1
|
Ryu J, Kao JC, Bari A. Spontaneous pain dynamics characterized by stochasticity in neural recordings of awake humans with chronic pain. Pain 2025:00006396-990000000-00862. [PMID: 40112191 DOI: 10.1097/j.pain.0000000000003592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/06/2025] [Indexed: 03/22/2025]
Abstract
ABSTRACT Chronic pain is characterized by spontaneous fluctuations in pain intensity, a phenomenon that remains poorly understood. The aim of this study is to elucidate the neural mechanisms underlying pain fluctuations in patients with chronic pain undergoing deep brain stimulation surgery. We recorded local field potentials (LFPs) from pain-processing hub structures, including the ventral posteromedial nucleus of the thalamus, subgenual cingulate cortex, and periventricular and periaqueductal gray, while patients continuously reported their pain levels. Using novel auto-mutual information metrics to analyze LFP stochastic patterns, we found that pain intensity correlated with both increased regularity of spike-like events and greater past-dependency of neural oscillations in the 4- to 15-Hz frequency band. In addition, during periods of higher pain states, we observed enhanced functional connectivity between the examined hub structures and the prefrontal cortex, suggesting a more focused flow of pain-related information within the pain circuit. By characterizing the dynamic nature of pain fluctuations, this study bridges the gap in understanding moment-to-moment pain variations and their underlying neural mechanisms, paving the way for improved chronic pain management strategies.
Collapse
Affiliation(s)
- Jihye Ryu
- Department of Neurosurgery, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, United States
| | - Jonathan C Kao
- Department of Electrical and Computer Engineering, University of California Los Angeles, Los Angeles, CA, United States
| | - Ausaf Bari
- Department of Neurosurgery, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
2
|
Ramadhani A, Astuti I, Widiastuti MG, Purwanti N. Methylcobalamin as a candidate for chronic peripheral neuropathic pain therapy: review of molecular pharmacology actiona. Korean J Pain 2024; 37:299-309. [PMID: 39344358 PMCID: PMC11450300 DOI: 10.3344/kjp.24171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 10/01/2024] Open
Abstract
Chronic peripheral neuropathic pain therapy currently focuses on modulating neuroinflammatory conditions. Methylcobalamin (MeCbl), a neuroregenerative agent, modulates neuroinflammation. This review aimed to explore the molecular pharmacology action of MeCbl as a chronic peripheral neuropathic pain therapeutic agent. MeCbl plays a role in various cellular processes and may have therapeutic potential in neurodegenerative diseases. Intracellular MeCbl modulates inflammation by regulating the activity of T lymphocytes and natural killer cells as well as secretion of inflammatory cytokines, namely, tumor necrosis factor-α, interleukin-6, interleukin-1β, epidermal growth factor, and neuronal growth factor. MeCbl can reduce pain symptoms in chronic neuropathic pain conditions by decreasing excitation and hyperpolarization-induced ion channel activity in medium-sized dorsal root ganglion (DRG) neurons and the expression of transient receptor potential ankyrin 1, transient receptor potential cation channel subfamily M member 8, phosphorylated p38MAPK, transient receptor potential cation channel subfamily V members 1 and 4 in the DRG, and the voltage-gated sodium channel in axons.
Collapse
Affiliation(s)
- Amilia Ramadhani
- Doctoral Study Program, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Oral Biology, School of Dentistry, Faculty of Medicine, Jenderal Soedirman University, Central Java, Indonesia
| | - Indwiani Astuti
- Department of Pharmacology, Faculty of Medicine, Nursing and Public Health, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Maria Goreti Widiastuti
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Universitas Gadjah Mada, Yoyakarta, Indonesia
| | - Nunuk Purwanti
- Department of Dental Biomedical Science, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
3
|
Du Y, Lin SD, Wu XQ, Xue BY, Ding YL, Zhang JH, Tan B, Lou GD, Hu WW, Chen Z, Zhang SH. Ventral posteromedial nucleus of the thalamus gates the spread of trigeminal neuropathic pain. J Headache Pain 2024; 25:140. [PMID: 39192198 DOI: 10.1186/s10194-024-01849-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Widespread neuropathic pain usually affects a wide range of body areas and inflicts huge suffering on patients. However, little is known about how it happens and effective therapeutic interventions are lacking. METHODS Widespread neuropathic pain was induced by partial infraorbital nerve transection (p-IONX) and evaluated by measuring nociceptive thresholds. In vivo/vitro electrophysiology were used to evaluate neuronal activity. Virus tracing strategies, combined with optogenetics and chemogenetics, were used to clarify the role of remodeling circuit in widespread neuropathic pain. RESULTS We found that in mice receiving p-IONX, along with pain sensitization spreading from the orofacial area to distal body parts, glutamatergic neurons in the ventral posteromedial nucleus of the thalamus (VPMGlu) were hyperactive and more responsive to stimulations applied to the hind paw or tail. Tracing experiments revealed that a remodeling was induced by p-IONX in the afferent circuitry of VPMGlu, notably evidenced by more projections from glutamatergic neurons in the dorsal column nuclei (DCNGlu). Moreover, VPMGlu receiving afferents from the DCN extended projections further to glutamatergic neurons in the posterior insular cortex (pIC). Selective inhibition of the terminals of DCNGlu in the VPM, the soma of VPMGlu or the terminals of VPMGlu in the pIC all alleviated trigeminal and widespread neuropathic pain. CONCLUSION These results demonstrate that hyperactive VPMGlu recruit new afferents from the DCN and relay the extra-cephalic input to the pIC after p-IONX, thus hold a key position in trigeminal neuropathic pain and its spreading. This study provides novel insights into the circuit mechanism and preclinical evidence for potential therapeutic targets of widespread neuropathic pain.
Collapse
Affiliation(s)
- Yu Du
- Department of Pharmacology, Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Shi-Da Lin
- Department of Pharmacology, Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xue-Qing Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Bao-Yu Xue
- Department of Pharmacology, Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yi-La Ding
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jia-Hang Zhang
- Department of Pharmacology, Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Bei Tan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Guo-Dong Lou
- Department of Pharmacy, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Wei-Wei Hu
- Department of Pharmacology, Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Shi-Hong Zhang
- Department of Pharmacology, Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
4
|
A Guide to Preclinical Models of Zoster-Associated Pain and Postherpetic Neuralgia. Curr Top Microbiol Immunol 2022; 438:189-221. [PMID: 34524508 DOI: 10.1007/82_2021_240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Reactivation of latent varicella-zoster virus (VZV) causes herpes zoster (HZ), which is commonly accompanied by acute pain and pruritus over the time course of a zosteriform rash. Although the rash and associated pain are self-limiting, a considerable fraction of HZ cases will subsequently develop debilitating chronic pain states termed postherpetic neuralgia (PHN). How VZV causes acute pain and the mechanisms underlying the transition to PHN are far from clear. The human-specific nature of VZV has made in vivo modeling of pain following reactivation difficult to study because no single animal can reproduce reactivated VZV disease as observed in the clinic. Investigations of VZV pathogenesis following primary infection have benefited greatly from human tissues harbored in immune-deficient mice, but modeling of acute and chronic pain requires an intact nervous system with the capability of transmitting ascending and descending sensory signals. Several groups have found that subcutaneous VZV inoculation of the rat induces prolonged and measurable changes in nociceptive behavior, indicating sensitivity that partially mimics the development of mechanical allodynia and thermal hyperalgesia seen in HZ and PHN patients. Although it is not a model of reactivation, the rat is beginning to inform how VZV infection can evoke a pain response and induce long-lasting alterations to nociception. In this review, we will summarize the rat pain models from a practical perspective and discuss avenues that have opened for testing of novel treatments for both zoster-associated pain and chronic PHN conditions, which remain in critical need of effective therapies.
Collapse
|
5
|
Argaman Y, Granovsky Y, Sprecher E, Sinai A, Yarnitsky D, Weissman-Fogel I. Clinical Effects of Repetitive Transcranial Magnetic Stimulation of the Motor Cortex Are Associated With Changes in Resting-State Functional Connectivity in Patients With Fibromyalgia Syndrome. THE JOURNAL OF PAIN 2022; 23:595-615. [PMID: 34785365 DOI: 10.1016/j.jpain.2021.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022]
Abstract
In this double-blinded, sham-controlled, counterbalanced, and crossover study, we investigated the potential neuroplasticity underlying pain relief and daily function improvements following repetitive transcranial magnetic stimulation of the motor cortex (M1-rTMS) in fibromyalgia syndrome (FMS) patients. Specifically, we used magnetic resonance imaging (MRI) to examine changes in brain structural and resting-state functional connectivity (rsFC) that correlated with improvements in FMS symptomology following M1-rTMS. Twenty-seven women with FMS underwent real and sham treatment series, each consisting of 10 daily treatments of 10Hz M1-rTMS over 2 weeks, with a washout period in between. Before and after each series, participants underwent anatomical and resting-state functional MRI scans and questionnaire assessments of FMS-related clinical pain and functional and psychological burdens. The expected reductions in FMS-related symptomology following M1-rTMS occurred with the real treatment only and correlated with rsFC changes in brain areas associated with pain processing and modulation. Specifically, between the ventromedial prefrontal cortex and the M1 (t = -5.54, corrected P = .002), the amygdala and the posterior insula (t = 5.81, corrected P = .044), and the anterior and posterior insula (t = 6.01, corrected P = .029). Neither treatment significantly changed brain structure. Therefore, we provide the first evidence of an association between the acute clinical effects of M1-rTMS in FMS and functional alterations of brain areas that have a significant role in the experience of chronic pain. Structural changes could potentially occur over a more extended treatment period. PERSPECTIVE: We show that the neurophysiological mechanism of the improvement in fibromyalgia symptoms following active, but not sham, rTMS applied to M1 involves changes in resting-state functional connectivity in sensory, affective and cognitive pain processing brain areas, thus substantiating the essence of fibromyalgia syndrome as a treatable brain-based disorder.
Collapse
Affiliation(s)
- Yuval Argaman
- Clinical Neurophysiology Lab, Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yelena Granovsky
- Clinical Neurophysiology Lab, Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel; Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - Elliot Sprecher
- Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - Alon Sinai
- Department of Neurosurgery, Rambam Health Care Campus, Haifa, Israel
| | - David Yarnitsky
- Clinical Neurophysiology Lab, Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel; Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - Irit Weissman-Fogel
- Department of Physical Therapy, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel.
| |
Collapse
|
6
|
Woodward K, Apps R, Goodfellow M, Cerminara NL. Cerebello-Thalamo-Cortical Network Dynamics in the Harmaline Rodent Model of Essential Tremor. Front Syst Neurosci 2022; 16:899446. [PMID: 35965995 PMCID: PMC9365993 DOI: 10.3389/fnsys.2022.899446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/22/2022] [Indexed: 11/18/2022] Open
Abstract
Essential Tremor (ET) is a common movement disorder, characterised by a posture or movement-related tremor of the upper limbs. Abnormalities within cerebellar circuits are thought to underlie the pathogenesis of ET, resulting in aberrant synchronous oscillatory activity within the thalamo-cortical network leading to tremors. Harmaline produces pathological oscillations within the cerebellum, and a tremor that phenotypically resembles ET. However, the neural network dynamics in cerebellar-thalamo-cortical circuits in harmaline-induced tremor remains unclear, including the way circuit interactions may be influenced by behavioural state. Here, we examined the effect of harmaline on cerebello-thalamo-cortical oscillations during rest and movement. EEG recordings from the sensorimotor cortex and local field potentials (LFP) from thalamic and medial cerebellar nuclei were simultaneously recorded in awake behaving rats, alongside measures of tremor using EMG and accelerometery. Analyses compared neural oscillations before and after systemic administration of harmaline (10 mg/kg, I.P), and coherence across periods when rats were resting vs. moving. During movement, harmaline increased the 9-15 Hz behavioural tremor amplitude and increased thalamic LFP coherence with tremor. Medial cerebellar nuclei and cerebellar vermis LFP coherence with tremor however remained unchanged from rest. These findings suggest harmaline-induced cerebellar oscillations are independent of behavioural state and associated changes in tremor amplitude. By contrast, thalamic oscillations are dependent on behavioural state and related changes in tremor amplitude. This study provides new insights into the role of cerebello-thalamo-cortical network interactions in tremor, whereby neural oscillations in thalamocortical, but not cerebellar circuits can be influenced by movement and/or behavioural tremor amplitude in the harmaline model.
Collapse
Affiliation(s)
- Kathryn Woodward
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Richard Apps
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Marc Goodfellow
- Department of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | - Nadia L. Cerminara
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
- *Correspondence: Nadia L. Cerminara
| |
Collapse
|
7
|
Warner BE, Yee MB, Zhang M, Hornung RS, Kaufer BB, Visalli RJ, Kramer PR, Goins WF, Kinchington PR. Varicella-zoster virus early infection but not complete replication is required for the induction of chronic hypersensitivity in rat models of postherpetic neuralgia. PLoS Pathog 2021; 17:e1009689. [PMID: 34228767 PMCID: PMC8259975 DOI: 10.1371/journal.ppat.1009689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 06/03/2021] [Indexed: 12/30/2022] Open
Abstract
Herpes zoster, the result of varicella-zoster virus (VZV) reactivation, is frequently complicated by difficult-to-treat chronic pain states termed postherpetic neuralgia (PHN). While there are no animal models of VZV-induced pain following viral reactivation, subcutaneous VZV inoculation of the rat causes long-term nocifensive behaviors indicative of mechanical and thermal hypersensitivity. Previous studies using UV-inactivated VZV in the rat model suggest viral gene expression is required for the development of pain behaviors. However, it remains unclear if complete infection processes are needed for VZV to induce hypersensitivity in this host. To further assess how gene expression and replication contribute, we developed and characterized three replication-conditional VZV using a protein degron system to achieve drug-dependent stability of essential viral proteins. Each virus was then assessed for induction of hypersensitivity in rats under replication permissive and nonpermissive conditions. VZV with a degron fused to ORF9p, a late structural protein that is required for virion assembly, induced nocifensive behaviors under both replication permissive and nonpermissive conditions, indicating that complete VZV replication is dispensable for the induction of hypersensitivity. This conclusion was confirmed by showing that a genetic deletion recombinant VZV lacking DNA packaging protein ORF54p still induced prolonged hypersensitivities in the rat. In contrast, VZV with a degron fused to the essential IE4 or IE63 proteins, which are involved in early gene regulation of expression, induced nocifensive behaviors only under replication permissive conditions, indicating importance of early gene expression events for induction of hypersensitivity. These data establish that while early viral gene expression is required for the development of nocifensive behaviors in the rat, complete replication is dispensable. We postulate this model reflects events leading to clinical PHN, in which a population of ganglionic neurons become abortively infected with VZV during reactivation and survive, but host signaling becomes altered in order to transmit ongoing pain.
Collapse
Affiliation(s)
- Benjamin E. Warner
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Michael B. Yee
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Mingdi Zhang
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Rebecca S. Hornung
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, United States of America
| | - Benedikt B. Kaufer
- Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Robert J. Visalli
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, United States of America
| | - Phillip R. Kramer
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, United States of America
| | - William F. Goins
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Paul R. Kinchington
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
8
|
Teixeira M, Mancini C, Wicht CA, Maestretti G, Kuntzer T, Cazzoli D, Mouthon M, Annoni JM, Chabwine JN. Beta Electroencephalographic Oscillation Is a Potential GABAergic Biomarker of Chronic Peripheral Neuropathic Pain. Front Neurosci 2021; 15:594536. [PMID: 33716642 PMCID: PMC7952534 DOI: 10.3389/fnins.2021.594536] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/25/2021] [Indexed: 01/21/2023] Open
Abstract
This preliminary investigation aimed to assess beta (β) oscillation, a marker of the brain GABAergic signaling, as a potential objective pain marker, hence contributing at the same time to the mechanistic approach of pain management. This case–control observational study measured β electroencephalographic (EEG) oscillation in 12 right-handed adult male with chronic neuropathic pain and 10 matched controls (∼55 years). Participants were submitted to clinical evaluation (pain visual analog scale, Hospital Anxiety, and Depression scale) and a 24-min high-density EEG recording (BIOSEMI). Data were analyzed using the EEGlab toolbox (MATLAB), SPSS, and R. The global power spectrum computed within the low (Lβ, 13–20 Hz) and the high (Hβ, 20–30 Hz) β frequency sub-bands was significantly lower in patients than in controls, and accordingly, Lβ was negatively correlated to the pain visual analog scale (R = −0.931, p = 0.007), whereas Hβ correlation was at the edge of significance (R = −0.805; p = 0.053). Patients’ anxiety was correlated to pain intensity (R = 0.755; p = 0.003). Normalization of the low and high β global power spectrum (GPS) to the GPS of the full frequency range, while confirming the significant Lβ power decrease in chronic neuropathic pain patients, vanished the significance of the Hβ decrease, as well as the correlation between Lβ power and pain intensity. Our results suggest that the GABAergic Lβ EEG oscillation is affected by chronic neuropathic pain. Confirming the Lβ GPS decrease and the correlation with pain intensity in larger studies would open new opportunities for the clinical application of gamma-aminobutyric acid-modifying therapies.
Collapse
Affiliation(s)
- Micael Teixeira
- Neurology Unit, Medicine Section, Laboratory for Cognitive and Neurological Science, Department of Neuroscience and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.,Faculty of Medicine, University of Bern, Bern, Switzerland
| | - Christian Mancini
- Neurology Unit, Medicine Section, Laboratory for Cognitive and Neurological Science, Department of Neuroscience and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Corentin Aurèle Wicht
- Neurology Unit, Medicine Section, Laboratory for Cognitive and Neurological Science, Department of Neuroscience and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | | | - Thierry Kuntzer
- Nerve-Muscle Unit, Neurology Service, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV), University of Lausanne, Lausanne, Switzerland
| | - Dario Cazzoli
- Gerontechnology and Rehabilitation Group, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland.,Perception and Eye Movement Laboratory, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Michael Mouthon
- Neurology Unit, Medicine Section, Laboratory for Cognitive and Neurological Science, Department of Neuroscience and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Jean-Marie Annoni
- Neurology Unit, Medicine Section, Laboratory for Cognitive and Neurological Science, Department of Neuroscience and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Joelle Nsimire Chabwine
- Neurology Unit, Medicine Section, Laboratory for Cognitive and Neurological Science, Department of Neuroscience and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.,Division of Neurorehabilitation, Fribourg Hospital, Fribourg, Switzerland
| |
Collapse
|
9
|
McFarland AJ, Yousuf MS, Shiers S, Price TJ. Neurobiology of SARS-CoV-2 interactions with the peripheral nervous system: implications for COVID-19 and pain. Pain Rep 2021; 6:e885. [PMID: 33458558 PMCID: PMC7803673 DOI: 10.1097/pr9.0000000000000885] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/26/2020] [Accepted: 11/14/2020] [Indexed: 02/07/2023] Open
Abstract
SARS-CoV-2 is a novel coronavirus that infects cells through the angiotensin-converting enzyme 2 receptor, aided by proteases that prime the spike protein of the virus to enhance cellular entry. Neuropilin 1 and 2 (NRP1 and NRP2) act as additional viral entry factors. SARS-CoV-2 infection causes COVID-19 disease. There is now strong evidence for neurological impacts of COVID-19, with pain as an important symptom, both in the acute phase of the disease and at later stages that are colloquially referred to as "long COVID." In this narrative review, we discuss how COVID-19 may interact with the peripheral nervous system to cause pain in the early and late stages of the disease. We begin with a review of the state of the science on how viruses cause pain through direct and indirect interactions with nociceptors. We then cover what we currently know about how the unique cytokine profiles of moderate and severe COVID-19 may drive plasticity in nociceptors to promote pain and worsen existing pain states. Finally, we review evidence for direct infection of nociceptors by SARS-CoV-2 and the implications of this potential neurotropism. The state of the science points to multiple potential mechanisms through which COVID-19 could induce changes in nociceptor excitability that would be expected to promote pain, induce neuropathies, and worsen existing pain states.
Collapse
Affiliation(s)
- Amelia J. McFarland
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, USA
| | - Muhammad S. Yousuf
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, USA
| | - Stephanie Shiers
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, USA
| | - Theodore J. Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
10
|
Hornung R, Pritchard A, Kinchington PR, Kramer PR. Reduced activity of GAD67 expressing cells in the reticular thalamus enhance thalamic excitatory activity and varicella zoster virus associated pain. Neurosci Lett 2020; 736:135287. [PMID: 32763361 DOI: 10.1016/j.neulet.2020.135287] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/23/2020] [Accepted: 07/30/2020] [Indexed: 11/16/2022]
Abstract
Within the reticular thalamic nucleus neurons express gamma aminobutyric acid (GABA) and these cells project to the ventral posteromedial thalamic nucleus. When GABA activity decreases the activity of excitatory cells in the ventral posteromedial nucleus would be expected to increase. In this study, we addressed the hypothesis that attenuating GABAergic cells in the reticular thalamic nucleus increases excitatory activity in the ventral posteromedial nucleus increasing varicella zoster virus (VZV) associated pain in the orofacial region. Adeno-associated virus (AAV) was infused in the reticular thalamic nucleus of Gad1-Cre rats. This virus transduced a G inhibitory designer receptor exclusively activated by designer drugs (DREADD) gene that was Cre dependent. A dose of estradiol that was previously shown to reduce VZV pain and increase GABAergic activity was administered to castrated and ovariectomized rats. Previous studies suggest that estradiol attenuates herpes zoster pain by increasing the activity of inhibitory neurons and decreasing the activity of excitatory cells within the lateral thalamic region. The ventral posteromedial nucleus was infused with AAV containing a GCaMP6f expression construct. A glass lens was implanted for miniscope imaging. Our results show that the activity of GABA cells within the reticular thalamic region decreased with clozapine N-oxide treatment concomitant with increased calcium activity of excitatory cells in the ventral posteromedial nucleus and an increased orofacial pain response. The results suggest that estradiol attenuates herpes zoster pain by increasing the activity of inhibitory neurons within the reticular thalamus that then inhibit excitatory activity in ventral posteromedial nucleus causing a reduction in orofacial pain.
Collapse
Affiliation(s)
- Rebecca Hornung
- Texas A&M University College of Dentistry, Dallas, TX, 75246, United States
| | - Addison Pritchard
- Texas A&M University College of Dentistry, Dallas, TX, 75246, United States
| | - Paul R Kinchington
- Dept Ophthalmology, Molecular Genetics and Biochemistry, The Campbell Laboratory for Infectious Eye Diseases, University of Pittsburgh School of Medicine, University of Pittsburg, 203 Lothrop St., Pittsburgh, PA, 15213, United States
| | - Phillip R Kramer
- Texas A&M University College of Dentistry, Dallas, TX, 75246, United States.
| |
Collapse
|
11
|
van Heukelum S, Drost L, Mogavero F, Jager A, Havenith MN, Glennon JC. Aggression in BALB/cJ mice is differentially predicted by the volumes of anterior and midcingulate cortex. Brain Struct Funct 2019; 224:1009-1019. [PMID: 30560374 PMCID: PMC6499875 DOI: 10.1007/s00429-018-1816-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 12/10/2018] [Indexed: 12/18/2022]
Abstract
Anterior cingulate cortex (ACC) and midcingulate cortex (MCC) have been implicated in the regulation of aggressive behaviour. For instance, patients with conduct disorder (CD) show increased levels of aggression accompanied by changes in ACC and MCC volume. However, accounts of ACC/MCC changes in CD patients have been conflicting, likely due to the heterogeneity of the studied populations. Here, we address these discrepancies by studying volumetric changes of ACC/MCC in the BALB/cJ mouse, a model of aggression, compared to an age- and gender-matched control group of BALB/cByJ mice. We quantified aggression in BALB/cJ and BALB/cByJ mice using the resident-intruder test, and related this to volumetric measures of ACC/MCC based on Nissl-stained coronal brain slices of the same animals. We demonstrate that BALB/cJ behave consistently more aggressively (shorter attack latencies, more frequent attacks, anti-social biting) than the control group, while at the same time showing an increased volume of ACC and a decreased volume of MCC. Differences in ACC and MCC volume jointly predicted a high amount of variance in aggressive behaviour, while regression with only one predictor had a poor fit. This suggests that, beyond their individual contributions, the relationship between ACC and MCC plays an important role in regulating aggressive behaviour. Finally, we show the importance of switching from the classical rodent anatomical definition of ACC as cingulate area 2 and 1 to a definition that includes the MCC and is directly homologous to higher mammalian species: clear behaviour-related differences in ACC/MCC anatomy were only observed using the homologous definition.
Collapse
Affiliation(s)
- Sabrina van Heukelum
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Kapittelweg 29, 6525 EN, Nijmegen, The Netherlands.
| | - L Drost
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Kapittelweg 29, 6525 EN, Nijmegen, The Netherlands
| | - F Mogavero
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Kapittelweg 29, 6525 EN, Nijmegen, The Netherlands
| | - A Jager
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Kapittelweg 29, 6525 EN, Nijmegen, The Netherlands
| | - M N Havenith
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Kapittelweg 29, 6525 EN, Nijmegen, The Netherlands
| | - J C Glennon
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Kapittelweg 29, 6525 EN, Nijmegen, The Netherlands
| |
Collapse
|
12
|
Juárez I, Morales-Medina JC, Flores-Tochihuitl J, Juárez GS, Flores G, Oseki HC. Tooth pulp injury induces sex-dependent neuronal reshaping in the ventral posterolateral nucleus of the rat thalamus. J Chem Neuroanat 2018; 96:16-21. [PMID: 30391473 DOI: 10.1016/j.jchemneu.2018.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/18/2018] [Accepted: 10/20/2018] [Indexed: 02/06/2023]
Abstract
Orofacial injuries often result in persistent pain and are therefore considered a common health problem worldwide. Considerable evidence suggests that peripheral sensory nerve injury results in diverse plastic changes in the central nervous system (CNS). Tooth pulp is innervated by trigeminal afferents which extend to the trigeminal brainstem sensory nuclear complex and send input to higher level neurons in the CNS, including the ventral posterolateral nucleus of the thalamus (VPL). In the present study, we examined the long term effects of pulpal injury on neuronal arborization in the VPL using morphological analysis via Golgi-Cox staining. In addition, we examined these effects in both male and female rats due to the major prevalence of oral pain in women. Quantitative morphological analysis revealed that pulpal injury induced neuronal hypertrophy in VPL neurons of female rats. In clear contrast, pulpal injury increased arborization close to the soma and reduced arborization distal to the soma without modification of total dendritic length in male rats. As a result, we show, for the first time, sex-dependent morphological alterations in VPL neurons after orofacial peripheral injury. Since dental injuries are readily reproducible in rat dental molars and closely mimic the clinical setting in humans, this model represents a useful tool to further understand mechanisms of orofacial pain.
Collapse
Affiliation(s)
- Ismael Juárez
- Laboratorio de Fisiología, Facultad de Estomatología, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico
| | - Julio César Morales-Medina
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, AP 62, 90000, Mexico
| | - Julia Flores-Tochihuitl
- Laboratorio Multidisciplinario, Facultad de Estomatología, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico
| | - Gamaliel Santiago Juárez
- Laboratorio de Fisiología, Facultad de Estomatología, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico
| | - Gonzalo Flores
- Laboratorio Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico
| | - Hortencia Chávez Oseki
- Laboratorio de Fisiología, Facultad de Estomatología, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico.
| |
Collapse
|