1
|
Geidies A, Medar ML, Beyer HM. Engineering organoids as cerebral disease models. Curr Opin Biotechnol 2025; 92:103253. [PMID: 39808929 DOI: 10.1016/j.copbio.2024.103253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025]
Abstract
Cerebral organoids pioneered in replicating complex brain tissue architectures in vitro, offering a vast potential for human disease modeling. They enable the in vitro study of human physiological and pathophysiological mechanisms of various neurological diseases and disorders. The trajectory of technological advancements in brain organoid generation and engineering over the past decade indicates that the technology might, in the future, mature into indispensable solutions at the horizon of personalized and regenerative medicine. In this review, we highlight recent advances in the engineering of brain organoids as disease models and discuss some of the challenges and opportunities for future research in this rapidly evolving field.
Collapse
Affiliation(s)
- Alexander Geidies
- Institute of Synthetic Biology, Heinrich-Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Marija Lj Medar
- Institute of Synthetic Biology, Heinrich-Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Hannes M Beyer
- Institute of Synthetic Biology, Heinrich-Heine University Düsseldorf, Düsseldorf 40225, Germany.
| |
Collapse
|
2
|
Fertan E, Hung C, Danial JSH, Lam JYL, Preman P, Albertini G, English EA, Böken D, Livesey FJ, De Strooper B, Patani R, Klenerman D. Clearance of beta-amyloid and tau aggregates is size dependent and altered by an inflammatory challenge. Brain Commun 2024; 7:fcae454. [PMID: 39749010 PMCID: PMC11694676 DOI: 10.1093/braincomms/fcae454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/12/2024] [Accepted: 12/12/2024] [Indexed: 01/04/2025] Open
Abstract
Extracellular beta-amyloid aggregation and inflammation are in a complex and not fully understood interplay during hyperphosphorylated tau aggregation and pathogenesis of Alzheimer's disease. Our group has previously shown that an immune challenge with tumour necrosis factor alpha can alter extracellular beta-sheet containing aggregates in human-induced pluripotent stem cell-derived cortical neurons carrying familial Alzheimer's disease-related presenilin 1 mutations. Here, using single-molecule detection and super-resolution imaging techniques, we quantified and characterized the intra- and extracellular beta-amyloid and AT8-positive tau aggregates. Our results indicate a pre-existing Alzheimer's disease-like pathology caused by the presenilin 1 mutation, with increased beta-amyloid aggregates in both the cell lysate and conditioned media compared to isogenic controls and also increased intracellular tau aggregates. The main effect of tumour necrosis factor alpha treatment on presenilin 1 neurons was the formation of larger intracellular beta-amyloid aggregates. In contrast, isogenic controls showed more significant changes with tumour necrosis factor alpha treatment with an increase in beta-amyloid aggregates in the media but not intracellularly and an increase in tau aggregates in both the media and cell lysate, suggesting a chronic inflammation-driven mechanism for the development of sporadic Alzheimer's disease. Remarkably, we also found significant morphological differences between intra- and extracellular beta-amyloid and tau aggregates in human-induced pluripotent stem cell-derived cortical neurons, suggesting these neurons can only clear aggregates when small, and that larger aggregates stay inside the neurons. While majority of the beta-amyloid aggregates were cleared into the media, a greater portion of the tau aggregates remained intracellular. This size-dependent aggregate clearance was also shown to be conserved in vivo, using soaked and homogenized mouse and human post-mortem Alzheimer's disease brain samples. As such, our results are proposing a previously unknown, size-dependent aggregate clearance mechanism, which can possibly explain the intracellular aggregation of tau and extracellular aggregation of beta-amyloid.
Collapse
Affiliation(s)
- Emre Fertan
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge CB2 0XY, UK
| | - Christy Hung
- The Francis Crick Institute, University College London, London NW1 1AT, UK
- Department of Neuroscience, City University of Hong Kong, Kowloon 999007, Hong Kong SAR
| | - John S H Danial
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge CB2 0XY, UK
| | - Jeff Y L Lam
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge CB2 0XY, UK
| | - Pranav Preman
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 0N5 box 602, 3000 Leuven, Belgium
| | - Giulia Albertini
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 0N5 box 602, 3000 Leuven, Belgium
| | - Elizabeth A English
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge CB2 0XY, UK
| | - Dorothea Böken
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge CB2 0XY, UK
| | - Frederick J Livesey
- Zayed Centre for Research into Rare Disease in Children, University College London, Great Ormond Street Institute of Child Health, London WC1N 1DZ, UK
| | - Bart De Strooper
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 0N5 box 602, 3000 Leuven, Belgium
- UK Dementia Research Institute, University College London, London WC1E 6BT, UK
| | - Rickie Patani
- The Francis Crick Institute, University College London, London NW1 1AT, UK
| | - David Klenerman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge CB2 0XY, UK
| |
Collapse
|
3
|
Colonna M, Konopka G, Liddelow SA, Nowakowski T, Awatramani R, Bateup HS, Cadwell CR, Caglayan E, Chen JL, Gillis J, Kampmann M, Krienen F, Marsh SE, Monje M, O'Dea MR, Patani R, Pollen AA, Quintana FJ, Scavuzzo M, Schmitz M, Sloan SA, Tesar PJ, Tollkuhn J, Tosches MA, Urbanek ME, Werner JM, Bayraktar OA, Gokce O, Habib N. Implementation and validation of single-cell genomics experiments in neuroscience. Nat Neurosci 2024; 27:2310-2325. [PMID: 39627589 DOI: 10.1038/s41593-024-01814-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 10/15/2024] [Indexed: 12/13/2024]
Abstract
Single-cell or single-nucleus transcriptomics is a powerful tool for identifying cell types and cell states. However, hypotheses derived from these assays, including gene expression information, require validation, and their functional relevance needs to be established. The choice of validation depends on numerous factors. Here, we present types of orthogonal and functional validation experiment to strengthen preliminary findings obtained using single-cell and single-nucleus transcriptomics as well as the challenges and limitations of these approaches.
Collapse
Affiliation(s)
- Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
| | - Genevieve Konopka
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Neuroscience & Physiology, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA.
- Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY, USA.
| | - Tomasz Nowakowski
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA.
| | - Rajeshwar Awatramani
- Department of Microbiology and Immunology, Northwestern University, Chicago, IL, USA
| | - Helen S Bateup
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Cathryn R Cadwell
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA
| | - Emre Caglayan
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jerry L Chen
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Center for Neurophotonics, Boston University, Boston, MA, USA
- Department of Biology, Boston University, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
| | - Jesse Gillis
- Department of Physiology and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Fenna Krienen
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Samuel E Marsh
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Michael R O'Dea
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA
| | - Rickie Patani
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, Human Stem Cells and Neurodegeneration Laboratory, London, UK
| | - Alex A Pollen
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Marissa Scavuzzo
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, OH, USA
- Institute for Glial Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Matthew Schmitz
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Steven A Sloan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Paul J Tesar
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, OH, USA
- Institute for Glial Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | | | - Madeleine E Urbanek
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Jonathan M Werner
- Department of Physiology and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - Ozgun Gokce
- Department of Old Age Psychiatry and Cognitive Disorders, University Hospital Bonn, Bonn, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| | - Naomi Habib
- Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
4
|
Oakley DH, Chung M, Abrha S, Hyman BT, Frosch MP. β-Amyloid species production and tau phosphorylation in iPSC-neurons with reference to neuropathologically characterized matched donor brains. J Neuropathol Exp Neurol 2024; 83:772-782. [PMID: 38874454 PMCID: PMC11333826 DOI: 10.1093/jnen/nlae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024] Open
Abstract
A basic assumption underlying induced pluripotent stem cell (iPSC) models of neurodegeneration is that disease-relevant pathologies present in brain tissue are also represented in donor-matched cells differentiated from iPSCs. However, few studies have tested this hypothesis in matched iPSCs and neuropathologically characterized donated brain tissues. To address this, we assessed iPSC-neuron production of β-amyloid (Aβ) Aβ40, Aβ42, and Aβ43 in 24 iPSC lines matched to donor brains with primary neuropathologic diagnoses of sporadic AD (sAD), familial AD (fAD), control, and other neurodegenerative disorders. Our results demonstrate a positive correlation between Aβ43 production by fAD iPSC-neurons and Aβ43 accumulation in matched brain tissues but do not reveal a substantial correlation in soluble Aβ species between control or sAD iPSC-neurons and matched brains. However, we found that the ApoE4 genotype is associated with increased Aβ production by AD iPSC-neurons. Pathologic tau phosphorylation was found to be increased in AD and fAD iPSC-neurons compared to controls and positively correlated with the relative abundance of longer-length Aβ species produced by these cells. Taken together, our results demonstrate that sAD-predisposing genetic factors influence iPSC-neuron phenotypes and that these cells are capturing disease-relevant and patient-specific components of the amyloid cascade.
Collapse
Affiliation(s)
- Derek H Oakley
- Harvard Medical School, Boston, MA, United States
- C.S. Kubik Laboratory for Neuropathology, Boston, MA, United States
- Massachusetts Alzheimer’s Disease Research Center, Charlestown, MA, United States
- Department of Pathology, Massachusetts General Hospital, Boston, MA, United States
| | - Mirra Chung
- Harvard Medical School, Boston, MA, United States
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Sara Abrha
- Harvard Medical School, Boston, MA, United States
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Bradley T Hyman
- Harvard Medical School, Boston, MA, United States
- Massachusetts Alzheimer’s Disease Research Center, Charlestown, MA, United States
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Matthew P Frosch
- Harvard Medical School, Boston, MA, United States
- C.S. Kubik Laboratory for Neuropathology, Boston, MA, United States
- Massachusetts Alzheimer’s Disease Research Center, Charlestown, MA, United States
- Department of Pathology, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
5
|
Gupta K, Czerminski JT, Lawrence JB. Trisomy silencing by XIST: translational prospects and challenges. Hum Genet 2024; 143:843-855. [PMID: 38459355 PMCID: PMC11294271 DOI: 10.1007/s00439-024-02651-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/25/2024] [Indexed: 03/10/2024]
Abstract
XIST RNA is heavily studied for its role in fundamental epigenetics and X-chromosome inactivation; however, the translational potential of this singular RNA has been much less explored. This article combines elements of a review on XIST biology with our perspective on the translational prospects and challenges of XIST transgenics. We first briefly review aspects of XIST RNA basic biology that are key to its translational relevance, and then discuss recent efforts to develop translational utility of XIST for chromosome dosage disorders, particularly Down syndrome (DS). Remarkably, it was shown in vitro that expression of an XIST transgene inserted into one chromosome 21 can comprehensively silence that chromosome and "dosage compensate" Trisomy 21, the cause of DS. Here we summarize recent findings and discuss potential paths whereby ability to induce "trisomy silencing" can advance translational research for new therapeutic strategies. Despite its common nature, the underlying biology for various aspects of DS, including cell types and pathways impacted (and when), is poorly understood. Recent studies show that an inducible iPSC system to dosage-correct chromosome 21 can provide a powerful approach to unravel the cells and pathways directly impacted, and the developmental timing, information key to design pharmacotherapeutics. In addition, we discuss prospects of a more far-reaching and challenging possibility that XIST itself could be developed into a therapeutic agent, for targeted cellular "chromosome therapy". A few rare case studies of imbalanced X;autosome translocations indicate that natural XIST can rescue an otherwise lethal trisomy. The potential efficacy of XIST transgenes later in development faces substantial biological and technical challenges, although recent findings are encouraging, and technology is rapidly evolving. Hence, it is compelling to consider the transformative possibility that XIST-mediated chromosome therapy may ultimately be developed, for specific pathologies seen in DS, or other duplication disorders.
Collapse
Affiliation(s)
- Khusali Gupta
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Jan T Czerminski
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
- Medical Scientist Training Program, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Jeanne B Lawrence
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA.
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA.
| |
Collapse
|
6
|
Gujjala VA, Klimek I, Abyadeh M, Tyshkovskiy A, Oz N, Castro JP, Gladyshev VN, Newton J, Kaya A. A disease similarity approach identifies short-lived Niemann-Pick type C disease mice with accelerated brain aging as a novel mouse model for Alzheimer's disease and aging research. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.19.590328. [PMID: 38712089 PMCID: PMC11071364 DOI: 10.1101/2024.04.19.590328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Since its first description in 1906 by Dr. Alois Alzheimer, Alzheimer's disease (AD) has been the most common type of dementia. Initially thought to be caused by age-associated accumulation of plaques, in recent years, research has increasingly associated AD with lysosomal storage and metabolic disorders, and the explanation of its pathogenesis has shifted from amyloid and tau accumulation to oxidative stress and impaired lipid and glucose metabolism aggravated by hypoxic conditions. However, the underlying mechanisms linking those cellular processes and conditions to disease progression have yet to be defined. Here, we applied a disease similarity approach to identify unknown molecular targets of AD by using transcriptomic data from congenital diseases known to increase AD risk, namely Down Syndrome, Niemann Pick Disease Type C (NPC), and Mucopolysaccharidoses I. We uncovered common pathways, hub genes, and miRNAs across in vitro and in vivo models of these diseases as potential molecular targets for neuroprotection and amelioration of AD pathology, many of which have never been associated with AD. We then investigated common molecular alterations in brain samples from an NPC disease mouse model by juxtaposing them with brain samples of both human and mouse models of AD. Detailed phenotypic and molecular analyses revealed that the NPC mut mouse model can serve as a potential short-lived in vivo model for AD research and for understanding molecular factors affecting brain aging. This research represents the first comprehensive approach to congenital disease association with neurodegeneration and a new perspective on AD research while highlighting shortcomings and lack of correlation in diverse in vitro models. Considering the lack of an AD mouse model that recapitulates the physiological hallmarks of brain aging, the characterization of a short-lived NPC mouse model will further accelerate the research in these fields and offer a unique model for understanding the molecular mechanisms of AD from a perspective of accelerated brain aging.
Collapse
|
7
|
Fertan E, Böken D, Murray A, Danial JSH, Lam JYL, Wu Y, Goh PA, Alić I, Cheetham MR, Lobanova E, Zhang YP, Nižetić D, Klenerman D. Cerebral organoids with chromosome 21 trisomy secrete Alzheimer's disease-related soluble aggregates detectable by single-molecule-fluorescence and super-resolution microscopy. Mol Psychiatry 2024; 29:369-386. [PMID: 38102482 PMCID: PMC11116105 DOI: 10.1038/s41380-023-02333-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023]
Abstract
Understanding the role of small, soluble aggregates of beta-amyloid (Aβ) and tau in Alzheimer's disease (AD) is of great importance for the rational design of preventative therapies. Here we report a set of methods for the detection, quantification, and characterisation of soluble aggregates in conditioned media of cerebral organoids derived from human iPSCs with trisomy 21, thus containing an extra copy of the amyloid precursor protein (APP) gene. We detected soluble beta-amyloid (Aβ) and tau aggregates secreted by cerebral organoids from both control and the isogenic trisomy 21 (T21) genotype. We developed a novel method to normalise measurements to the number of live neurons within organoid-conditioned media based on glucose consumption. Thus normalised, T21 organoids produced 2.5-fold more Aβ aggregates with a higher proportion of larger (300-2000 nm2) and more fibrillary-shaped aggregates than controls, along with 1.3-fold more soluble phosphorylated tau (pTau) aggregates, increased inflammasome ASC-specks, and a higher level of oxidative stress inducing thioredoxin-interacting protein (TXNIP). Importantly, all this was detectable prior to the appearance of histological amyloid plaques or intraneuronal tau-pathology in organoid slices, demonstrating the feasibility to model the initial pathogenic mechanisms for AD in-vitro using cells from live genetically pre-disposed donors before the onset of clinical disease. Then, using different iPSC clones generated from the same donor at different times in two independent experiments, we tested the reproducibility of findings in organoids. While there were differences in rates of disease progression between the experiments, the disease mechanisms were conserved. Overall, our results show that it is possible to non-invasively follow the development of pathology in organoid models of AD over time, by monitoring changes in the aggregates and proteins in the conditioned media, and open possibilities to study the time-course of the key pathogenic processes taking place.
Collapse
Affiliation(s)
- Emre Fertan
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- UK Dementia Research Institute at University of Cambridge, Cambridge, CB2 0AH, UK
| | - Dorothea Böken
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- UK Dementia Research Institute at University of Cambridge, Cambridge, CB2 0AH, UK
| | - Aoife Murray
- The Blizard Institute, Barts & The London School of Medicine, Queen Mary University of London, London, E1 2AT, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - John S H Danial
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- UK Dementia Research Institute at University of Cambridge, Cambridge, CB2 0AH, UK
| | - Jeff Y L Lam
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- UK Dementia Research Institute at University of Cambridge, Cambridge, CB2 0AH, UK
| | - Yunzhao Wu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- UK Dementia Research Institute at University of Cambridge, Cambridge, CB2 0AH, UK
| | - Pollyanna A Goh
- The Blizard Institute, Barts & The London School of Medicine, Queen Mary University of London, London, E1 2AT, UK
| | - Ivan Alić
- The Blizard Institute, Barts & The London School of Medicine, Queen Mary University of London, London, E1 2AT, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Matthew R Cheetham
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- UK Dementia Research Institute at University of Cambridge, Cambridge, CB2 0AH, UK
| | - Evgeniia Lobanova
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- UK Dementia Research Institute at University of Cambridge, Cambridge, CB2 0AH, UK
| | - Yu P Zhang
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- UK Dementia Research Institute at University of Cambridge, Cambridge, CB2 0AH, UK
| | - Dean Nižetić
- The Blizard Institute, Barts & The London School of Medicine, Queen Mary University of London, London, E1 2AT, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - David Klenerman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
- UK Dementia Research Institute at University of Cambridge, Cambridge, CB2 0AH, UK.
| |
Collapse
|
8
|
Watson LA, Meharena HS. From neurodevelopment to neurodegeneration: utilizing human stem cell models to gain insight into Down syndrome. Front Genet 2023; 14:1198129. [PMID: 37323671 PMCID: PMC10267712 DOI: 10.3389/fgene.2023.1198129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Down syndrome (DS), caused by triplication of chromosome 21, is the most frequent aneuploidy observed in the human population and represents the most common genetic form of intellectual disability and early-onset Alzheimer's disease (AD). Individuals with DS exhibit a wide spectrum of clinical presentation, with a number of organs implicated including the neurological, immune, musculoskeletal, cardiac, and gastrointestinal systems. Decades of DS research have illuminated our understanding of the disorder, however many of the features that limit quality of life and independence of individuals with DS, including intellectual disability and early-onset dementia, remain poorly understood. This lack of knowledge of the cellular and molecular mechanisms leading to neurological features of DS has caused significant roadblocks in developing effective therapeutic strategies to improve quality of life for individuals with DS. Recent technological advances in human stem cell culture methods, genome editing approaches, and single-cell transcriptomics have provided paradigm-shifting insights into complex neurological diseases such as DS. Here, we review novel neurological disease modeling approaches, how they have been used to study DS, and what questions might be addressed in the future using these innovative tools.
Collapse
Affiliation(s)
- L. Ashley Watson
- Developmental and Cognitive Genomics Research Laboratory, Division of Biological Sciences, Section of Neurobiology, University of California, San Diego, La Jolla, CA, United States
| | - Hiruy S. Meharena
- Developmental and Cognitive Genomics Research Laboratory, Division of Biological Sciences, Section of Neurobiology, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|