the brain functional connectivity network in Parkinson's disease. CNS Neurosci Ther 2023; 29:3094-3107. [PMID: 37144606 PMCID: PMC10493659 DOI: 10.1111/cns.14251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/05/2023] [Accepted: 04/21/2023] [Indexed: 05/06/2023] Open
Abstract
AIMS This study aimed to investigate the causal interaction between significant sensorimotor network (SMN) regions and other brain regions in Parkinson's disease patients with drooling (droolers). METHODS Twenty-one droolers, 22 PD patients without drooling (non-droolers), and 22 matched healthy controls underwent 3T-MRI resting-state scans. We performed independent component analysis and Granger causality analysis to determine whether significant SMN regions help predict other brain areas. Pearson's correlation was computed between imaging characteristics and clinical characteristics. ROC curves were plotted to assess the diagnostic performance of effective connectivity (EC). RESULTS Compared with non-droolers and healthy controls, droolers showed abnormal EC of the right caudate nucleus (CAU.R) and right postcentral gyrus to extensive brain regions. In droolers, increased EC from the CAU.R to the right middle temporal gyrus was positively correlated with MDS-UPDRS, MDS-UPDRS II, NMSS, and HAMD scores; increased EC from the right inferior parietal lobe to CAU.R was positively correlated with MDS-UPDRS score. ROC curve analysis showed that these abnormal ECs are of great significance in diagnosing drooling in PD. CONCLUSION This study identified that PD patients with drooling have abnormal EC in the cortico-limbic-striatal-cerebellar and cortio-cortical networks, which could be potential biomarkers for drooling in PD.
Collapse
Affiliation(s)
- Ting Huang
- Department of Neurology, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Li‐Li Tang
- Department of NeurologyNanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese MedicineNanjingChina
| | - Jin‐Ying Zhao
- Department of Neurology, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Song‖an Shang
- Department of Medical Imaging Center, Clinical Medical CollegeYangzhou UniversityYangzhouChina
| | - Yu‐Chen Chen
- Department of Radiology, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - You‐Yong Tian
- Department of Neurology, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Ying‐Dong Zhang
- Department of Neurology, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| |
Collapse
|
6
|
Sun J, Ma J, Gao L, Wang J, Zhang D, Chen L, Fang J, Feng T, Wu T. Disruption of locus coeruleus-related functional networks in Parkinson's disease. NPJ Parkinsons Dis 2023; 9:81. [PMID: 37253752 DOI: 10.1038/s41531-023-00532-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 05/22/2023] [Indexed: 06/01/2023] Open
Abstract
Locus coeruleus (LC) is severely affected in Parkinson's Disease (PD). However, alterations in LC-related resting-state networks (RSNs) in PD remain unclear. We used resting-state functional MRI to investigate the alterations in functional connectivity (FC) of LC-related RSNs and the associations between RSNs changes and clinical features in idiopathic rapid eye movement sleep behavior disorder (iRBD) and PD patients with (PDRBD+) and without RBD (PDRBD-). There was a similarly disrupted FC pattern of LC-related RSNs in iRBD and PDRBD+ patients, whereas LC-related RSNs were less damaged in PDRBD- patients than that in patients with iRBD and PDRBD+. The FC of LC-related RSNs correlated with cognition and duration in iRBD, depression in PDRBD-, and cognition and severity of RBD in patients with PDRBD+. Our findings demonstrate that LC-related RSNs are significantly disrupted in the prodromal stage of α-synucleinopathies and proposed body-first PD (PDRBD+), but are less affected in brain-first PD (PDRBD-).
Collapse
Affiliation(s)
- Junyan Sun
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jinghong Ma
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Linlin Gao
- Department of General Medicine, Tianjin Union Medical Center, Tianjin, China
| | - Junling Wang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Dongling Zhang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lili Chen
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiliang Fang
- Department of Radiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tao Feng
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Tao Wu
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
7
|
Jellinger KA. The pathobiological basis of depression in Parkinson disease: challenges and outlooks. J Neural Transm (Vienna) 2022; 129:1397-1418. [PMID: 36322206 PMCID: PMC9628588 DOI: 10.1007/s00702-022-02559-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Depression, with an estimated prevalence of about 40% is a most common neuropsychiatric disorder in Parkinson disease (PD), with a negative impact on quality of life, cognitive impairment and functional disability, yet the underlying neurobiology is poorly understood. Depression in PD (DPD), one of its most common non-motor symptoms, can precede the onset of motor symptoms but can occur at any stage of the disease. Although its diagnosis is based on standard criteria, due to overlap with other symptoms related to PD or to side effects of treatment, depression is frequently underdiagnosed and undertreated. DPD has been related to a variety of pathogenic mechanisms associated with the underlying neurodegenerative process, in particular dysfunction of neurotransmitter systems (dopaminergic, serotonergic and noradrenergic), as well as to disturbances of cortico-limbic, striato-thalamic-prefrontal, mediotemporal-limbic networks, with disruption in the topological organization of functional mood-related, motor and other essential brain network connections due to alterations in the blood-oxygen-level-dependent (BOLD) fluctuations in multiple brain areas. Other hypothetic mechanisms involve neuroinflammation, neuroimmune dysregulation, stress hormones, neurotrophic, toxic or metabolic factors. The pathophysiology and pathogenesis of DPD are multifactorial and complex, and its interactions with genetic factors, age-related changes, cognitive disposition and other co-morbidities awaits further elucidation.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|