1
|
Ding S, Li J, Fang Y, Zhuo X, Gu L, Zhang X, Yang Y, Wei M, Liao Z, Li Q. Research progress on the effects and mechanisms of magnetic field on neurodegenerative diseases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 193:35-45. [PMID: 39277139 DOI: 10.1016/j.pbiomolbio.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/06/2024] [Accepted: 09/12/2024] [Indexed: 09/17/2024]
Abstract
With the progress of modern science and technology, magnetic therapy technology develops rapidly, and many types of magnetic therapy methods continue to emerge, making magnetic therapy one of the main techniques of physiotherapy. With the continuous development of magnetic field research and clinical applications, magnetic therapy, as a non-invasive brain stimulation therapy technology, has attracted much attention due to its potential in the treatment of motor dysfunction, cognitive impairment and speech disorders in patients with neurodegenerative diseases. However, the role of magnetic fields in the prognosis and treatment of neurodegenerative diseases and their mechanisms remain largely unexplored. In this paper, the therapeutic effect and neuroprotective mechanism of the magnetic field on neurodegenerative diseases are reviewed, and the new magnetic therapy techniques are also summarized. Although the neuroprotective mechanism of magnetic field cannot be fully elaborated, it is helpful to promote the application of magnetic field in neurodegenerative diseases and provide a new theoretical basis for the related magnetic field research in the later period.
Collapse
Affiliation(s)
- Shuxian Ding
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jinhua Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yanwen Fang
- Heye Health Technology Co., Ltd, Bamboo Industry Science and Technology Entrepreneurship Center, Huzhou, Zhejiang, China
| | - Xingjie Zhuo
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Lili Gu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xinyue Zhang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yuanxiao Yang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Min Wei
- Heye Health Technology Co., Ltd, Bamboo Industry Science and Technology Entrepreneurship Center, Huzhou, Zhejiang, China
| | - Zhongcai Liao
- Heye Health Technology Co., Ltd, Bamboo Industry Science and Technology Entrepreneurship Center, Huzhou, Zhejiang, China.
| | - Qin Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Zhao YN, Han PP, Zhang XY, Bi X. Applications of Functional Near-Infrared Spectroscopy (fNIRS) Neuroimaging During Rehabilitation Following Stroke: A Review. Med Sci Monit 2024; 30:e943785. [PMID: 38879751 PMCID: PMC11188690 DOI: 10.12659/msm.943785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/17/2024] [Indexed: 06/22/2024] Open
Abstract
Stroke is a cerebrovascular disease that impairs blood supply to localized brain tissue regions due to various causes. This leads to ischemic and hypoxic lesions, necrosis of the brain tissue, and a variety of functional disorders. Abnormal cortical activation and functional connectivity occur in the brain after a stroke, but the activation patterns and functional reorganization are not well understood. Rehabilitation interventions can enhance functional recovery in stroke patients. However, clinicians require objective measures to support their practice, as outcome measures for functional recovery are based on scale scores. Furthermore, the most effective rehabilitation measures for treating patients are yet to be investigated. Functional near-infrared spectroscopy (fNIRS) is a non-invasive neuroimaging method that detects changes in cerebral hemodynamics during task performance. It is widely used in neurological research and clinical practice due to its safety, portability, high motion tolerance, and low cost. This paper briefly introduces the imaging principle and the advantages and disadvantages of fNIRS to summarize the application of fNIRS in post-stroke rehabilitation.
Collapse
Affiliation(s)
- Yi-Ning Zhao
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, PR China
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, PR China
| | - Ping-Ping Han
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, PR China
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, PR China
| | - Xing-Yu Zhang
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, PR China
- Graduate School of Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Xia Bi
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, PR China
| |
Collapse
|
3
|
Qiu J, Xu J, Cai Y, Li M, Peng Y, Xu Y, Chen G. Catgut embedding in acupoints combined with repetitive transcranial magnetic stimulation for the treatment of postmenopausal osteoporosis: study protocol for a randomized clinical trial. Front Neurol 2024; 15:1295429. [PMID: 38606276 PMCID: PMC11008468 DOI: 10.3389/fneur.2024.1295429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 03/11/2024] [Indexed: 04/13/2024] Open
Abstract
Background To date, the clinical modulation for bone metabolism based on the neuro-bone mass regulation theory is still not popular. The stimulation of nerve systems to explore novel treatments for Postmenopausal osteoporosis (PMOP) is urgent and significant. Preliminary research results suggested that changes brain function and structure may play a crucial role in bone metabolism with PMOP. Thus, we set up a clinical trial to investigate the effect of the combination of repetitive transcranial magnetic stimulation (rTMS) and catgut embedding in acupoints (CEA) for PMOP and to elucidate the central mechanism of this neural stimulation in regulating bone metabolism. Method This trial is a prospective and randomized controlled trial. 96 PMOP participants will be randomized in a 1:1:1 ratio into a CEA group, an rTMS group, or a combined one. Participants will receive CEA, rTMS, or combined therapy for 3 months with 8 weeks of follow-up. The primary outcomes will be the changes in Bone Mineral Density scores, total efficiency of Chinese Medicine Symptoms before and after treatment. Secondary outcomes include the McGill Pain Questionnaire Short-Form, Osteoporosis Symptom Score, Mini-Mental State Examination, and Beck Depression Inventory-II. The leptin, leptin receptor, and norepinephrine levels of peripheral blood must be measured before and after treatment. Adverse events that occur during the trial will be recorded. Discussion CEA achieves brain-bone mass regulation through the bottom-up way of peripheral-central while rTMS achieves it through the top-down stimulation of central-peripheral. CEA combined with rTMS can stimulate the peripheral-central at the same time and promote peripheral bone mass formation. The combination of CEA and rTMS may play a coordinating, synergistic, and side-effect-reducing role, which is of great clinical significance in exploring better treatment options for PMOP.Clinical trial registration: https://www.chictr.org.cn/, identifier ChiCTR2300073863.
Collapse
Affiliation(s)
- Jingjing Qiu
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - JiaZi Xu
- Clinical Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yingyue Cai
- Clinical Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Minghong Li
- Clinical Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yingsin Peng
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yunxiang Xu
- Clinical Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guizhen Chen
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
4
|
Yu H, Shu X, Zhou Y, Zhou S, Wang X. Intermittent theta burst stimulation combined with cognitive training improves cognitive dysfunction and physical dysfunction in patients with post-stroke cognitive impairment. Behav Brain Res 2024; 461:114809. [PMID: 38081516 DOI: 10.1016/j.bbr.2023.114809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/27/2023] [Accepted: 12/08/2023] [Indexed: 01/07/2024]
Abstract
OBJECTIVE Post-stroke cognitive impairment (PSCI) is a common complication of stroke. Intermittent theta burst stimulation (iTBS) can inducing motor learning. We observed the effects of combination of iTBS with cognitive training on physical/cognitive dysfunctions in PSCI patients. METHODS PSCI patients treated with basic treatment & cognitive training (Control group)/iTBS & cognitive training (iTBS group) were enrolled, with Mini-mental State Examination (MMSE)/Montreal Cognitive Assessment (MoCA)/Frontal Assessment Battery (FAB)/barthel index (BI)/Upper Limb Fugl-Meyer Assessment (U-FMA)/Action Research Arm Test (ARAT) scores compared. Gait spatiotemporal parameters/dynamic parameters were analyzed by 3D gait analysis. Correlations between MMSE/MoCA scores and gait parameters in PSCI patients after iTBS & cognitive training were analyzed by Spearman analysis. RESULTS Increased MMSE/MoCA/FAB/BI/U-FMA/ARAT scores, step speed, step frequency, stride length, step width, step length on the affected side, percentage of swing phase on the affected side, hip joint flexion angle on the affected side, knee joint flexion angle on the affected side, and ankle plantar flexion angle on the affected side and reduced gait period on the affected side and percentage of stance phase on the affected side were found in patients of both groups after treatment, with the effects in the iTBS group more profound. CONCLUSION iTBS & cognitive training obviously improved the cognitive function scores/upper limb function scores/gait parameters in PSCI patients versus cognitive training treatment. After combination therapy, the MMSE/MoCA scores of PSCI patients were significantly correlated with gait parameters. This provided more data support for iTBS & cognitive training application in the rehabilitation treatment of PSCI patients.
Collapse
Affiliation(s)
- Hong Yu
- Rahabilitation Assessment and Treatment Center, Zhejiang Rehabilitation Medical Center, Hangzhou, China
| | - Xinxin Shu
- Rahabilitation Assessment and Treatment Center, Zhejiang Rehabilitation Medical Center, Hangzhou, China.
| | - Yuda Zhou
- Rahabilitation Assessment and Treatment Center, Zhejiang Rehabilitation Medical Center, Hangzhou, China.
| | - Siwei Zhou
- Department of Geriatric Rehabilitation, Zhejiang Rehabilitation Medical Center, Hangzhou, China
| | - Xiaojun Wang
- Rahabilitation Assessment and Treatment Center, Zhejiang Rehabilitation Medical Center, Hangzhou, China
| |
Collapse
|
5
|
Sun Y, Lei F, Zou K, Zheng Z. Rapid improvements and subsequent effects in major depressive disorder patients with somatic pain using rTMS combined with sertraline. Sci Rep 2023; 13:17973. [PMID: 37863972 PMCID: PMC10589316 DOI: 10.1038/s41598-023-44887-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023] Open
Abstract
This study aims to explore changes in depression and pain for major depressive disorder (MDD) patients with somatic pain after repetitive transcranial magnetic stimulation (rTMS) using the event-related potentials (ERPs) technique. Eighty MDD patients with somatic pain were randomly assigned to drug therapy (DT) and combined therapy (CT) groups. CT group underwent intermittent theta burst stimulation over the left dorsolateral prefrontal cortex (DLPFC) with 800 pulses and 1 Hz over the right DLPFC with 800 pulses, 5 times a week for 3 weeks. All patients were given sertraline at 50-100 mg per day. All subjects were evaluated at baseline and at weeks three and six of therapy using the Hamilton Rating Scale for Depression (HAMD), Hamilton Anxiety Scale (HAMA), and Numerical Rating Scales (NRS), and the latency and amplitude of P300 and mismatch negativity (MMN) were measured. There were no significant differences in all indices between groups at baseline. At 3 weeks, HAMD subscale scores of Cognitive Impairment and NRS scores were significantly lower in the CT group than in the DT group. At 6 weeks, NRS and HAMD total scores in the CT group decreased significantly in the CT group compared with the DT group, especially for anxiety and pain, and the MMN and P300 latencies and P300 amplitude showed greater improvements. Our findings highlight that rTMS in combination with antidepressants is a rapid method of symptom improvement in patients with somatic pain with MDD and is helpful for cognitive impairment and anxiety.
Collapse
Affiliation(s)
- Yuanfeng Sun
- Neurobiological Detection Center, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Lei
- Neurobiological Detection Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ke Zou
- Neurobiological Detection Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Zhong Zheng
- Neurobiological Detection Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|