1
|
Löser AS, Dalla Bella S, Keller PE, Villringer A, Obrig H, Engel A. Inhibitory control and working memory predict rhythm production abilities in patients with neurocognitive deficits. Neuropsychologia 2024; 204:109009. [PMID: 39374857 DOI: 10.1016/j.neuropsychologia.2024.109009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/12/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Deficits in rhythm perception and production have been reported in a variety of psychiatric, neurodevelopmental and neurologic disorders. Since correlations between rhythmic abilities and cognitive functions have been demonstrated in neurotypical individuals, we here investigate whether and how rhythmic abilities are associated with cognitive functions in 35 participants with neurocognitive deficits due to acquired brain lesions. We systematically assessed a diverse set of rhythm perception and production abilities including time and beat perception and finger-tapping tasks. Neuropsychological tests were applied to assess separable cognitive functions. Using multiple regression analyses we show that lower variability in aligning movements to a pacing sequence was predicted by better inhibitory control and better working memory performance. Working memory performance also predicted lower variability of rhythmic movements in the absence of an external pacing sequence and better anticipatory timing to sequences with gradual tempo changes. Importantly, these predictors remained significant for all regression models when controlling for other cognitive variables (i.e., cognitive flexibility, information processing speed, and verbal learning ability) and potential confounders (i.e., age, symptom strength of depression, manual dexterity, duration of illness, severity of cognitive impairment, and musical experience). Thus, all rhythm production abilities were significantly predicted by measures of executive functions. In contrast, rhythm perception abilities (time perception/beat perception) were not predicted by executive functions in this study. Our results, enhancing the understanding of cognitive underpinnings of rhythmic abilities in individuals with neurocognitive deficits, may be a first mandatory step to further potential therapeutic implications of rhythm-based interventions in neuropsychological rehabilitation.
Collapse
Affiliation(s)
- Alina S Löser
- Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany; Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, Leipzig, Germany.
| | - Simone Dalla Bella
- International Laboratory for Brain, Music, and Sound Research (BRAMS), Montreal, Canada; Department of Psychology, University of Montreal, Montreal, Canada; Centre for Research on Brain, Language and Music (CRBLM), Montreal, Canada; University of Economics and Human Sciences in Warsaw, Warsaw, Poland
| | - Peter E Keller
- The MARCS Institute for Brain, Behaviour & Development, Western Sydney University, Penrith, NSW, Australia; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Arno Villringer
- Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany; Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, Leipzig, Germany
| | - Hellmuth Obrig
- Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany; Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, Leipzig, Germany
| | - Annerose Engel
- Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany; Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, Leipzig, Germany.
| |
Collapse
|
2
|
Jamey K, Foster NEV, Hyde KL, Dalla Bella S. Does music training improve inhibition control in children? A systematic review and meta-analysis. Cognition 2024; 252:105913. [PMID: 39197250 DOI: 10.1016/j.cognition.2024.105913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024]
Abstract
Inhibition control is an essential executive function during children's development, underpinning self-regulation and the acquisition of social and language abilities. This executive function is intensely engaged in music training while learning an instrument, a complex multisensory task requiring monitoring motor performance and auditory stream prioritization. This novel meta-analysis examined music-based training on inhibition control in children. Records from 1980 to 2023 yielded 22 longitudinal studies with controls (N = 1734), including 8 RCTs and 14 others. A random-effects meta-analysis showed that music training improved inhibition control (moderate-to-large effect size) in the RCTs and the superset of twenty-two longitudinal studies (small-to-moderate effect size). Music training plays a privileged role compared to other activities (sports, visual arts, drama) in improving children's executive functioning, with a particular effect on inhibition control. We recommend music training for complementing education and as a clinical tool focusing on inhibition control remediation (e.g., in autism and ADHD).
Collapse
Affiliation(s)
- Kevin Jamey
- International Laboratory for Brain, Music, and Sound Research (BRAMS), Montreal, Canada; Department of Psychology, University of Montreal, Montreal, Canada; Centre for Research on Brain, Language and Music (CRBLM), Montreal, Canada.
| | - Nicholas E V Foster
- International Laboratory for Brain, Music, and Sound Research (BRAMS), Montreal, Canada; Department of Psychology, University of Montreal, Montreal, Canada; Centre for Research on Brain, Language and Music (CRBLM), Montreal, Canada
| | - Krista L Hyde
- International Laboratory for Brain, Music, and Sound Research (BRAMS), Montreal, Canada; Department of Psychology, University of Montreal, Montreal, Canada; Centre for Research on Brain, Language and Music (CRBLM), Montreal, Canada
| | - Simone Dalla Bella
- International Laboratory for Brain, Music, and Sound Research (BRAMS), Montreal, Canada; Department of Psychology, University of Montreal, Montreal, Canada; Centre for Research on Brain, Language and Music (CRBLM), Montreal, Canada; University of Economics and Human Sciences in Warsaw, Warsaw, Poland.
| |
Collapse
|
3
|
Dalla Bella S, Foster NEV, Laflamme H, Zagala A, Melissa K, Komeilipoor N, Blais M, Rigoulot S, Kotz SA. Mobile version of the Battery for the Assessment of Auditory Sensorimotor and Timing Abilities (BAASTA): Implementation and adult norms. Behav Res Methods 2024; 56:3737-3756. [PMID: 38459221 DOI: 10.3758/s13428-024-02363-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2024] [Indexed: 03/10/2024]
Abstract
Timing and rhythm abilities are complex and multidimensional skills that are highly widespread in the general population. This complexity can be partly captured by the Battery for the Assessment of Auditory Sensorimotor and Timing Abilities (BAASTA). The battery, consisting of four perceptual and five sensorimotor tests (finger-tapping), has been used in healthy adults and in clinical populations (e.g., Parkinson's disease, ADHD, developmental dyslexia, stuttering), and shows sensitivity to individual differences and impairment. However, major limitations for the generalized use of this tool are the lack of reliable and standardized norms and of a version of the battery that can be used outside the lab. To circumvent these caveats, we put forward a new version of BAASTA on a tablet device capable of ensuring lab-equivalent measurements of timing and rhythm abilities. We present normative data obtained with this version of BAASTA from over 100 healthy adults between the ages of 18 and 87 years in a test-retest protocol. Moreover, we propose a new composite score to summarize beat-based rhythm capacities, the Beat Tracking Index (BTI), with close to excellent test-retest reliability. BTI derives from two BAASTA tests (beat alignment, paced tapping), and offers a swift and practical way of measuring rhythmic abilities when research imposes strong time constraints. This mobile BAASTA implementation is more inclusive and far-reaching, while opening new possibilities for reliable remote testing of rhythmic abilities by leveraging accessible and cost-efficient technologies.
Collapse
Affiliation(s)
- Simone Dalla Bella
- International Laboratory for Brain, Music and Sound Research (BRAMS), University of Montreal, CP 6128, succ. Centre-ville, Montréal, QC, H3C 3J7, Canada.
- Department of Psychology, University of Montreal, Montreal, Canada.
- Centre for Research on Brain, Language and Music (CRBLM), Montreal, Canada.
- University of Economics and Human Sciences in Warsaw, Warsaw, Poland.
| | - Nicholas E V Foster
- International Laboratory for Brain, Music and Sound Research (BRAMS), University of Montreal, CP 6128, succ. Centre-ville, Montréal, QC, H3C 3J7, Canada
- Department of Psychology, University of Montreal, Montreal, Canada
- Centre for Research on Brain, Language and Music (CRBLM), Montreal, Canada
| | - Hugo Laflamme
- International Laboratory for Brain, Music and Sound Research (BRAMS), University of Montreal, CP 6128, succ. Centre-ville, Montréal, QC, H3C 3J7, Canada
- Department of Psychology, University of Montreal, Montreal, Canada
- Centre for Research on Brain, Language and Music (CRBLM), Montreal, Canada
| | - Agnès Zagala
- International Laboratory for Brain, Music and Sound Research (BRAMS), University of Montreal, CP 6128, succ. Centre-ville, Montréal, QC, H3C 3J7, Canada
- Department of Psychology, University of Montreal, Montreal, Canada
- Centre for Research on Brain, Language and Music (CRBLM), Montreal, Canada
| | - Kadi Melissa
- International Laboratory for Brain, Music and Sound Research (BRAMS), University of Montreal, CP 6128, succ. Centre-ville, Montréal, QC, H3C 3J7, Canada
- Department of Psychology, University of Montreal, Montreal, Canada
- Centre for Research on Brain, Language and Music (CRBLM), Montreal, Canada
| | - Naeem Komeilipoor
- International Laboratory for Brain, Music and Sound Research (BRAMS), University of Montreal, CP 6128, succ. Centre-ville, Montréal, QC, H3C 3J7, Canada
- Department of Psychology, University of Montreal, Montreal, Canada
- Centre for Research on Brain, Language and Music (CRBLM), Montreal, Canada
| | - Mélody Blais
- Euromov, University of Montpellier, Montpellier, France
| | - Simon Rigoulot
- International Laboratory for Brain, Music and Sound Research (BRAMS), University of Montreal, CP 6128, succ. Centre-ville, Montréal, QC, H3C 3J7, Canada
- Department of Psychology, University of Quebec at Trois-Rivières, Trois-Rivières, Canada
| | - Sonja A Kotz
- Departmentof Neuropsychology & Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, PO 616, 6200, MD, Maastricht, The Netherlands.
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| |
Collapse
|
4
|
Dalla Bella S, Janaqi S, Benoit CE, Farrugia N, Bégel V, Verga L, Harding EE, Kotz SA. Unravelling individual rhythmic abilities using machine learning. Sci Rep 2024; 14:1135. [PMID: 38212632 PMCID: PMC10784578 DOI: 10.1038/s41598-024-51257-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024] Open
Abstract
Humans can easily extract the rhythm of a complex sound, like music, and move to its regular beat, like in dance. These abilities are modulated by musical training and vary significantly in untrained individuals. The causes of this variability are multidimensional and typically hard to grasp in single tasks. To date we lack a comprehensive model capturing the rhythmic fingerprints of both musicians and non-musicians. Here we harnessed machine learning to extract a parsimonious model of rhythmic abilities, based on behavioral testing (with perceptual and motor tasks) of individuals with and without formal musical training (n = 79). We demonstrate that variability in rhythmic abilities and their link with formal and informal music experience can be successfully captured by profiles including a minimal set of behavioral measures. These findings highlight that machine learning techniques can be employed successfully to distill profiles of rhythmic abilities, and ultimately shed light on individual variability and its relationship with both formal musical training and informal musical experiences.
Collapse
Affiliation(s)
- Simone Dalla Bella
- International Laboratory for Brain, Music, and Sound Research (BRAMS), Montreal, Canada.
- Department of Psychology, University of Montreal, Pavillon Marie-Victorin, CP 6128 Succursale Centre-Ville, Montréal, QC, H3C 3J7, Canada.
- Centre for Research on Brain, Language and Music (CRBLM), Montreal, Canada.
- University of Economics and Human Sciences in Warsaw, Warsaw, Poland.
| | - Stefan Janaqi
- EuroMov Digital Health in Motion, IMT Mines Ales and University of Montpellier, Ales and Montpellier, France
| | - Charles-Etienne Benoit
- Inter-University Laboratory of Human Movement Biology, EA 7424, University Claude Bernard Lyon 1, 69 622, Villeurbanne, France
| | | | | | - Laura Verga
- Comparative Bioacoustics Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Department of Neuropsychology & Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. 616, Maastricht, 6200 MD, The Netherlands
| | - Eleanor E Harding
- Department of Otorhinolaryngology/Head and Neck Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Sonja A Kotz
- Department of Neuropsychology & Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. 616, Maastricht, 6200 MD, The Netherlands.
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| |
Collapse
|
5
|
Goldman JG, Volpe D, Ellis TD, Hirsch MA, Johnson J, Wood J, Aragon A, Biundo R, Di Rocco A, Kasman GS, Iansek R, Miyasaki J, McConvey VM, Munneke M, Pinto S, St. Clair KA, Toledo S, York MK, Todaro R, Yarab N, Wallock K. Delivering Multidisciplinary Rehabilitation Care in Parkinson's Disease: An International Consensus Statement. JOURNAL OF PARKINSON'S DISEASE 2024; 14:135-166. [PMID: 38277303 PMCID: PMC10836578 DOI: 10.3233/jpd-230117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
BACKGROUND Parkinson's disease (PD) is a complex neurodegenerative disorder impacting everyday function and quality of life. Rehabilitation plays a crucial role in improving symptoms, function, and quality of life and reducing disability, particularly given the lack of disease-modifying agents and limitations of medications and surgical therapies. However, rehabilitative care is under-recognized and under-utilized in PD and often only utilized in later disease stages, despite research and guidelines demonstrating its positive effects. Currently, there is a lack of consensus regarding fundamental topics related to rehabilitative services in PD. OBJECTIVE The goal of the international Parkinson's Foundation Rehabilitation Medicine Task Force was to develop a consensus statement regarding the incorporation of rehabilitation in PD care. METHODS The Task Force, comprised of international multidisciplinary experts in PD and rehabilitation and people directly affected by PD, met virtually to discuss topics such as rehabilitative services, existing therapy guidelines and rehabilitation literature in PD, and gaps and needs. A systematic, interactive, and iterative process was used to develop consensus-based statements on core components of PD rehabilitation and discipline-specific interventions. RESULTS The expert-based consensus statement outlines key tenets of rehabilitative care including its multidisciplinary approach and discipline-specific guidance for occupational therapy, physical therapy, speech language pathology/therapy, and psychology/neuropsychology across all PD stages. CONCLUSIONS Rehabilitative interventions should be an essential component in the comprehensive treatment of PD, from diagnosis to advanced disease. Greater education and awareness of the benefits of rehabilitative services for people with PD and their care partners, and further evidence-based and scientific study are encouraged.
Collapse
Affiliation(s)
- Jennifer G. Goldman
- JPG Enterprises LLC, Medical Division, Chicago, IL, USA
- ^Shirley Ryan AbilityLab, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Daniele Volpe
- Fresco Parkinson Institute, Fiesole, Italy
- Fresco Parkinson Center Villa Margherita, S. Stefano Riabilitazione, Vicenza, Italy
- NYU Grossman School of Medicine, New York, NY, USA
| | - Terry D. Ellis
- Boston University Sargent College of Health and Rehabilitation Sciences, Boston, MA, USA
| | - Mark A. Hirsch
- Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Physical Medicine and Rehabilitation, Carolinas Rehabilitation, Charlotte, NC, USA
| | - Julia Johnson
- Kings College Hospital NHS Foundation Trust, London, UK
| | - Julia Wood
- Lewy Body Dementia Association, Lilburn, GA, USA
| | - Ana Aragon
- Independent Consultant Occupational Therapist, Bath, UK
| | | | | | | | | | | | | | - Marten Munneke
- Radboudumc Center of Expertise for Movement Disorders, Nijmegen, Netherlands
| | - Serge Pinto
- The French National Centre for Scientific Research, Aix-Marseille University, Aix-en-Provence, France
| | | | - Santiago Toledo
- ^Shirley Ryan AbilityLab, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Ronnie Todaro
- Voz Advisors, New York, NY, USA
- ^Parkinson’s Foundation, New York, NY, USA
| | | | | |
Collapse
|
6
|
Lee H, Ko B. Effects of Music-Based Interventions on Motor and Non-Motor Symptoms in Patients with Parkinson's Disease: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1046. [PMID: 36673802 PMCID: PMC9859027 DOI: 10.3390/ijerph20021046] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
This systematic review and meta-analysis examined previous studies on music-based interventions for individuals with Parkinson’s disease (PD). The effectiveness of the interventions on various motor and non-motor outcomes was evaluated. This review was conducted by searching PubMed, CINAHL, PsycINFO, and Cochrane Library CENTRAL prior to June 2022 for randomized controlled trial (RCT) and controlled clinical trial (CCT) studies published in English. Data were expressed as weighted/standardized mean difference (MD/SMD) with 95% confidence intervals (CI). I2 index was used for heterogeneity. The initial search identified 745 studies, and 13 studies involving 417 participants with PD which met the inclusion criteria included in this review. The results of the meta-analysis revealed that music-based interventions can significantly improve walking velocity (MD = 0.12, 95% CI = 0.07~0.16, p < 0.00001), stride length (MD = 0.04, 95% CI = 0.02~0.07, p = 0.002), and mobility (MD = −1.05, 95% CI = −1.53~−0.57, p < 0.0001). However, the results did not support significant effects for music-based interventions on cadence (MD = 3.21, 95% CI = −4.15~10.57, p = 0.39), cognitive flexibility (MD = 20.91, 95% CI = −10.62~52.44, p = 0.19), inhibition (SMD = 0.07, 95% CI = −0.40~0.55, p = 0.76), and quality of life (SMD = −0.68, 95% CI= −1.68~0.32, p = 0.18). The findings suggest that music-based interventions are effective for the improvement of some motor symptoms, but evidence for non-motor symptoms is limited. Further high-quality studies with a larger sample size are required to obtain the robust effects of music-based interventions on various outcomes among patients with PD.
Collapse
Affiliation(s)
- Hyunjung Lee
- Department of Music Therapy, Graduate School, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Bumsuk Ko
- Department of Music, Graduate School, Hansei University, Gunpo 15852, Republic of Korea
| |
Collapse
|
7
|
Dalla Bella S. Rhythmic serious games as an inclusive tool for music-based interventions. Ann N Y Acad Sci 2022; 1517:15-24. [PMID: 35976673 DOI: 10.1111/nyas.14878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Technologies, such as mobile devices or sets of connected sensors, provide new and engaging opportunities to devise music-based interventions. Among the different technological options, serious games offer a valuable alternative. Serious games can engage multisensory processes, creating a rich, rewarding, and motivating rehabilitation setting. Moreover, they can be targeted to specific musical features, such as pitch production or synchronization to a beat. Because serious games are typically low cost and enjoy wide access, they are inclusive tools perfectly suited for remote at-home interventions using music in various patient populations and environments. The focus of this article is in particular on the use of rhythmic serious games for training auditory-motor synchronization. After reviewing the existing rhythmic games, initial evidence from a recent proof-of-concept study in Parkinson's disease is provided. It is shown that rhythmic video games using finger tapping can be used with success as an at-home protocol, and bring about beneficial effects on motor performance in patients. The use and benefits of rhythmic serious games can extend beyond the rehabilitation of patients with movement disorders, such as to neurodevelopmental disorders, including dyslexia and autism spectrum disorder.
Collapse
Affiliation(s)
- Simone Dalla Bella
- International Laboratory for Brain, Music, and Sound Research (BRAMS), Montreal, Quebec, Canada.,Department of Psychology, University of Montreal, Montreal, Quebec, Canada.,Centre for Research on Brain, Language and Music (CRBLM), Montreal, Quebec, Canada.,University of Economics and Human Sciences in Warsaw, Warsaw, Poland
| |
Collapse
|