1
|
Zhang R, Chen J. Research progress on the role of orphan receptor GPR139 in neuropsychiatric behaviours. Eur J Pharmacol 2023; 960:176150. [PMID: 38059447 DOI: 10.1016/j.ejphar.2023.176150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 12/08/2023]
Abstract
The study of orphan G protein-coupled receptors (GPCRs) holds much promise for increasing our understanding of neuropsychiatric diseases and for the development of new therapeutic strategies for these diseases. GPR139 is an orphan GPCR expressed in the central nervous system, especially in areas of the brain that control movement, motivation, and reward, and those that regulate neuropsychiatric behaviour. This review provides information about the discovery, tissue expression, signal transduction pathways, and physiological functions of GPR139, as well as how GPR139 interacts with other GPCRs, which form heteromeric complexes that affect their pharmacology and function. We also discuss the utility and therapeutic potential of ligands that target GPR139, including the pharmacological properties of reported agonists and antagonists. Finally, we highlight the pathologic role of GPR139 in neuropsychiatric behaviour and its potential as a therapeutic target in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Rumin Zhang
- Neurobiology Key Laboratory of Jining Medical University, Jining, 272067, China; School of Mental Health, Jining Medical University, Jining, 272067, China
| | - Jing Chen
- Neurobiology Key Laboratory of Jining Medical University, Jining, 272067, China; School of Mental Health, Jining Medical University, Jining, 272067, China; Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV47AL, UK.
| |
Collapse
|
2
|
Mao J, Cui Y, Wang H, Duan W, Liu ZJ, Hua T, Zhou N, Cheng J. Design and Synthesis of Novel GPR139 Agonists with Therapeutic Effects in Mouse Models of Social Interaction and Cognitive Impairment. J Med Chem 2023; 66:14011-14028. [PMID: 37830160 DOI: 10.1021/acs.jmedchem.3c01034] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The GPR139 receptor is an orphan G-protein-coupled receptor (GPCR) mainly found in the central nervous system and is a potential therapeutic target for the treatment of schizophrenia and drug addiction. Guided by the reported structure of GPR139, we conducted medicinal chemistry optimizations of TAK-041, the GPR139 agonist in clinical trials. New compounds with three different core structures were designed and synthesized, and their activity at GPR139 was evaluated. Among them, compounds 15a (EC50 = 31.4 nM) and 20a (EC50 = 24.7 nM) showed potent agonist activity at GPR139 and good pharmacokinetic properties. In murine schizophrenia models, both compounds rescued the social interaction deficits observed in BALB/c mice. Compound 20a also alleviated cognitive deficits in mice with a pharmacologically induced model of schizophrenia. These findings further demonstrated the potential of GPR139 agonists in alleviating the negative symptoms and cognitive deficits of schizophrenia. Compound 20a is worth further evaluation as an antischizophrenia drug candidate.
Collapse
Affiliation(s)
- Jianhang Mao
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
- School of Life Science Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Yilong Cui
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
- School of Life Science Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Huan Wang
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Wenwen Duan
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Zhi-Jie Liu
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
- School of Life Science Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Tian Hua
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
- School of Life Science Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Ning Zhou
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Jianjun Cheng
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
- School of Life Science Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| |
Collapse
|