1
|
Koebele SV, Bernaud VE, Northup-Smith SN, Willeman MN, Strouse IM, Bulen HL, Schrier AR, Newbern JM, DeNardo DF, Mayer LP, Dyer CA, Bimonte-Nelson HA. Gynecological surgery in adulthood imparts cognitive and brain changes in rats: A focus on hysterectomy at short-, moderate-, and long-term intervals after surgery. Horm Behav 2023; 155:105411. [PMID: 37659358 PMCID: PMC11060888 DOI: 10.1016/j.yhbeh.2023.105411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/11/2023] [Accepted: 08/08/2023] [Indexed: 09/04/2023]
Abstract
Premenopausal hysterectomy is associated with a greater relative risk of dementia. We previously demonstrated cognitive impairments in adult rats six weeks after hysterectomy with ovarian conservation compared with intact sham-controls and other gynecological surgery variations. Here, we investigated whether hysterectomy-induced cognitive impairments are transient or persistent. Adult rats received sham-control, ovariectomy (Ovx), hysterectomy, or Ovx-hysterectomy surgery. Spatial working memory, reference memory, and anxiety-like behavior were tested either six-weeks post-surgery, in adulthood; seven-months post-surgery, in early middle-age; or twelve-months post-surgery, in late middle-age. Hysterectomy in adulthood yielded spatial working memory deficits at short-, moderate-, and long-term post-surgery intervals. Serum hormone levels did not differ between ovary-intact, but differed from Ovx, groups. Hysterectomy had no significant impact on healthy ovarian follicle or corpora lutea counts for any post-surgery timepoint compared with intact sham-controls. Frontal cortex, dorsal hippocampus, and entorhinal cortex were assessed for activity-dependent markers. In entorhinal cortex, there were alterations in FOSB and ΔFOSB expression during the early middle-age timepoint, and phosphorylated ERK1/2 levels at the adult timepoint. Collectively, results suggest a primary role for the uterus in regulating cognition, and that memory-related neural pathways may be modified following gynecological surgery. This is the first preclinical report of long-term effects of hysterectomy with and without ovarian conservation on cognition, endocrine, ovarian, and brain assessments, initiating a comprehensive framework of gynecological surgery effects. Translationally, findings underscore critical needs to decipher how gynecological surgeries, especially those involving the uterus, impact the brain and its functions, the ovaries, and overall aging from a systems perspective.
Collapse
Affiliation(s)
- Stephanie V Koebele
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA; Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ 85014, USA
| | - Victoria E Bernaud
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA; Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ 85014, USA
| | - Steven N Northup-Smith
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA; Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ 85014, USA
| | - Mari N Willeman
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA; Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ 85014, USA
| | - Isabel M Strouse
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA; Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ 85014, USA
| | - Haidyn L Bulen
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA; Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ 85014, USA
| | - Ally R Schrier
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA; Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ 85014, USA
| | - Jason M Newbern
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Dale F DeNardo
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | | | | | - Heather A Bimonte-Nelson
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA; Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ 85014, USA.
| |
Collapse
|
2
|
Bernaud VE, Koebele SV, Northup-Smith SN, Willeman MN, Barker C, Schatzki-Lumpkin A, Sanchez MV, Bimonte-Nelson HA. Evaluations of memory, anxiety, and the growth factor IGF-1R after post-surgical menopause treatment with a highly selective progestin. Behav Brain Res 2023; 448:114442. [PMID: 37085118 PMCID: PMC11105077 DOI: 10.1016/j.bbr.2023.114442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 04/23/2023]
Abstract
Progestogens are a key component of menopausal hormone therapies. While some progestogens can be detrimental to cognition, there is preclinical evidence that progestogens with a strong progesterone-receptor affinity benefit some molecular mechanisms believed to underlie cognitive function. Thus, a progestin that maximizes progesterone-receptor affinity and minimizes affinities to other receptors may be cognitively beneficial. We evaluated segesterone-acetate (SGA), a 19-norprogesterone derivative with a strong progesterone-receptor affinity and no androgenic or estrogenic-receptor activity, hypothesizing that it would enhance cognition. Middle-aged rats underwent Sham or Ovariectomy (Ovx) surgery followed by administration of medroxyprogesterone-acetate (MPA; used as a positive control as we have previously shown MPA-induced cognitive deficits), SGA (low or high dose), or vehicle (one Sham and one Ovx group). Spatial working and reference memory, delayed retention, and anxiety-like behavior were assessed, as were memory- and hormone- related protein assays within the frontal cortex, dorsal hippocampus, and entorhinal cortex. Low-dose SGA impaired spatial working memory, while high-dose SGA had a more extensive detrimental impact, negatively affecting spatial reference memory and delayed retention. Replicating previous findings, MPA impaired spatial reference memory and delayed retention. SGA, but not MPA, alleviated Ovx-induced anxiety-like behaviors. On two working memory measures, IGF-1R expression correlated with better working memory only in rats without hormone manipulation; any hormone manipulation or combination of hormone manipulations used herein altered this relationship. These findings suggest that SGA impairs spatial cognition after surgical menopause, and that surgical menopause with or without progestin administration disrupts relationships between a growth factor critical to neuroplasticity.
Collapse
Affiliation(s)
- Victoria E Bernaud
- Department of Psychology, Arizona State University, 950 S. McAllister Ave., Tempe, AZ 85287, USA; Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ 85014, USA
| | - Stephanie V Koebele
- Department of Psychology, Arizona State University, 950 S. McAllister Ave., Tempe, AZ 85287, USA; Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ 85014, USA
| | - Steven N Northup-Smith
- Department of Psychology, Arizona State University, 950 S. McAllister Ave., Tempe, AZ 85287, USA; Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ 85014, USA
| | - Mari N Willeman
- Department of Psychology, Arizona State University, 950 S. McAllister Ave., Tempe, AZ 85287, USA; Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ 85014, USA; TGen Institute, 445 N 5th St, Phoenix, AZ 85004, USA
| | - Charlotte Barker
- Department of Psychology, Arizona State University, 950 S. McAllister Ave., Tempe, AZ 85287, USA; Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ 85014, USA
| | - Alex Schatzki-Lumpkin
- Department of Psychology, Arizona State University, 950 S. McAllister Ave., Tempe, AZ 85287, USA; Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ 85014, USA
| | - Maria Valenzuela Sanchez
- Department of Psychology, Arizona State University, 950 S. McAllister Ave., Tempe, AZ 85287, USA; Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ 85014, USA
| | - Heather A Bimonte-Nelson
- Department of Psychology, Arizona State University, 950 S. McAllister Ave., Tempe, AZ 85287, USA; Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ 85014, USA.
| |
Collapse
|
3
|
Hampson E. Oral contraceptives in the central nervous system: Basic pharmacology, methodological considerations, and current state of the field. Front Neuroendocrinol 2023; 68:101040. [PMID: 36243109 DOI: 10.1016/j.yfrne.2022.101040] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/19/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
Millions of women around the world use combined oral contraceptives (OCs), yet surprisingly little is known about their central nervous system (CNS) effects. This article provides a short overview of the basic pharmacology of OCs, emphasizing features that may be relevant to understanding their effects in the CNS. Historical and recent findings from studies of cognitive function, mood, and negative affect (depressive changes under OC use) are then reviewed. We also present data from an archival dataset from our own laboratory in which we explore dysphoric changes in women using four generations of contraceptive progestins. Current data in the field are consistent with a modest effect of OC use on CNS variables, but conclusions based on current findings must be made very cautiously because of multiple methodological issues in many published studies to date, and inconsistencies in the findings. Directions for future research over the next 10 years are suggested. (150 words).
Collapse
Affiliation(s)
- Elizabeth Hampson
- Department of Psychology, University of Western Ontario, London, ON, Canada; Department of Psychiatry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
4
|
Lacasse JM, Gomez-Perales E, Brake WG. Modeling hormonal contraception in female rats: A framework for studies in behavioral neurobiology. Front Neuroendocrinol 2022; 67:101020. [PMID: 35952797 DOI: 10.1016/j.yfrne.2022.101020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/19/2022] [Accepted: 08/03/2022] [Indexed: 12/12/2022]
Abstract
Research on hormonal contraceptives (HC) in animal models is lacking, and as a result, so is our understanding of the impact of HC on the brain and behavior. Here, we provide a review of the pharmacology of HC, as well as the methodology and best practices for designing a model of HC in female rats. We outline specific methodological considerations regarding dosing, route of administration, exposure time/timing, and selecting a control group. We also provide a framework outlining important levels of analysis for thinking about the impact of HC on behavioral and neurobiological outcomes. The purpose of this review is to equip researchers with foundational knowledge, and some basic elements of experimental design for future studies investigating the impact of HC on the brain and behavior of female rats.
Collapse
Affiliation(s)
- Jesse M Lacasse
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal H4B 1R6, Canada.
| | - Eamonn Gomez-Perales
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal H4B 1R6, Canada
| | - Wayne G Brake
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal H4B 1R6, Canada.
| |
Collapse
|