1
|
Freitas L, Amaral A, Conceição R, Barbosa G, Hamoy MK, Barbosa A, Paz C, Santos M, Hamoy A, Paz A, Favacho-Lopes D, Mello V, Hamoy M. Potentiation of the depressant effect of alcohol by flunitrazepam in rats: an electrocorticographic, respiratory and electrocardiographic study. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7599-7613. [PMID: 38676788 DOI: 10.1007/s00210-024-03111-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
Alcohol, a widely commercialized psychotropic drug, and the benzodiazepine Flunitrazepam, an anxiolytic widely prescribed for patients with anxiety and insomnia problems, are well known drugs and both act on the central nervous system. The misuse and the association of these two drugs are public health concerns in several countries and could cause momentary, long-lasting and even lethal neurophysiological problems due to the potentiation of their adverse effects in synergy. The present study observed the result of the association of these drugs on electrophysiological responses in the brain, heart, and respiratory rate in Wistar rats. 8 experimental groups were determined: control, one alcohol group (20% at a dose of 1 ml/100 g VO), three Flunitrazepam groups (doses 0.1; 0.2 and 0.3 mg/kg) and three alcohol-Flunitrazepam groups (20% at a dose of 1 ml/100 g VO of alcohol, combined with 0.1; 0.2 and 0.3 mg/kg of Flunitrazepam, respectively). The results showed that there was a more pronounced reduction in alpha and theta wave power in the alcohol-Flunitrazepam groups, a decrease in the power of beta oscillations and greater sedation. There was a progressive decrease in respiratory rate linked to the increase of Flunitrazepam dose in the alcohol-Flunitrazepam associated administration. It was observed alteration in heart rate and Q-T interval in high doses of Flunitrazepam. Therefore, we conclude that the association alcohol-Flunitrazepam presented deepening of depressant synergistic effects according to the increase in the dose of the benzodiazepine, and this could cause alterations in low frequency brain oscillations, breathing, and hemodynamics of the patient.
Collapse
Affiliation(s)
- Luiz Freitas
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, Brazil.
| | - Anthony Amaral
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, Brazil
| | - Raína Conceição
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, Brazil
| | - Gabriela Barbosa
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, Brazil
| | - Maria Klara Hamoy
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, Brazil
| | - Anara Barbosa
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, Brazil
| | - Clarissa Paz
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, Brazil
| | - Murilo Santos
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, Brazil
| | - Akira Hamoy
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, Brazil
| | - Allane Paz
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, Brazil
| | - Dielly Favacho-Lopes
- Laboratory of Experimental Neuropathology, Biological Science Institute, Federal University of Pará, Belém, Brazil
| | - Vanessa Mello
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, Brazil
| | - Moisés Hamoy
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, Brazil
| |
Collapse
|
2
|
Li J, Li H, Peng C, Xu W, Chen Q, Liu G. Paradoxical cognitive and language function recovery by zolpidem in a patient with traumatic brain injury: A case report. Medicine (Baltimore) 2024; 103:e38964. [PMID: 38996115 PMCID: PMC11245188 DOI: 10.1097/md.0000000000038964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/11/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is a significant public health issue, often resulting from traffic accidents and falls, leading to a wide spectrum of outcomes from mild concussions to severe brain damage. The neurorehabilitation of TBI focuses on enhancing recovery and improving quality of life. Zolpidem, traditionally used for short-term management of insomnia, has shown potential in improving cognitive functions and language in TBI patients. Advances in neuroimaging techniques, such as functional near-infrared spectroscopy (fNIRS), have facilitated the exploration of the effects of therapeutic interventions on brain activity and functional connectivity in TBI patients. CASE SUMMARY We present the case of a 34-year-old male who sustained a TBI from a traffic collision. Despite severe impairments in cognitive and language functions, administration of 10 mg of zolpidem resulted in temporary but significant improvements in these areas, as evidenced by increased Mini-Mental State Examination scores and observed behavioral changes. fNIRS assessments before and after zolpidem administration revealed notable changes in cerebral cortex activity, including increased left hemisphere activation and a shift in functional connectivity to the bilateral frontal lobes, corresponding with the patient's improvement. CONCLUSION This case study highlights the potential of zolpidem, a medication traditionally used for insomnia, in enhancing cognitive and verbal functions in a patient with TBI, suggesting a potential therapeutic role for zolpidem in neurorehabilitation, supported by changes in brain activity and connectivity observed through fNIRS. However, further investigation is warranted to validate these findings and elucidate zolpidem's long-term effects on cognitive and functional outcomes in TBI patients.
Collapse
Affiliation(s)
- Jia Li
- Department of Rehabilitation Medicine, Shanghai Zhongye Hospital, Shanghai, China
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Haozheng Li
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Cheng Peng
- Department of Rehabilitation Medicine, Shanghai Zhongye Hospital, Shanghai, China
- Department of Health and Medical Sciences, School of Boertala Polytechnic, Xinjiang, China
| | - Weijian Xu
- Department of Rehabilitation Medicine, Shanghai Zhongye Hospital, Shanghai, China
| | - Qiang Chen
- Department of Rehabilitation Medicine, Shanghai Zhongye Hospital, Shanghai, China
| | - Gang Liu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Zhou Y, Altonji KA, Kakkanatt A, Greenwald BD. Speech recovery after single-dose zolpidem in two minimally conscious patients with severe traumatic brain injuries: a case report. Brain Inj 2024; 38:337-340. [PMID: 38308526 DOI: 10.1080/02699052.2024.2311342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 01/24/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND In rare cases, zolpidem administration has been found to paradoxically improve cognition in patients with brain injury in disorders of consciousness. CASE PRESENTATION Two minimally conscious plus (MCS+) patients at baseline, a 24-year-old woman 8 weeks post-traumatic brain injury (TBI) and 23-year-old man 6 weeks post-TBI, demonstrated behavioral improvements after off-label, single-dose administration of 10 mg of zolpidem. DISCUSSION/CONCLUSION The patients demonstrated improved cognition on Coma Recovery Scale-Revised assessment after ingesting zolpidem. In particular, speech was substantially restored as one patient recovered functional communication and both demonstrated intelligible verbalizations for the first-time post-injuries following zolpidem. Overall, evidence is limited regarding the underlying mechanisms of various cognitive improvements in zolpidem response although studies incorporating neuroimaging are promising. The outcomes and similarities between these cases contribute to the current literature and highlight the need for rigorous studies in the future to guide zolpidem trials in patient care for those with DOC.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Physical Medicine and Rehabilitation, JFK Johnson Rehabilitation Institute, Edison, New Jersey, USA
- Department of Physical Medicine and Rehabilitation, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Kathryn A Altonji
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Physical Medicine and Rehabilitation, Shirley Ryan AbilityLab, Chicago, Illinois, USA
| | - Ashley Kakkanatt
- Department of Physical Medicine and Rehabilitation, JFK Johnson Rehabilitation Institute, Edison, New Jersey, USA
- Department of Physical Medicine and Rehabilitation, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Brian D Greenwald
- Department of Physical Medicine and Rehabilitation, JFK Johnson Rehabilitation Institute, Edison, New Jersey, USA
- Department of Physical Medicine and Rehabilitation, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| |
Collapse
|
4
|
Zhong Z, Tao G, Hao S, Ben H, Qu W, Sun F, Huang Z, Qiu M. Alleviating sleep disturbances and modulating neuronal activity after ischemia: Evidence for the benefits of zolpidem in stroke recovery. CNS Neurosci Ther 2024; 30:e14637. [PMID: 38380702 PMCID: PMC10880125 DOI: 10.1111/cns.14637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 01/01/2024] [Accepted: 01/20/2024] [Indexed: 02/22/2024] Open
Abstract
AIMS Sleep disorders are prevalent among stroke survivors and impede stroke recovery, yet they are still insufficiently considered in the management of stroke patients, and the mechanisms by which they occur remain unclear. There is evidence that boosting phasic GABA signaling with zolpidem during the repair phase improves stroke recovery by enhancing neural plasticity; however, as a non-benzodiazepine hypnotic, the effects of zolpidem on post-stroke sleep disorders remain unclear. METHOD Transient ischemic stroke in male rats was induced with a 30-minute middle cerebral artery occlusion. Zolpidem or vehicle was intraperitoneally delivered once daily from 2 to 7 days after the stroke, and the electroencephalogram and electromyogram were recorded simultaneously. At 24 h after ischemia, c-Fos immunostaining was used to assess the effect of transient ischemic stroke and acute zolpidem treatment on neuronal activity. RESULTS In addition to the effects on reducing brain damage and mitigating behavioral deficits, repeated zolpidem treatment during the subacute phase of stroke quickly ameliorated circadian rhythm disruption, alleviated sleep fragmentation, and increased sleep depth in ischemic rats. Immunohistochemical staining showed that in contrast to robust activation in para-infarct and some remote areas by 24 h after the onset of focal ischemia, the activity of the ipsilateral suprachiasmatic nucleus, the biological rhythm center, was strongly suppressed. A single dose of zolpidem significantly upregulated c-Fos expression in the ipsilateral suprachiasmatic nucleus to levels comparable to the contralateral side. CONCLUSION Stroke leads to suprachiasmatic nucleus dysfunction. Zolpidem restores suprachiasmatic nucleus activity and effectively alleviates post-stroke sleep disturbances, indicating its potential to promote stroke recovery.
Collapse
Affiliation(s)
- Zhi‐Gang Zhong
- Department of Neurobiology, Institute for Basic Research on Aging and Medicine, School of Basic Medical SciencesFudan UniversityShanghaiChina
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| | - Gui‐Jin Tao
- Department of Neurobiology, Institute for Basic Research on Aging and Medicine, School of Basic Medical SciencesFudan UniversityShanghaiChina
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| | - Shu‐Mei Hao
- Department of Neurobiology, Institute for Basic Research on Aging and Medicine, School of Basic Medical SciencesFudan UniversityShanghaiChina
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| | - Hui Ben
- Department of Neurobiology, Institute for Basic Research on Aging and Medicine, School of Basic Medical SciencesFudan UniversityShanghaiChina
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| | - Wei‐Min Qu
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| | - Feng‐Yan Sun
- Department of Neurobiology, Institute for Basic Research on Aging and Medicine, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Zhi‐Li Huang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| | - Mei‐Hong Qiu
- Department of Neurobiology, Institute for Basic Research on Aging and Medicine, School of Basic Medical SciencesFudan UniversityShanghaiChina
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| |
Collapse
|
5
|
Liuzzi P, Mannini A, Hakiki B, Campagnini S, Romoli AM, Draghi F, Burali R, Scarpino M, Cecchi F, Grippo A. Brain microstate spatio-temporal dynamics as a candidate endotype of consciousness. Neuroimage Clin 2023; 41:103540. [PMID: 38101096 PMCID: PMC10727951 DOI: 10.1016/j.nicl.2023.103540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/02/2023] [Accepted: 11/09/2023] [Indexed: 12/17/2023]
Abstract
Consciousness can be defined as a phenomenological experience continuously evolving. Current research showed how conscious mental activity can be subdivided into a series of atomic brain states converging to a discrete spatiotemporal pattern of global neuronal firing. Using the high temporal resolution of EEG recordings in patients with a severe Acquired Brain Injury (sABI) admitted to an Intensive Rehabilitation Unit (IRU), we detected a novel endotype of consciousness from the spatiotemporal brain dynamics identified via microstate analysis. Also, we investigated whether microstate features were associated with common neurophysiological alterations. Finally, the prognostic information comprised in such descriptors was analysed in a sub-cohort of patients with prolonged Disorder of Consciousness (pDoC). Occurrence of frontally-oriented microstates (C microstate), likelihood of maintaining such brain state or transitioning to the C topography and complexity were found to be indicators of consciousness presence and levels. Features of left-right asymmetric microstates and transitions toward them were found to be negatively correlated with antero-posterior brain reorganization and EEG symmetry. Substantial differences in microstates' sequence complexity and presence of C topography were found between groups of patients with alpha dominant background, cortical reactivity and antero-posterior gradient. Also, transitioning from left-right to antero-posterior microstates was found to be an independent predictor of consciousness recovery, stronger than consciousness levels at IRU's admission. In conclusions, global brain dynamics measured with scale-free estimators can be considered an indicator of consciousness presence and a candidate marker of short-term recovery in patients with a pDoC.
Collapse
Affiliation(s)
- Piergiuseppe Liuzzi
- IRCCS Don Carlo Gnocchi ONLUS, Firenze, Italy; Istituto di BioRobotica, Scuola Superiore Sant'Anna, Pontedera, Italy
| | | | | | | | | | | | | | | | - Francesca Cecchi
- IRCCS Don Carlo Gnocchi ONLUS, Firenze, Italy; Dipartimento di Medicina Sperimentale e Clinica, Università di Firenze, Firenze, Italy
| | | |
Collapse
|
6
|
Hao Z, Zhai X, Peng B, Cheng D, Zhang Y, Pan Y, Dou W. CAMBA framework: Unveiling the brain asymmetry alterations and longitudinal changes after stroke using resting-state EEG. Neuroimage 2023; 282:120405. [PMID: 37820859 DOI: 10.1016/j.neuroimage.2023.120405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/19/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023] Open
Abstract
Hemispheric asymmetry or lateralization is a fundamental principle of brain organization. However, it is poorly understood to what extent the brain asymmetries across different levels of functional organizations are evident in health or altered in brain diseases. Here, we propose a framework that integrates three degrees of brain interactions (isolated nodes, node-node, and edge-edge) into a unified analysis pipeline to capture the sliding window-based asymmetry dynamics at both the node and hemisphere levels. We apply this framework to resting-state EEG in healthy and stroke populations and investigate the stroke-induced abnormal alterations in brain asymmetries and longitudinal asymmetry changes during poststroke rehabilitation. We observe that the mean asymmetry in patients was abnormally enhanced across different frequency bands and levels of brain interactions, with these abnormal patterns strongly associated with the side of the stroke lesion. Compared to healthy controls, patients displayed significant alterations in asymmetry fluctuations, disrupting and reconfiguring the balance of inter-hemispheric integration and segregation. Additionally, analyses reveal that specific abnormal asymmetry metrics in patients tend to move towards those observed in healthy controls after short-term brain-computer interface rehabilitation. Furthermore, preliminary evidence suggests that baseline clinical and asymmetry features can predict poststroke improvements in the Fugl-Meyer assessment of the lower extremity (mean absolute error of about 2). Overall, these findings advance our understanding of hemispheric asymmetry. Our framework offers new insights into the mechanisms underlying brain alterations and recovery after a brain lesion, may help identify prognostic biomarkers, and can be easily extended to different functional modalities.
Collapse
Affiliation(s)
- Zexuan Hao
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Xiaoxue Zhai
- Department of Rehabilitation Medicine, School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China
| | - Bo Peng
- Department of Rehabilitation Medicine, School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China
| | - Dandan Cheng
- Department of Rehabilitation Medicine, School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China
| | - Yanlin Zhang
- Department of Rehabilitation Medicine, School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China
| | - Yu Pan
- Department of Rehabilitation Medicine, School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China.
| | - Weibei Dou
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China.
| |
Collapse
|
7
|
Gao Q, Hao J, Kang X, Yuan F, Liu Y, Chen R, Liu X, Li R, Jiang W. EEG dynamics induced by zolpidem forecast consciousness evolution in prolonged disorders of consciousness. Clin Neurophysiol 2023; 153:46-56. [PMID: 37454563 DOI: 10.1016/j.clinph.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/19/2023] [Accepted: 06/11/2023] [Indexed: 07/18/2023]
Abstract
OBJECTIVE To explore whether the EEG dynamics induced by zolpidem can predict consciousness evolution in patients with prolonged disorders of consciousness (PDOC). METHODS We conducted a prospective explorative analysis on thirty-six patients with PDOC and eleven healthy controls. The EEG power spectrum was analyzed and categorized into 'ABCD' patterns at baseline and one hour after zolpidem administration at 10 mg. The clinical outcome was defined as consciousness improvement and no improvement six months after enrollment using the Coma Recovery Scale-Revised (CRS-R) score. RESULTS Zolpidem administration significantly increased the EEG power in the delta & theta bands and decreased EEG power in the beta bands in healthy controls. Further follow-up studies indicated that the increased EEG beta-band power induced by zolpidem can predict an improved consciousness six months after enrollment with an area under the receiver operating characteristic curve (AUC) of 0.829, the sensitivity of 94.38% and an accuracy of 81.48%. CONCLUSIONS Our work revealed that the specific EEG responses to zolpidem can predict consciousness recovery in PDOC patients. SIGNIFICANCE The zolpidem-induced specific EEG responses could potentially predict the recovery of PDOC patients, which may help clinicians and patients' families in their decision-making process.
Collapse
Affiliation(s)
- Qiong Gao
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Jianmin Hao
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xiaogang Kang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Fang Yuan
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510000, China.
| | - Yu Liu
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Rong Chen
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xiuyun Liu
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China; Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
| | - Rui Li
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Wen Jiang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
8
|
Boisgontier J, Beccaria K, Saitovitch A, Blauwblomme T, Guida L, Fillon L, Dufour C, Grill J, Lemaitre H, Puget S, Vinçon-Leite A, Dangouloff-Ros V, Charpy S, Benichi S, Levy R, Roux CJ, Grévent D, Bourgeois M, Saidoun L, Gaillard R, Zilbovicius M, Boddaert N. Case Report: Zolpidem's paradoxical restorative action: A case report of functional brain imaging. Front Neurosci 2023; 17:1127542. [PMID: 37123350 PMCID: PMC10140395 DOI: 10.3389/fnins.2023.1127542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/09/2023] [Indexed: 05/02/2023] Open
Abstract
Zolpidem is a sedative drug that has been shown to induce a paradoxical effect, restoring brain function in wide range of neurological disorders. The underlying functional mechanism of the effect of zolpidem in the brain in clinical improvement is still poorly understood. Thus, we aimed to investigate rest brain function to study zolpidem-induced symptom improvement in a patient who developed postoperative pediatric cerebellar mutism syndrome, a postoperative complication characterized by delayed onset transient mutism/reduced speech that can occur after medulloblastoma resection. The patient experienced clinical recovery after a single dose of zolpidem. Brain function was investigated using arterial spin labeling MRI and resting-state functional MRI. Imaging was performed at three time-points: preoperative, postoperative during symptoms, and after zolpidem intake when the symptoms regressed. Whole brain rest cerebral blood flow (CBF) and resting state functional connectivity using Pearson coefficient correlations between pairs of regions of interest were investigated two-by-two at the different time points. A comparison between postoperative and preoperative images showed a significant decrease in rest CBF in the left supplementary motor area, Broca's area, and the left striatum and a decrease in functional connectivity within the dentato-thalamo-cortical and cortico-striato-pallido-thalamo-cortical loops. Post-zolpidem images showed increased CBF in the left striatum and increased functional connectivity within the disrupted loops relative to postoperative images. Thus, we observed functional changes within the broader speech network and thalamo-subcortical interactions associated with the paradoxical effect of zolpidem in promoting clinical recovery. This should encourage further functional investigations in the brain to better understand the mechanism of zolpidem in neurological recovery.
Collapse
Affiliation(s)
- Jennifer Boisgontier
- Department of Pediatric Radiology, Necker-Enfants Malades Hospital, AP-HP, Université Paris-Cité, Paris, France
- Imagine Institute, INSERM U1163, Université Paris Cité, Paris, France
- *Correspondence: Jennifer Boisgontier,
| | - Kévin Beccaria
- Department of Pediatric Neurosurgery, Necker-Enfants Malades Hospital, AP-HP, Université Paris-Cité, Paris, France
| | - Ana Saitovitch
- Department of Pediatric Radiology, Necker-Enfants Malades Hospital, AP-HP, Université Paris-Cité, Paris, France
- Imagine Institute, INSERM U1163, Université Paris Cité, Paris, France
| | - Thomas Blauwblomme
- Department of Pediatric Neurosurgery, Necker-Enfants Malades Hospital, AP-HP, Université Paris-Cité, Paris, France
| | - Lelio Guida
- Department of Pediatric Neurosurgery, Necker-Enfants Malades Hospital, AP-HP, Université Paris-Cité, Paris, France
| | - Ludovic Fillon
- Department of Pediatric Radiology, Necker-Enfants Malades Hospital, AP-HP, Université Paris-Cité, Paris, France
- Imagine Institute, INSERM U1163, Université Paris Cité, Paris, France
| | - Christelle Dufour
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Institute, Villejuif, France
| | - Jacques Grill
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Institute, Villejuif, France
| | - Hervé Lemaitre
- Neurodegenerative Diseases Institute, Neurofunctional Imaging Group (GIN), Univ. Bordeaux, CNRS, UMR 5293, Bordeaux, France
| | - Stéphanie Puget
- Department of Neurosurgery, Centre Hospitalier Universitaire de Fort de France, University of Antilles, Fort-de-France, Martinique
| | - Alice Vinçon-Leite
- Department of Pediatric Radiology, Necker-Enfants Malades Hospital, AP-HP, Université Paris-Cité, Paris, France
- Imagine Institute, INSERM U1163, Université Paris Cité, Paris, France
| | - Volodia Dangouloff-Ros
- Department of Pediatric Radiology, Necker-Enfants Malades Hospital, AP-HP, Université Paris-Cité, Paris, France
- Imagine Institute, INSERM U1163, Université Paris Cité, Paris, France
| | - Sarah Charpy
- Department of Pediatric Radiology, Necker-Enfants Malades Hospital, AP-HP, Université Paris-Cité, Paris, France
| | - Sandro Benichi
- Department of Pediatric Neurosurgery, Necker-Enfants Malades Hospital, AP-HP, Université Paris-Cité, Paris, France
| | - Raphaël Levy
- Department of Pediatric Radiology, Necker-Enfants Malades Hospital, AP-HP, Université Paris-Cité, Paris, France
- Imagine Institute, INSERM U1163, Université Paris Cité, Paris, France
| | - Charles-Joris Roux
- Department of Pediatric Radiology, Necker-Enfants Malades Hospital, AP-HP, Université Paris-Cité, Paris, France
- Imagine Institute, INSERM U1163, Université Paris Cité, Paris, France
| | - David Grévent
- Department of Pediatric Radiology, Necker-Enfants Malades Hospital, AP-HP, Université Paris-Cité, Paris, France
| | - Marie Bourgeois
- Department of Pediatric Neurosurgery, Necker-Enfants Malades Hospital, AP-HP, Université Paris-Cité, Paris, France
| | - Lila Saidoun
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Institute, Villejuif, France
| | - Raphaël Gaillard
- Department of Psychiatry, Faculty of Medicine, Sainte-Anne Hospital, Université Paris Cité, Paris, France
| | - Monica Zilbovicius
- Ecole Normale Supérieure Paris-Saclay, INSERM U1299, ERL “Developmental Trajectories and Psychiatry”: Université Paris Saclay, Université de Paris, CNRS, Centre Borelli, France
| | - Nathalie Boddaert
- Department of Pediatric Radiology, Necker-Enfants Malades Hospital, AP-HP, Université Paris-Cité, Paris, France
- Imagine Institute, INSERM U1163, Université Paris Cité, Paris, France
| |
Collapse
|
9
|
Min JH, Shin YI. Treatment and Rehabilitation for Traumatic Brain Injury: Current Update. BRAIN & NEUROREHABILITATION 2022; 15:e14. [PMID: 36743200 PMCID: PMC9833473 DOI: 10.12786/bn.2022.15.e14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/08/2022] Open
Abstract
Traumatic brain injury (TBI) is an acquired injury to the brain caused by external mechanical forces, which can cause temporary or permanent disability. TBI and its potential long-term consequences are serious public health concerns. This review seeks to provide updated information on the current methods of management of patients with TBI to improve patient care.
Collapse
Affiliation(s)
- Ji Hong Min
- Department of Rehabilitation Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Yong-Il Shin
- Department of Rehabilitation Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
- Department of Rehabilitation Medicine, Pusan National University School of Medicine, Busan, Korea
| |
Collapse
|