1
|
Shen M, Wang L, Li K, Tan J, Tang Z, Wang X, Yang H. Gelatin Methacrylic Acid Hydrogel-Based Nerve Growth Factors Enhances Neural Stem Cell Growth and Differentiation to Promote Repair of Spinal Cord Injury. Int J Nanomedicine 2024; 19:10589-10604. [PMID: 39445156 PMCID: PMC11498045 DOI: 10.2147/ijn.s480484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
Background The challenge in treating irreversible nerve tissue damage has resulted in suboptimal outcomes for spinal cord injuries (SCI), underscoring the critical need for innovative treatment strategies to offer hope to patients. Methods In this study, gelatin methacrylic acid hydrogel scaffolds loaded with nerve growth factors (GMNF) were prepared and used to verify the performance of SCI. The physicochemical and biological properties of the GMNF were tested. The effect of GMNF on activity of neuronal progenitor cells (NPCs) was investigated in vitro. Histological staining and motor ability was carried out to assess the ability of SCI repair in SCI animal models. Results Achieving nerve growth factors sustained release, GMNF had good biocompatibility and could effectively penetrate into the cells with good targeting permeability. GMNF could better enhance the activity of NPCs and promote their directional differentiation into mature neuronal cells in vitro, which could exert a good neural repair function. In vivo, SCI mice treated with GMNF recovered their motor abilities more effectively and showed better wound healing by macroscopic observation of the coronal surface of their SCI area. Meanwhile, the immunohistochemistry demonstrated that the GMNF scaffolds effectively promoted SCI repair by better promoting the colonization and proliferation of neural stem cells (NSCs) in the SCI region and targeted differentiation into mature neurons. Conclusion The application of GMNF composite scaffolds shows great potential in SCI treatment, which are anticipated to be a potential therapeutic bioactive material for clinical application in repairing SCI in the future.
Collapse
Affiliation(s)
- Mingkui Shen
- Department of Mini-Invasive Spinal Surgery, The Third People’s Hospital of Henan Province, Zhengzhou, Henan, 450006, People’s Republic of China
| | - Lulu Wang
- Department of Plastic Surgery, The Third People’s Hospital of Henan Province, Zhengzhou, Henan, 450006, People’s Republic of China
| | - Kuankuan Li
- Department of Mini-Invasive Spinal Surgery, The Third People’s Hospital of Henan Province, Zhengzhou, Henan, 450006, People’s Republic of China
| | - Jun Tan
- Department of Mini-Invasive Spinal Surgery, The Third People’s Hospital of Henan Province, Zhengzhou, Henan, 450006, People’s Republic of China
- Department of Clinical Medicine, Zhengzhou University, Zhengzhou, 450001, People’s Republic of China
| | - Zhongxin Tang
- Department of Mini-Invasive Spinal Surgery, The Third People’s Hospital of Henan Province, Zhengzhou, Henan, 450006, People’s Republic of China
| | - Xiaohu Wang
- Department of Orthopedics, Zhengzhou Central Hospital, Zhengzhou, 450007, People’s Republic of China
| | - Hejun Yang
- Department of Mini-Invasive Spinal Surgery, The Third People’s Hospital of Henan Province, Zhengzhou, Henan, 450006, People’s Republic of China
| |
Collapse
|
2
|
Collins M, Ibeanu N, Grabowska WR, Awwad S, Khaw PT, Brocchini S, Khalili H. Bispecific FpFs: a versatile tool for preclinical antibody development. RSC Chem Biol 2024:d4cb00130c. [PMID: 39347456 PMCID: PMC11427889 DOI: 10.1039/d4cb00130c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/08/2024] [Indexed: 10/01/2024] Open
Abstract
We previously described FpFs 1̲ (Fab-PEG-Fab) as binding mimetics of IgGs. FpFs are prepared with di(bis-sulfone) conjugation reagents 3̲ that undergo disulfide rebridging conjugation with the accessible disulfide of each Fab (Scheme 1). We have now prepared bispecific FpFs 2̲ (bsFpF and Fab1-PEG-Fab2) as potential bispecific antibody mimetics with the intent that bsFpFs could be used in preclinical antibody development since sourcing bispecific antibodies may be challenging during preclinical research. The di(bis-sulfone) reagent 3̲ was first used to prepare a bsFpF 2̲ by the sequential conjugation of a first Fab and then a second Fab to another target (Scheme 2). Seeking to improve bsFpF synthesis, the asymmetric conjugation reagent, bis-sulfone bis-sulfide 1̲6̲, with different thiol conjugation reactivities at each terminus (Scheme 4) was examined and the bsFpFs appeared to be formed at similar conversion to the di(bis-sulfone) reagent 3̲. To explore the advantages of using common intermediates in the preparation of bsFpF families, we investigated bsFpF synthesis with a protein conjugation-ligation approach (Scheme 5). Reagents with a bis-sulfone moiety for conjugation on one PEG terminus and a ligation moiety on the other terminus were examined. Bis-sulfone PEG trans-cyclooctene (TCO) 2̲8̲ and bis-sulfone PEG tetrazine (Tz) 3̲0̲ were used to prepare several bsFpFs targeting various therapeutic targets (TNF-α, IL6R, IL17, and VEGF) and tissue affinity targets (hyaluronic acid and collagen II). Surface plasmon resonance (SPR) binding studies indicated that there was little difference between the dissociation rate constant (k d) for the unmodified Fab, mono-conjugated PEG-Fab and the corresponding Fab in a bsFpF. The Fab association rate (k a) in the bsFpF was slower than for PEG-Fab, which may be because of mass differences that influence SPR results. These observations suggest that each Fab will bind to its target independently of the other Fab and that bsFpF binding profiles can be estimated using the corresponding PEG-Fab conjugates.
Collapse
Affiliation(s)
- Matthew Collins
- School of Health, Sport and Bioscience, University of East London London UK
| | - Nkiru Ibeanu
- School of Pharmacy, University College London London UK
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology London EC1V 9EL UK
| | | | - Sahar Awwad
- School of Pharmacy, University College London London UK
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology London EC1V 9EL UK
| | - Peng T Khaw
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology London EC1V 9EL UK
| | | | - Hanieh Khalili
- School of Pharmacy, University College London London UK
- School of Biomedical Science, University of West London London W5 5RF UK
| |
Collapse
|
3
|
Sanati M, Manavi MA, Noruzi M, Behmadi H, Akbari T, Jalali S, Sharifzadeh M, Khoobi M. Carbohydrates and neurotrophic factors: A promising partnership for spinal cord injury rehabilitation. BIOMATERIALS ADVANCES 2024; 166:214054. [PMID: 39332344 DOI: 10.1016/j.bioadv.2024.214054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024]
Abstract
Spinal cord injury (SCI) leaves a temporary or enduring motor, sensory, and autonomic function loss, significantly impacting the patient's quality of life. Given their biocompatibility, bioactivity, and tunable attributes, three-dimensional scaffolds frequently employ carbohydrates to facilitate spinal cord regeneration. These scaffolds have also been engineered to be novel local delivery platforms that present distinct advantages in the targeted transportation of drug candidates to the damaged spinal cord, ensuring the right dosage and duration of administration. Neurotrophic factors have emerged as promising therapeutic candidates, preserved neuron survival and encouraged severed axons repair, although their local and continuous delivery is believed to produce considerable spinal cord rehabilitation. This study aims to discuss breakthroughs in scaffold engineering, exploiting carbohydrates as an essential part of their structure, and highlight their impact on spinal cord regeneration and sustained neurotrophic factors delivery to treat SCI.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Amin Manavi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Noruzi
- School of Pharmacy, Semnan University of Medical Sciences, Semnan, Iran
| | - Homayoon Behmadi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Akbari
- Department of Microbiology, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Sara Jalali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mehdi Khoobi
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, 1417614411 Tehran, Iran.
| |
Collapse
|
4
|
Ebrahimi B, Mokhtari T, Ghaffari N, Adabi M, Hassanzadeh G. Acellular spinal cord scaffold containing quercetin-encapsulated nanoparticles plays an anti-inflammatory role in functional recovery from spinal cord injury in rats. Inflammopharmacology 2024; 32:2505-2524. [PMID: 38702577 DOI: 10.1007/s10787-024-01478-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/09/2024] [Indexed: 05/06/2024]
Abstract
Inflammatory responses play a crucial role in the pathophysiology of spinal cord injury (SCI) and developing new approaches to establish an anti-inflammatory environment for the promotion of neuroregeneration holds promise as a potential approach. In this study, our aim was to investigate the potential of combining an acellular spinal cord scaffold (ASCS) with quercetin-loaded bovine serum albumin (Qu/BSA) nanoparticles (NPs) for the treatment of SCI. The ASCS was prepared using physical and chemical methods, while the Qu/BSA NPs were prepared through a desolvation technique. The NPs exhibited favorable characteristics, including a mean size of 203 nm, a zeta potential of -38, and an encapsulation efficiency of 96%. Microscopic evaluation confirmed the successful distribution of NPs on the walls of ASCS. Animal studies revealed that Qu/BSA NPs group exhibited a significant decrease in NLRP3, ASC, and Casp1 gene expression compared to the SCI group (p < 0.0001). The findings indicated a significant decrease in the NLRP3, ASC, and Casp1 protein level between the Qu/BSA/ASCS group and the SCI group (p < 0.0001). Moreover, treatment with ASCS containing either blank BSA (B/BSA) NPs or Qu/BSA NPs effectively promoted functional recovery via increasing the amount of nestin- and glial fibrillary acidic protein (GFAP)-positive cells in the site of injury. Notably, Qu/BSA/ASCS exhibited superior outcomes compared to B/BSA/ASCS. Overall, the combination of ASCS with the Qu delivery system presents a promising therapeutic approach for SCI by inhibiting inflammatory responses and promoting neuroregeneration, leading to the restoration of motor function in animals. This study demonstrates the potential of utilizing biomaterials and NPs to enhance the effectiveness of SCI treatment.
Collapse
Affiliation(s)
- Babak Ebrahimi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahmineh Mokhtari
- Department of Pharmacology, Hubei University of Medicine, Shiyan, China.
- Department of Histology and Embryology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.
| | - Neda Ghaffari
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Adabi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Neurosciences and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Rybachuk O, Nesterenko Y, Zhovannyk V. Modern advances in spinal cord regeneration: hydrogel combined with neural stem cells. Front Pharmacol 2024; 15:1419797. [PMID: 38994202 PMCID: PMC11236698 DOI: 10.3389/fphar.2024.1419797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/11/2024] [Indexed: 07/13/2024] Open
Abstract
Severe spinal cord injuries (SCI) lead to loss of functional activity of the body below the injury site, affect a person's ability to self-care and have a direct impact on performance. Due to the structural features and functional role of the spinal cord in the body, the consequences of SCI cannot be completely overcome at the expense of endogenous regenerative potential and, developing over time, lead to severe complications years after injury. Thus, the primary task of this type of injury treatment is to create artificial conditions for the regenerative growth of damaged nerve fibers through the area of the SCI. Solving this problem is possible using tissue neuroengineering involving the technology of replacing the natural tissue environment with synthetic matrices (for example, hydrogels) in combination with stem cells, in particular, neural/progenitor stem cells (NSPCs). This approach can provide maximum stimulation and support for the regenerative growth of axons of damaged neurons and their myelination. In this review, we consider the currently available options for improving the condition after SCI (use of NSC transplantation or/and replacement of the damaged area of the SCI with a matrix, specifically a hydrogel). We emphasise the expediency and effectiveness of the hydrogel matrix + NSCs complex system used for the reconstruction of spinal cord tissue after injury. Since such a complex approach (a combination of tissue engineering and cell therapy), in our opinion, allows not only to creation of conditions for supporting endogenous regeneration or mechanical reconstruction of the spinal cord, but also to strengthen endogenous regeneration, prevent the spread of the inflammatory process, and promote the restoration of lost reflex, motor and sensory functions of the injured area of spinal cord.
Collapse
Affiliation(s)
- Oksana Rybachuk
- Bogomoletz Institute of Physiology NAS of Ukraine, Kyiv, Ukraine
- Institute of Genetic and Regenerative Medicine, M. D. Strazhesko National Scientific Center of Cardiology, Clinical and Regenerative Medicine, National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | | | | |
Collapse
|
6
|
Hu B, Zhao Y, Chen C, Wu B, Zhang H, Liu B, Zheng R, Fang F. Research hotspots and trends of microRNAs in spinal cord injury: a comprehensive bibliometric analysis. Front Neurol 2024; 15:1406977. [PMID: 38836004 PMCID: PMC11149023 DOI: 10.3389/fneur.2024.1406977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 04/25/2024] [Indexed: 06/06/2024] Open
Abstract
Background Spinal cord injury (SCI) is a nervous system disease leading to motor and sensory dysfunction below the injury level, and can result in paralysis. MicroRNAs (miRNAs) play a key role in SCI treatment, and related research provides insights for SCI diagnosis and treatment. Bibliometrics is an important tool for literature statistics and evaluation, objectively summarizing multidimensional information. This study comprehensively overviews the field through bibliometric analysis of miRNA and SCI research, providing contemporary resources for future collaboration and clinical treatment. Materials and methods In this study, we searched the Web of Science Core Collection (WOSCC) database. After careful screening and data import, we extracted annual publications, citation counts, countries, institutions, authors, journals, highly cited articles, co-cited articles, keywords, and H-index. Bibliometrics and visualization analyses employed VOSviewer, CiteSpace, the R package "bibliometrix," and online analytic platforms. Using Arrowsmith, we determined miRNA-SCI relationships and discussed potential miRNA mechanisms in SCI. Results From 2008 to 2024, the number of related papers increased annually, reaching 754. The number of yearly publications remained high and entered a period of rapid development. Researchers from 50 countries/regions, 802 institutions, 278 journals, and 3,867 authors participated in the field. Currently, China has advantages in the number of national papers, citations, institutions, and authors. However, it is necessary to strengthen cooperation among different authors, institutions, and countries to promote the production of important academic achievements. The research in the field currently focuses on nerve injury, apoptosis, and gene expression. Future research directions mainly involve molecular mechanisms, clinical trials, exosomes, and inflammatory reactions. Conclusion Overall, this study comprehensively analyzes the research status and frontier of miRNAs in SCI. A systematic summary provides a complete and intuitive understanding of the relationship between SCI and miRNAs. The presented findings establish a basis for future research and clinical application in this field.
Collapse
Affiliation(s)
- Baoyang Hu
- Spinal Surgery, Tongliao People's Hospital, Tongliao, Inner Mongolia, China
| | - Yue Zhao
- Computer Network Information Center, Tongliao People's Hospital, Tongliao, Inner Mongolia, China
| | - Chao Chen
- Spinal Surgery, Tongliao People's Hospital, Tongliao, Inner Mongolia, China
| | - Bin Wu
- Spinal Surgery, Tongliao People's Hospital, Tongliao, Inner Mongolia, China
| | - Hongbin Zhang
- Spinal Surgery, Tongliao People's Hospital, Tongliao, Inner Mongolia, China
| | - Bin Liu
- Spinal Surgery, Tongliao People's Hospital, Tongliao, Inner Mongolia, China
| | - Runquan Zheng
- Bone Trauma Surgery, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, Shandong, China
| | - Fang Fang
- Spinal Surgery, Tongliao People's Hospital, Tongliao, Inner Mongolia, China
| |
Collapse
|
7
|
Fan P, Li S, Yang J, Yang K, Wu P, Dong Q, Zhou Y. Injectable, self-healing hyaluronic acid-based hydrogels for spinal cord injury repair. Int J Biol Macromol 2024; 263:130333. [PMID: 38408580 DOI: 10.1016/j.ijbiomac.2024.130333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/05/2024] [Accepted: 02/19/2024] [Indexed: 02/28/2024]
Abstract
The cystic cavity that develops following spinal cord injury is a major obstacle for repairing spinal cord injury (SCI). The injectable self-healing biomaterials treatment is a promising strategy to enhance tissue repair after traumatic spinal cord injury. Herein, a natural extracellular matrix (ECM) biopolymer hyaluronic acid-based hydrogel was developed based on multiple dynamic covalent bonds. The hydrogels exhibited excellent injectable and self-healing properties, could be effectively injected into the injury site, and filled the lesion cavity to accelerate the tissue repair of traumatic SCI. Moreover, the hydrogels were compatible with cells and various tissues and possessed proper stiffness matched with nervous tissue. Additionally, when implanted into the injured spinal cord site, the hyaluronic acid-based hydrogel promoted axonal regeneration and functional recovery by accelerating remyelination, axon regeneration, and angiogenesis. Overall, the injectable self-healing hyaluronic acid-based hydrogels are ideal biomaterials for treating traumatic SCI.
Collapse
Affiliation(s)
- Penghui Fan
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, 430073 Wuhan, China
| | - Shangzhi Li
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, 430073 Wuhan, China
| | - Junfeng Yang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, 430073 Wuhan, China
| | - Kaidan Yang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, 430073 Wuhan, China
| | - Ping Wu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Qi Dong
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, 430073 Wuhan, China.
| | - Yingshan Zhou
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, 430073 Wuhan, China.
| |
Collapse
|
8
|
Politrón-Zepeda GA, Fletes-Vargas G, Rodríguez-Rodríguez R. Injectable Hydrogels for Nervous Tissue Repair-A Brief Review. Gels 2024; 10:190. [PMID: 38534608 DOI: 10.3390/gels10030190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/25/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
The repair of nervous tissue is a critical research field in tissue engineering because of the degenerative process in the injured nervous system. In this review, we summarize the progress of injectable hydrogels using in vitro and in vivo studies for the regeneration and repair of nervous tissue. Traditional treatments have not been favorable for patients, as they are invasive and inefficient; therefore, injectable hydrogels are promising for the treatment of damaged tissue. This review will contribute to a better understanding of injectable hydrogels as potential scaffolds and drug delivery system for neural tissue engineering applications.
Collapse
Affiliation(s)
- Gladys Arline Politrón-Zepeda
- Ingeniería en Sistemas Biológicos, Centro Universitario de los Valles (CUVALLES), Universidad de Guadalajara, Carretera Guadalajara-Ameca Km. 45.5, Ameca 46600, Jalisco, Mexico
| | - Gabriela Fletes-Vargas
- Departamento de Ciencias Clínicas, Centro Universitario de los Altos (CUALTOS), Universidad de Guadalajara, Carretera Tepatitlán-Yahualica de González Gallo, Tepatitlán de Morelos 47620, Jalisco, Mexico
| | - Rogelio Rodríguez-Rodríguez
- Departamento de Ciencias Naturales y Exactas, Centro Universitario de los Valles (CUVALLES), Universidad de Guadalajara, Carretera Guadalajara-Ameca Km. 45.5, Ameca 46600, Jalisco, Mexico
| |
Collapse
|
9
|
Chen K, Li B, Xu H, Wu J, Li J, Sun W, Fang M, Wang W, Wang S, Zhai X. Zeolitic imidazole framework-8 loaded gelatin methacryloyl microneedles: A transdural and controlled-release drug delivery system attenuates neuroinflammation after spinal cord injury. Int J Biol Macromol 2024; 256:128388. [PMID: 38016601 DOI: 10.1016/j.ijbiomac.2023.128388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023]
Abstract
Spinal cord injury (SCI) is a matter of significant clinical concern, often treated through early surgical decompression along with methylprednisolone sodium succinate (MPSS). However, the side effects and the unsatisfactory focal concentration of MPSS have limited its further applications. To address this limitation, herein, a versatile drug delivery system of zeolitic imidazole framework-8 (ZIF-8) and gelatin methacryloyl microneedles (GelMA MNs) was developed for stable, transdural, and controlled sustained release of drugs in SCI. The microneedles were used to create tiny pores in the dura mater, allowing for the direct administration of drugs into the spinal cord. ZIF-8 provided a secondary extended release once they were separated from the microneedles. To attenuate the neuroinflammation, MPSS was selected. Such a combination of ZIF-8 and GelMA MNs was able to prolong the release period of MPSS to five days. The system showed transdural capacity, reduction of M1 polarization, and decrease in NLRP3-positive inflammasome and proinflammatory cytokines. In vivo studies indicated that this novel drug delivery strategy could constrict the inflammatory microenvironment, reduce glial scar formation, and promote neural regeneration. Thus, this versatile drug delivery system provides an up-and-coming alternative for stable, transdural, and controlled sustained release of drugs to those suffering from SCI.
Collapse
Affiliation(s)
- Kai Chen
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai 200433, China.
| | - Bo Li
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai 200433, China.
| | - Hao Xu
- Department of Infectious Disease, Shanghai Changhai Hospital, Shanghai 200433, China.
| | - Ji Wu
- Basic Medicine College, Naval Medical University, Shanghai 200433, China.
| | - Jianhua Li
- Department of Tuina, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| | - Wuquan Sun
- Department of Tuina, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| | - Min Fang
- Department of Tuina, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| | - Wei Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai, Changhai Hospital, Shanghai 200433, China.
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China.
| | - Xiao Zhai
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai 200433, China.
| |
Collapse
|
10
|
Nazerian Y, Nazerian A, Mohamadi-Jahani F, Sodeifi P, Jafarian M, Javadi SAH. Hydrogel-encapsulated extracellular vesicles for the regeneration of spinal cord injury. Front Neurosci 2023; 17:1309172. [PMID: 38156267 PMCID: PMC10752990 DOI: 10.3389/fnins.2023.1309172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023] Open
Abstract
Spinal cord injury (SCI) is a critical neurological condition that may impair motor, sensory, and autonomous functions. At the cellular level, inflammation, impairment of axonal regeneration, and neuronal death are responsible for SCI-related complications. Regarding the high mortality and morbidity rates associated with SCI, there is a need for effective treatment. Despite advances in SCI repair, an optimal treatment for complete recovery after SCI has not been found so far. Therefore, an effective strategy is needed to promote neuronal regeneration and repair after SCI. In recent years, regenerative treatments have become a potential option for achieving improved functional recovery after SCI by promoting the growth of new neurons, protecting surviving neurons, and preventing additional damage to the spinal cord. Transplantation of cells and cells-derived extracellular vesicles (EVs) can be effective for SCI recovery. However, there are some limitations and challenges related to cell-based strategies. Ethical concerns and limited efficacy due to the low survival rate, immune rejection, and tumor formation are limitations of cell-based therapies. Using EVs is a helpful strategy to overcome these limitations. It should be considered that short half-life, poor accumulation, rapid clearance, and difficulty in targeting specific tissues are limitations of EVs-based therapies. Hydrogel-encapsulated exosomes have overcome these limitations by enhancing the efficacy of exosomes through maintaining their bioactivity, protecting EVs from rapid clearance, and facilitating the sustained release of EVs at the target site. These hydrogel-encapsulated EVs can promote neuroregeneration through improving functional recovery, reducing inflammation, and enhancing neuronal regeneration after SCI. This review aims to provide an overview of the current research status, challenges, and future clinical opportunities of hydrogel-encapsulated EVs in the treatment of SCI.
Collapse
Affiliation(s)
- Yasaman Nazerian
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Fereshteh Mohamadi-Jahani
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parastoo Sodeifi
- School of Medicine, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Maryam Jafarian
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Amir Hossein Javadi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Neurosurgery, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|