1
|
Kang DW, Wang SM, Um YH, Kim S, Kim T, Kim D, Lee CU, Lim HK. Transcranial direct current stimulation and neuronal functional connectivity in MCI: role of individual factors associated to AD. Front Psychiatry 2024; 15:1428535. [PMID: 39224475 PMCID: PMC11366601 DOI: 10.3389/fpsyt.2024.1428535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/11/2024] [Indexed: 09/04/2024] Open
Abstract
Background Alzheimer's disease (AD) encompasses a spectrum that may progress from mild cognitive impairment (MCI) to full dementia, characterized by amyloid-beta and tau accumulation. Transcranial direct current stimulation (tDCS) is being investigated as a therapeutic option, but its efficacy in relation to individual genetic and biological risk factors remains underexplored. Objective To evaluate the effects of a two-week anodal tDCS regimen on the left dorsolateral prefrontal cortex, focusing on functional connectivity changes in neural networks in MCI patients resulting from various possible underlying disorders, considering individual factors associated to AD such as amyloid-beta deposition, APOE ϵ4 allele, BDNF Val66Met polymorphism, and sex. Methods In a single-arm prospective study, 63 patients with MCI, including both amyloid-PET positive and negative cases, received 10 sessions of tDCS. We assessed intra- and inter-network functional connectivity (FC) using fMRI and analyzed interactions between tDCS effects and individual factors associated to AD. Results tDCS significantly enhanced intra-network FC within the Salience Network (SN) and inter-network FC between the Central Executive Network and SN, predominantly in APOE ϵ4 carriers. We also observed significant sex*tDCS interactions that benefited inter-network FC among females. Furthermore, the effects of multiple modifiers, particularly the interaction of the BDNF Val66Met polymorphism and sex, were evident, as demonstrated by increased intra-network FC of the SN in female Met non-carriers. Lastly, the effects of tDCS on FC did not differ between the group of 26 MCI patients with cerebral amyloid-beta deposition detected by flutemetamol PET and the group of 37 MCI patients without cerebral amyloid-beta deposition. Conclusions The study highlights the importance of precision medicine in tDCS applications for MCI, suggesting that individual genetic and biological profiles significantly influence therapeutic outcomes. Tailoring interventions based on these profiles may optimize treatment efficacy in early stages of AD.
Collapse
Affiliation(s)
- Dong Woo Kang
- Department of Psychiatry, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sheng-Min Wang
- Department of Psychiatry, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yoo Hyun Um
- Department of Psychiatry, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sunghwan Kim
- Department of Psychiatry, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - TaeYeong Kim
- Research Institute, NEUROPHET Inc., Seoul, Republic of Korea
| | - Donghyeon Kim
- Research Institute, NEUROPHET Inc., Seoul, Republic of Korea
| | - Chang Uk Lee
- Department of Psychiatry, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyun Kook Lim
- Department of Psychiatry, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Research Institute, NEUROPHET Inc., Seoul, Republic of Korea
| |
Collapse
|
2
|
Chizhikova AA. [Electroencephalography: features of the obtained data and its applicability in psychiatry]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:31-39. [PMID: 38884427 DOI: 10.17116/jnevro202412405131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Presently, there is an increased interest in expanding the range of diagnostic and scientific applications of electroencephalography (EEG). The method is attractive due to non-invasiveness, availability of equipment with a wide range of modifications for various purposes, and the ability to track the dynamics of brain electrical activity directly and with high temporal resolution. Spectral, coherency and other types of analysis provide volumetric information about its power, frequency distribution, spatial organization of signal and its self-similarity in dynamics or in different sections at a time. The development of computing technologies provides processing of volumetric data obtained using EEG and a qualitatively new level of their analysis using various mathematical models. This review discusses benefits and limitations of using the EEG in scientific research, currently known interpretation of the obtained data and its physiological and pathological correlates. It is expected to determine the complex relationship between the parameters of brain electrical activity and various functional and pathological conditions. The possibility of using EEG characteristics as biomarkers of various physiological and pathological conditions is being considered. Electronic databases, including MEDLINE (on PubMed), Google Scholar and Russian Scientific Citation Index (RSCI, on elibrary.ru), scientific journals and books were searched to find relevant studies.
Collapse
Affiliation(s)
- A A Chizhikova
- Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Moscow, Russia
| |
Collapse
|
3
|
Ponomareva NV, Klyushnikov SA, Abramycheva N, Konovalov RN, Krotenkova M, Kolesnikova E, Malina D, Urazgildeeva G, Kanavets E, Mitrofanov A, Fokin V, Rogaev E, Illarioshkin SN. Neurophysiological hallmarks of Huntington's disease progression: an EEG and fMRI connectivity study. Front Aging Neurosci 2023; 15:1270226. [PMID: 38161585 PMCID: PMC10755012 DOI: 10.3389/fnagi.2023.1270226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) can provide corroborative data on neurophysiological alterations in Huntington's disease (HD). However, the alterations in EEG and fMRI resting-state functional connectivity (rsFC), as well as their interrelations, at different stages of HD remain insufficiently investigated. This study aimed to identify neurophysiological alterations in individuals with preclinical HD (preHD) and early manifest HD (EMHD) by analyzing EEG and fMRI rsFC and examining their interrelationships. We found significant differences in EEG power between preHD individuals and healthy controls (HC), with a decrease in power in a specific frequency range at the theta-alpha border and slow alpha activity. In EMHD patients, in addition to the decrease in power in the 7-9 Hz range, a reduction in power within the classic alpha band compared to HC was observed. The fMRI analysis revealed disrupted functional connectivity in various brain networks, particularly within frontal lobe, putamen-cortical, and cortico-cerebellar networks, in individuals with the HD mutation compared to HC. The analysis of the relationship between EEG and fMRI rsFC revealed an association between decreased alpha power, observed in individuals with EMHD, and increased connectivity in large-scale brain networks. These networks include putamen-cortical, DMN-related and cortico-hippocampal circuits. Overall, the findings suggest that EEG and fMRI provide valuable information for monitoring pathological processes during the development of HD. A decrease in inhibitory control within the putamen-cortical, DMN-related and cortico-hippocampal circuits, accompanied by a reduction in alpha and theta-alpha border oscillatory activity, could potentially contribute to cognitive decline in HD.
Collapse
Affiliation(s)
- Natalya V. Ponomareva
- Research Center of Neurology, Moscow, Russia
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, Russia
| | | | | | | | | | | | | | | | | | | | | | - Evgeny Rogaev
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, Russia
- Department of Psychiatry, Umass Chan Medical School, Shrewsbury, MA, United States
| | | |
Collapse
|
4
|
Kim NN, Tan C, Ma E, Kutlu S, Carrazana E, Vimala V, Viereck J, Liow K. Abnormal Temporal Slowing on EEG Findings in Preclinical Alzheimer's Disease Patients With the ApoE4 Allele: A Pilot Study. Cureus 2023; 15:e47852. [PMID: 38021568 PMCID: PMC10679961 DOI: 10.7759/cureus.47852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2023] [Indexed: 12/01/2023] Open
Abstract
INTRODUCTION Currently, there are limited accessible and cost-effective biomarkers for preclinical Alzheimer's disease (AD) patients. However, the apolipoprotein E (ApoE) polymorphic alleles can predict if someone is at high (e4), neutral (e3), or low (e2) genetic risk for developing AD. This study analyzed electroencephalogram (EEG) reports from individuals with various ApoE genotypes, aiming to identify EEG changes and patterns that could potentially serve as predictive markers for preclinical AD progression. METHODS Participants aged 64-78 were selected from the patient database at an outpatient neurology clinic. Genotype studies were performed to determine ApoE status, followed by EEG analysis to identify any apparent trends. A case-control design was used, categorizing participants into cases (e2e3, e2e4, e3e4, e4e4) and controls (e3e3). EEG recordings were compared between the groups to identify potential differences in EEG characteristics, including abnormal temporal slowing, frequency, and ApoE genotype association. RESULTS Among 43 participants, 49% demonstrated evidence of abnormal temporal slowing on EEG. Of these, 48% displayed focal left temporal slowing, and 52% displayed bilateral temporal slowing. The right-sided temporal slowing was not observed. Among participants with abnormal slowing, 95% exhibited theta frequency (4-8 Hz) slowing, while only 4.8% displayed delta frequency (0-4 Hz) slowing. Among participants with the ApoE4 allele, 61.5% demonstrated evidence of abnormal slowing, compared to 43.3% without it. Furthermore, the presence of an ApoE4 allele was associated with a significantly higher proportion of males (54%) compared to those without it (13%) (p=0.009). CONCLUSIONS Although we did not find a statistically significant difference in temporal EEG slowing among different ApoE genotypes, our findings suggest a potential association between temporal slowing on EEG and the presence of an ApoE4 allele in individuals with preclinical AD. These observations highlight the need for further exploration into the potential influence of the ApoE4 allele on EEG findings and the utility of EEG as a complementary diagnostic tool for AD. Longitudinal studies with large sample sizes are needed to establish the precise relationship between EEG patterns, ApoE genotypes, and AD progression.
Collapse
Affiliation(s)
- Nathan N Kim
- Neurology, John A. Burns School of Medicine (JABSOM), University of Hawaii, Honolulu, USA
| | - Charissa Tan
- Neurology, John A. Burns School of Medicine (JABSOM), University of Hawaii, Honolulu, USA
| | - Enze Ma
- Neurology, John A. Burns School of Medicine (JABSOM), University of Hawaii, Honolulu, USA
| | - Selin Kutlu
- Neurology, John A. Burns School of Medicine (JABSOM), University of Hawaii, Honolulu, USA
| | - Enrique Carrazana
- Brain Research, Innovation, & Translation Laboratory, Comprehensive Epilepsy Center & Video-EEG Epilepsy Monitoring Unit, Hawaii Pacific Neuroscience, Honolulu, USA
| | | | - Jason Viereck
- Brain Research, Innovation, & Translation Laboratory, Hawaii Pacific Neuroscience, Honolulu, USA
| | - Kore Liow
- Neurology, Hawaii Pacific Neuroscience, Honolulu, USA
| |
Collapse
|
5
|
Ponomareva NV, Andreeva TV, Protasova MS, Kunizheva SS, Kuznetsova IL, Kolesnikova EP, Malina DD, Mitrofanov AA, Fokin VF, Illarioshkin SN, Rogaev EI. Neuronal Hyperactivation in EEG Data during Cognitive Tasks Is Related to the Apolipoprotein J/Clusterin Genotype in Nondemented Adults. Int J Mol Sci 2023; 24:6790. [PMID: 37047762 PMCID: PMC10095572 DOI: 10.3390/ijms24076790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
The clusterin (CLU) rs11136000 CC genotype is a probable risk factor for Alzheimer's disease (AD). CLU, also known as the apolipoprotein J gene, shares certain properties with the apolipoprotein E (APOE) gene with a well-established relationship with AD. This study aimed to determine whether the electrophysiological patterns of brain activation during the letter fluency task (LFT) depend on CLU genotypes in adults without dementia. Previous studies have shown that LFT performance involves activation of the frontal cortex. We examined EEG alpha1 and alpha2 band desynchronization in the frontal regions during the LFT in 94 nondemented individuals stratified by CLU (rs11136000) genotype. Starting at 30 years of age, CLU CC carriers exhibited more pronounced task-related alpha2 desynchronization than CLU CT&TT carriers in the absence of any differences in LFT performance. In CLU CC carriers, alpha2 desynchronization was significantly correlated with age. Increased task-related activation in individuals at genetic risk for AD may reflect greater "effort" to perform the task and/or neuronal hyperexcitability. The results show that the CLU genotype is associated with neuronal hyperactivation in the frontal cortex during cognitive tasks performances in nondemented individuals, suggesting systematic vulnerability of LFT related cognitive networks in people carrying unfavorable CLU alleles.
Collapse
Affiliation(s)
- Natalya V. Ponomareva
- Research Center of Neurology, 125367 Moscow, Russia
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354349 Sochi, Russia
| | - Tatiana V. Andreeva
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354349 Sochi, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
- Centre for Genetics and Genetic Technologies, Faculty of Biology, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Maria S. Protasova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Svetlana S. Kunizheva
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354349 Sochi, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Irina L. Kuznetsova
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354349 Sochi, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| | | | | | | | | | | | - Evgeny I. Rogaev
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354349 Sochi, Russia
- Department of Psychiatry, Umass Chan Medical School, Shrewsbury, MA 01545, USA
| |
Collapse
|