1
|
Ceder MM, Magnusson KA, Weman HM, Henriksson K, Andréasson L, Lindström T, Wiggins O, Lagerström MC. The mRNA expression profile of glycine receptor subunits alpha 1, alpha 2, alpha 4 and beta in female and male mice. Mol Cell Neurosci 2024; 131:103976. [PMID: 39580061 DOI: 10.1016/j.mcn.2024.103976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 11/25/2024] Open
Abstract
Glycine receptors are ligand-gated chloride-selective channels that control excitability in the central nervous system (CNS). Herein, we have investigated the mRNA expression of the glycine receptor alpha 1 (Glra1), alpha 2 (Glra2), alpha 4 (Glra4) and the beta (Glrb) subunits, in adult female and male mice. Single-cell RNA sequencing data re-analysis of the Zeisel et al. (2018) dataset indicated widespread expression of Glra1, Glra2 and Glrb in the CNS, while only a few cells in the cortex, striatum, thalamus, midbrain and the spinal cord expressed Glra4. Highest occurrence of Glra1, Glra2 and Glrb were found in the brainstem. Moreover, Glra1 and Glrb were revealed to have the highest occurrences in the spinal cord of the investigated subunits. However, both Glra2 and Glrb had a more widespread expression in the CNS compared with Glra1 and Glra4. Bulk quantitative real-time-PCR (qRT-PCR) analysis revealed Glra1 expression in the hypothalamus, thalamus, brainstem and the spinal cord, and widespread, but low, Glra2 and Glrb expression in the CNS. Moreover, Glrb could be detected in a few visceral organs. Additionally, females and males were found to express Glra1, Glra2 and Glrb differently in certain brain areas such as the brainstem. Expression levels of Glra4 were too low to be detected using qRT-PCR. Lastly, RNAscope spatially validated the expression of Glra1, Glra2 and Glrb in the areas indicated by the single-cell and bulk analyses, and further revealed that Glra4 can be detected in the cortex, amygdala, hypothalamus, thalamus, brainstem, especially the cochlear nucleus, and in the spinal cord.
Collapse
Affiliation(s)
- Mikaela M Ceder
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Kajsa A Magnusson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Hannah M Weman
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Katharina Henriksson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Linn Andréasson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Teresa Lindström
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Oskar Wiggins
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Malin C Lagerström
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
2
|
Schaefer N, Harvey RJ, Villmann C. Startle Disease: New Molecular Insights into an Old Neurological Disorder. Neuroscientist 2023; 29:767-781. [PMID: 35754344 PMCID: PMC10623600 DOI: 10.1177/10738584221104724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Startle disease (SD) is characterized by enhanced startle responses, generalized muscle stiffness, unexpected falling, and fatal apnea episodes due to disturbed feedback inhibition in the spinal cord and brainstem of affected individuals. Mutations within the glycine receptor (GlyR) subunit and glycine transporter 2 (GlyT2) genes have been identified in individuals with SD. Impaired inhibitory neurotransmission in SD is due to pre- and/or postsynaptic GlyR or presynaptic GlyT2 dysfunctions. Previous research has focused on mutated GlyRs and GlyT2 that impair ion channel/transporter function or trafficking. With insights provided by recently solved cryo-electron microscopy and X-ray structures of GlyRs, a detailed picture of structural transitions important for receptor gating has emerged, allowing a deeper understanding of SD at the molecular level. Moreover, studies on novel SD mutations have demonstrated a higher complexity of SD, with identification of additional clinical signs and symptoms and interaction partners representing key players for fine-tuning synaptic processes. Although our knowledge has steadily improved during the last years, changes in synaptic localization and GlyR or GlyT2 homeostasis under disease conditions are not yet completely understood. Combined proteomics, interactomics, and high-resolution microscopy techniques are required to reveal alterations in receptor dynamics at the synaptic level under disease conditions.
Collapse
Affiliation(s)
- Natascha Schaefer
- Institute of Clinical Neurobiology, University Hospital, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Robert J. Harvey
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Maroochydore DC, Australia
- Sunshine Coast Health Institute, Birtinya, Australia
| | - Carmen Villmann
- Institute of Clinical Neurobiology, University Hospital, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| |
Collapse
|
3
|
Fogarty MJ. Inhibitory Synaptic Influences on Developmental Motor Disorders. Int J Mol Sci 2023; 24:ijms24086962. [PMID: 37108127 PMCID: PMC10138861 DOI: 10.3390/ijms24086962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
During development, GABA and glycine play major trophic and synaptic roles in the establishment of the neuromotor system. In this review, we summarise the formation, function and maturation of GABAergic and glycinergic synapses within neuromotor circuits during development. We take special care to discuss the differences in limb and respiratory neuromotor control. We then investigate the influences that GABAergic and glycinergic neurotransmission has on two major developmental neuromotor disorders: Rett syndrome and spastic cerebral palsy. We present these two syndromes in order to contrast the approaches to disease mechanism and therapy. While both conditions have motor dysfunctions at their core, one condition Rett syndrome, despite having myriad symptoms, has scientists focused on the breathing abnormalities and their alleviation-to great clinical advances. By contrast, cerebral palsy remains a scientific quagmire or poor definitions, no widely adopted model and a lack of therapeutic focus. We conclude that the sheer abundance of diversity of inhibitory neurotransmitter targets should provide hope for intractable conditions, particularly those that exhibit broad spectra of dysfunction-such as spastic cerebral palsy and Rett syndrome.
Collapse
Affiliation(s)
- Matthew J Fogarty
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55902, USA
| |
Collapse
|
4
|
Maynard S, Rostaing P, Schaefer N, Gemin O, Candat A, Dumoulin A, Villmann C, Triller A, Specht CG. Identification of a stereotypic molecular arrangement of endogenous glycine receptors at spinal cord synapses. eLife 2021; 10:74441. [PMID: 34878402 PMCID: PMC8752092 DOI: 10.7554/elife.74441] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/15/2021] [Indexed: 11/30/2022] Open
Abstract
Precise quantitative information about the molecular architecture of synapses is essential to understanding the functional specificity and downstream signaling processes at specific populations of synapses. Glycine receptors (GlyRs) are the primary fast inhibitory neurotransmitter receptors in the spinal cord and brainstem. These inhibitory glycinergic networks crucially regulate motor and sensory processes. Thus far, the nanoscale organization of GlyRs underlying the different network specificities has not been defined. Here, we have quantitatively characterized the molecular arrangement and ultra-structure of glycinergic synapses in spinal cord tissue using quantitative super-resolution correlative light and electron microscopy. We show that endogenous GlyRs exhibit equal receptor-scaffold occupancy and constant packing densities of about 2000 GlyRs µm-2 at synapses across the spinal cord and throughout adulthood, even though ventral horn synapses have twice the total copy numbers, larger postsynaptic domains, and more convoluted morphologies than dorsal horn synapses. We demonstrate that this stereotypic molecular arrangement is maintained at glycinergic synapses in the oscillator mouse model of the neuromotor disease hyperekplexia despite a decrease in synapse size, indicating that the molecular organization of GlyRs is preserved in this hypomorph. We thus conclude that the morphology and size of inhibitory postsynaptic specializations rather than differences in GlyR packing determine the postsynaptic strength of glycinergic neurotransmission in motor and sensory spinal cord networks.
Collapse
Affiliation(s)
- Stephanie Maynard
- Institut de Biologie de l'ENS (IBENS), PSL University, Paris, France
| | - Philippe Rostaing
- Institut de Biologie de l'ENS (IBENS), PSL University, Paris, France
| | - Natascha Schaefer
- Institute for Clinical Neurobiology, University of Wuerzburg, Wuerzburg, Germany
| | - Olivier Gemin
- Institut de Biologie de l'ENS (IBENS), PSL University, Paris, France
| | - Adrien Candat
- Institut de Biologie de l'ENS (IBENS), PSL University, Paris, France
| | - Andréa Dumoulin
- Institut de Biologie de l'ENS (IBENS), PSL University, Paris, France
| | - Carmen Villmann
- Institute for Clinical Neurobiology, University of Wuerzburg, Wuerzburg, Germany
| | - Antoine Triller
- Institut de Biologie de l'ENS (IBENS), PSL University, Paris, France
| | - Christian G Specht
- Diseases and Hormones of the Nervous System (DHNS), Inserm U1195, Université Paris-Saclay, Paris, France
| |
Collapse
|
5
|
Schaefer N, Signoret-Genest J, von Collenberg CR, Wachter B, Deckert J, Tovote P, Blum R, Villmann C. Anxiety and Startle Phenotypes in Glrb Spastic and Glra1 Spasmodic Mouse Mutants. Front Mol Neurosci 2020; 13:152. [PMID: 32848605 PMCID: PMC7433344 DOI: 10.3389/fnmol.2020.00152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/22/2020] [Indexed: 11/13/2022] Open
Abstract
A GWAS study recently demonstrated single nucleotide polymorphisms (SNPs) in the human GLRB gene of individuals with a prevalence for agoraphobia. GLRB encodes the glycine receptor (GlyRs) β subunit. The identified SNPs are localized within the gene flanking regions (3' and 5' UTRs) and intronic regions. It was suggested that these nucleotide polymorphisms modify GlyRs expression and phenotypic behavior in humans contributing to an anxiety phenotype as a mild form of hyperekplexia. Hyperekplexia is a human neuromotor disorder with massive startle phenotypes due to mutations in genes encoding GlyRs subunits. GLRA1 mutations have been more commonly observed than GLRB mutations. If an anxiety phenotype contributes to the hyperekplexia disease pattern has not been investigated yet. Here, we compared two mouse models harboring either a mutation in the murine Glra1 or Glrb gene with regard to anxiety and startle phenotypes. Homozygous spasmodic animals carrying a Glra1 point mutation (alanine 52 to serine) displayed abnormally enhanced startle responses. Moreover, spasmodic mice exhibited significant changes in fear-related behaviors (freezing, rearing and time spent on back) analyzed during the startle paradigm, even in a neutral context. Spastic mice exhibit reduced expression levels of the full-length GlyRs β subunit due to aberrant splicing of the Glrb gene. Heterozygous animals appear normal without an obvious behavioral phenotype and thus might reflect the human situation analyzed in the GWAS study on agoraphobia and startle. In contrast to spasmodic mice, heterozygous spastic animals revealed no startle phenotype in a neutral as well as a conditioning context. Other mechanisms such as a modulatory function of the GlyRs β subunit within glycinergic circuits in neuronal networks important for fear and fear-related behavior may exist. Possibly, in human additional changes in fear and fear-related circuits either due to gene-gene interactions e.g., with GLRA1 genes or epigenetic factors are necessary to create the agoraphobia and in particular the startle phenotype.
Collapse
Affiliation(s)
- Natascha Schaefer
- Institute of Clinical Neurobiology, University Hospital, Julius Maximilians University of Würzburg, Würzburg, Germany
| | - Jérémy Signoret-Genest
- Institute of Clinical Neurobiology, University Hospital, Julius Maximilians University of Würzburg, Würzburg, Germany.,Department of Psychiatry, Psychosomatics and Psychotherapy, Center for Mental Health, University Hospital Würzburg, Würzburg, Germany
| | - Cora R von Collenberg
- Institute of Clinical Neurobiology, University Hospital, Julius Maximilians University of Würzburg, Würzburg, Germany
| | - Britta Wachter
- Institute of Clinical Neurobiology, University Hospital, Julius Maximilians University of Würzburg, Würzburg, Germany
| | - Jürgen Deckert
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center for Mental Health, University Hospital Würzburg, Würzburg, Germany
| | - Philip Tovote
- Institute of Clinical Neurobiology, University Hospital, Julius Maximilians University of Würzburg, Würzburg, Germany
| | - Robert Blum
- Institute of Clinical Neurobiology, University Hospital, Julius Maximilians University of Würzburg, Würzburg, Germany
| | - Carmen Villmann
- Institute of Clinical Neurobiology, University Hospital, Julius Maximilians University of Würzburg, Würzburg, Germany
| |
Collapse
|
6
|
A novel nonsense autosomal dominant mutation in the GLRA1 gene causing hyperekplexia. J Neural Transm (Vienna) 2018; 125:1877-1883. [PMID: 30182260 DOI: 10.1007/s00702-018-1924-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/31/2018] [Indexed: 10/28/2022]
Abstract
We present a family with two members affected by hyperekplexia and two unaffected members. All exons in the glycine receptor alpha 1 subunit gene (GLRA1) were sequenced in all four family members. Our index patient harbored a novel nonsense mutation (p.Trp314*; rs867618642) in the transmembrane domain three of the GLRA1 and a novel missense variant in the NH2-terminal part (p.Val67Met; rs142888296). After development of tolerance for the effective treatment with clobazam a drug holiday led to a sustained restoration of the treatment response.
Collapse
|
7
|
Schaefer N, Roemer V, Janzen D, Villmann C. Impaired Glycine Receptor Trafficking in Neurological Diseases. Front Mol Neurosci 2018; 11:291. [PMID: 30186111 PMCID: PMC6110938 DOI: 10.3389/fnmol.2018.00291] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/02/2018] [Indexed: 12/21/2022] Open
Abstract
Ionotropic glycine receptors (GlyRs) enable fast synaptic neurotransmission in the adult spinal cord and brainstem. The inhibitory GlyR is a transmembrane glycine-gated chloride channel. The immature GlyR protein undergoes various processing steps, e.g., folding, assembly, and maturation while traveling from the endoplasmic reticulum to and through the Golgi apparatus, where post-translational modifications, e.g., glycosylation occur. The mature receptors are forward transported via microtubules to the cellular surface and inserted into neuronal membranes followed by synaptic clustering. The normal life cycle of a receptor protein includes further processes like internalization, recycling, and degradation. Defects in GlyR life cycle, e.g., impaired protein maturation and degradation have been demonstrated to underlie pathological mechanisms of various neurological diseases. The neurological disorder startle disease is caused by glycinergic dysfunction mainly due to missense mutations in genes encoding GlyR subunits (GLRA1 and GLRB). In vitro studies have shown that most recessive forms of startle disease are associated with impaired receptor biogenesis. Another neurological disease with a phenotype similar to startle disease is a special form of stiff-person syndrome (SPS), which is most probably due to the development of GlyR autoantibodies. Binding of GlyR autoantibodies leads to enhanced receptor internalization. Here we focus on the normal life cycle of GlyRs concentrating on assembly and maturation, receptor trafficking, post-synaptic integration and clustering, and GlyR internalization/recycling/degradation. Furthermore, this review highlights findings on impairment of these processes under disease conditions such as disturbed neuronal ER-Golgi trafficking as the major pathomechanism for recessive forms of human startle disease. In SPS, enhanced receptor internalization upon autoantibody binding to the GlyR has been shown to underlie the human pathology. In addition, we discuss how the existing mouse models of startle disease increased our current knowledge of GlyR trafficking routes and function. This review further illuminates receptor trafficking of GlyR variants originally identified in startle disease patients and explains changes in the life cycle of GlyRs in patients with SPS with respect to structural and functional consequences at the receptor level.
Collapse
Affiliation(s)
- Natascha Schaefer
- Institute for Clinical Neurobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Vera Roemer
- Institute for Clinical Neurobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Dieter Janzen
- Institute for Clinical Neurobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Carmen Villmann
- Institute for Clinical Neurobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| |
Collapse
|
8
|
Schaefer N, Zheng F, van Brederode J, Berger A, Leacock S, Hirata H, Paige CJ, Harvey RJ, Alzheimer C, Villmann C. Functional Consequences of the Postnatal Switch From Neonatal to Mutant Adult Glycine Receptor α1 Subunits in the Shaky Mouse Model of Startle Disease. Front Mol Neurosci 2018; 11:167. [PMID: 29910711 PMCID: PMC5992992 DOI: 10.3389/fnmol.2018.00167] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/02/2018] [Indexed: 11/25/2022] Open
Abstract
Mutations in GlyR α1 or β subunit genes in humans and rodents lead to severe startle disease characterized by rigidity, massive stiffness and excessive startle responses upon unexpected tactile or acoustic stimuli. The recently characterized startle disease mouse mutant shaky carries a missense mutation (Q177K) in the β8-β9 loop within the large extracellular N-terminal domain of the GlyR α1 subunit. This results in a disrupted hydrogen bond network around K177 and faster GlyR decay times. Symptoms in mice start at postnatal day 14 and increase until premature death of homozygous shaky mice around 4–6 weeks after birth. Here we investigate the in vivo functional effects of the Q177K mutation using behavioral analysis coupled to protein biochemistry and functional assays. Western blot analysis revealed GlyR α1 subunit expression in wild-type and shaky animals around postnatal day 7, a week before symptoms in mutant mice become obvious. Before 2 weeks of age, homozygous shaky mice appeared healthy and showed no changes in body weight. However, analysis of gait and hind-limb clasping revealed that motor coordination was already impaired. Motor coordination and the activity pattern at P28 improved significantly upon diazepam treatment, a pharmacotherapy used in human startle disease. To investigate whether functional deficits in glycinergic neurotransmission are present prior to phenotypic onset, we performed whole-cell recordings from hypoglossal motoneurons (HMs) in brain stem slices from wild-type and shaky mice at different postnatal stages. Shaky homozygotes showed a decline in mIPSC amplitude and frequency at P9-P13, progressing to significant reductions in mIPSC amplitude and decay time at P18-24 compared to wild-type littermates. Extrasynaptic GlyRs recorded by bath-application of glycine also revealed reduced current amplitudes in shaky mice compared to wild-type neurons, suggesting that presynaptic GlyR function is also impaired. Thus, a distinct, but behaviorally ineffective impairment of glycinergic synapses precedes the symptoms onset in shaky mice. These findings extend our current knowledge on startle disease in the shaky mouse model in that they demonstrate how the progression of GlyR dysfunction causes, with a delay of about 1 week, the appearance of disease symptoms.
Collapse
Affiliation(s)
- Natascha Schaefer
- Institute for Clinical Neurobiology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Fang Zheng
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Johannes van Brederode
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Alexandra Berger
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Sophie Leacock
- Research Department of Pharmacology, UCL School of Pharmacy, London, United Kingdom
| | - Hiromi Hirata
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Japan
| | - Christopher J Paige
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Robert J Harvey
- School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, QLD, Australia.,Sunshine Coast Health Institute, Birtinya, QLD, Australia
| | - Christian Alzheimer
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Carmen Villmann
- Institute for Clinical Neurobiology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| |
Collapse
|
9
|
Schaefer N, Berger A, van Brederode J, Zheng F, Zhang Y, Leacock S, Littau L, Jablonka S, Malhotra S, Topf M, Winter F, Davydova D, Lynch JW, Paige CJ, Alzheimer C, Harvey RJ, Villmann C. Disruption of a Structurally Important Extracellular Element in the Glycine Receptor Leads to Decreased Synaptic Integration and Signaling Resulting in Severe Startle Disease. J Neurosci 2017; 37:7948-7961. [PMID: 28724750 PMCID: PMC5559766 DOI: 10.1523/jneurosci.0009-17.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 06/15/2017] [Accepted: 06/24/2017] [Indexed: 01/09/2023] Open
Abstract
Functional impairments or trafficking defects of inhibitory glycine receptors (GlyRs) have been linked to human hyperekplexia/startle disease and autism spectrum disorders. We found that a lack of synaptic integration of GlyRs, together with disrupted receptor function, is responsible for a lethal startle phenotype in a novel spontaneous mouse mutant shaky, caused by a missense mutation, Q177K, located in the extracellular β8-β9 loop of the GlyR α1 subunit. Recently, structural data provided evidence that the flexibility of the β8-β9 loop is crucial for conformational transitions during opening and closing of the ion channel and represents a novel allosteric binding site in Cys-loop receptors. We identified the underlying neuropathological mechanisms in male and female shaky mice through a combination of protein biochemistry, immunocytochemistry, and both in vivo and in vitro electrophysiology. Increased expression of the mutant GlyR α1Q177K subunit in vivo was not sufficient to compensate for a decrease in synaptic integration of α1Q177Kβ GlyRs. The remaining synaptic heteromeric α1Q177Kβ GlyRs had decreased current amplitudes with significantly faster decay times. This functional disruption reveals an important role for the GlyR α1 subunit β8-β9 loop in initiating rearrangements within the extracellular-transmembrane GlyR interface and that this structural element is vital for inhibitory GlyR function, signaling, and synaptic clustering.SIGNIFICANCE STATEMENT GlyR dysfunction underlies neuromotor deficits in startle disease and autism spectrum disorders. We describe an extracellular GlyR α1 subunit mutation (Q177K) in a novel mouse startle disease mutant shaky Structural data suggest that during signal transduction, large transitions of the β8-β9 loop occur in response to neurotransmitter binding. Disruption of the β8-β9 loop by the Q177K mutation results in a disruption of hydrogen bonds between Q177 and the ligand-binding residue R65. Functionally, the Q177K change resulted in decreased current amplitudes, altered desensitization decay time constants, and reduced GlyR clustering and synaptic strength. The GlyR β8-β9 loop is therefore an essential regulator of conformational rearrangements during ion channel opening and closing.
Collapse
Affiliation(s)
- Natascha Schaefer
- Institute of Clinical Neurobiology, Julius-Maximilians-University of Würzburg, 97078 Würzburg, Germany
| | - Alexandra Berger
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | | | - Fang Zheng
- Institute of Physiology and Pathophysiology, and
| | - Yan Zhang
- Queensland Brain Institute, University of Queensland, Brisbane 4072, Australia
| | - Sophie Leacock
- Department of Pharmacology, UCL School of Pharmacy, London WC1N 1AX, United Kingdom
| | - Laura Littau
- Institute of Clinical Neurobiology, Julius-Maximilians-University of Würzburg, 97078 Würzburg, Germany
| | - Sibylle Jablonka
- Institute of Clinical Neurobiology, Julius-Maximilians-University of Würzburg, 97078 Würzburg, Germany
| | - Sony Malhotra
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom, and
| | - Maya Topf
- Institute of Structural and Molecular Biology, UCL Birkbeck College, London WC1E 7HX, United Kingdom
| | - Friederike Winter
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen-Nürnberg, Germany
| | - Daria Davydova
- Institute of Clinical Neurobiology, Julius-Maximilians-University of Würzburg, 97078 Würzburg, Germany
| | - Joseph W Lynch
- Queensland Brain Institute, University of Queensland, Brisbane 4072, Australia
| | - Christopher J Paige
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | | | - Robert J Harvey
- Department of Pharmacology, UCL School of Pharmacy, London WC1N 1AX, United Kingdom
| | - Carmen Villmann
- Institute of Clinical Neurobiology, Julius-Maximilians-University of Würzburg, 97078 Würzburg, Germany,
| |
Collapse
|
10
|
Maleeva G, Peiretti F, Zhorov BS, Bregestovski P. Voltage-Dependent Inhibition of Glycine Receptor Channels by Niflumic Acid. Front Mol Neurosci 2017; 10:125. [PMID: 28559795 PMCID: PMC5432571 DOI: 10.3389/fnmol.2017.00125] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 04/12/2017] [Indexed: 01/11/2023] Open
Abstract
Niflumic acid (NFA) is a member of the fenamate class of nonsteroidal anti-inflammatory drugs. This compound and its derivatives are used worldwide clinically for the relief of chronic and acute pain. NFA is also a commonly used blocker of voltage-gated chloride channels. Here we present evidence that NFA is an efficient blocker of chloride-permeable glycine receptors (GlyRs) with subunit heterogeneity of action. Using the whole-cell configuration of patch-clamp recordings and molecular modeling, we analyzed the action of NFA on homomeric α1ΔIns, α2B, α3L, and heteromeric α1β and α2β GlyRs expressed in CHO cells. NFA inhibited glycine-induced currents in a voltage-dependent manner and its blocking potency in α2 and α3 GlyRs was higher than that in α1 GlyR. The Woodhull analysis suggests that NFA blocks α1 and α2 GlyRs at the fractional electrical distances of 0.16 and 0.65 from the external membrane surface, respectively. Thus, NFA binding site in α1 GlyR is closer to the external part of the membrane, while in α2 GlyR it is significantly deeper in the pore. Mutation G254A at the cytoplasmic part of the α1 GlyR pore-lining TM2 helix (level 2') increased the NFA blocking potency, while incorporation of the β subunit did not have a significant effect. The Hill plot analysis suggests that α1 and α2 GlyRs are preferably blocked by two and one NFA molecules, respectively. Molecular modeling using Monte Carlo energy minimizations provides the structural rationale for the experimental data and proposes more than one interaction site along the pore where NFA can suppress the ion permeation.
Collapse
Affiliation(s)
- Galyna Maleeva
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix-Marseille UniversityMarseille, France.,Department of Cytology, Bogomoletz Institute of PhysiologyKyiv, Ukraine
| | - Franck Peiretti
- INSERM 1062, INRA 1260, NORT, Aix-Marseille UniversityMarseille, France
| | - Boris S Zhorov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of SciencesSt. Petersburg, Russia.,Department of Biochemistry and Biomedical Sciences, McMaster UniversityHamilton, ON, Canada
| | - Piotr Bregestovski
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix-Marseille UniversityMarseille, France.,Department of Physiology, Kazan State Medical UniversityKazan, Russia
| |
Collapse
|
11
|
Alvarez FJ. Gephyrin and the regulation of synaptic strength and dynamics at glycinergic inhibitory synapses. Brain Res Bull 2016; 129:50-65. [PMID: 27612963 DOI: 10.1016/j.brainresbull.2016.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/23/2016] [Accepted: 09/05/2016] [Indexed: 01/23/2023]
Abstract
Glycinergic synapses predominate in brainstem and spinal cord where they modulate motor and sensory processing. Their postsynaptic mechanisms have been considered rather simple because they lack a large variety of glycine receptor isoforms and have relatively simple postsynaptic densities at the ultrastructural level. However, this simplicity is misleading being their postsynaptic regions regulated by a variety of complex mechanisms controlling the efficacy of synaptic inhibition. Early studies suggested that glycinergic inhibitory strength and dynamics depend largely on structural features rather than on molecular complexity. These include regulation of the number of postsynaptic glycine receptors, their localization and the amount of co-localized GABAA receptors and GABA-glycine co-transmission. These properties we now know are under the control of gephyrin. Gephyrin is the first postsynaptic scaffolding protein ever discovered and it was recently found to display a large degree of variation and regulation by splice variants, posttranslational modifications, intracellular trafficking and interactions with the underlying cytoskeleton. Many of these mechanisms are governed by converging excitatory activity and regulate gephyrin oligomerization and receptor binding, the architecture of the postsynaptic density (and by extension the whole synaptic complex), receptor retention and stability. These newly uncovered molecular mechanisms define the size and number of gephyrin postsynaptic regions and the numbers and proportions of glycine and GABAA receptors contained within. All together, they control the emergence of glycinergic synapses of different strength and temporal properties to best match the excitatory drive received by each individual neuron or local dendritic compartment.
Collapse
Affiliation(s)
- Francisco J Alvarez
- Department of Physiology, Emory University, Atlanta, GA 30322-3110, United States.
| |
Collapse
|
12
|
Langlhofer G, Villmann C. The Intracellular Loop of the Glycine Receptor: It's not all about the Size. Front Mol Neurosci 2016; 9:41. [PMID: 27330534 PMCID: PMC4891346 DOI: 10.3389/fnmol.2016.00041] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 05/17/2016] [Indexed: 11/15/2022] Open
Abstract
The family of Cys-loop receptors (CLRs) shares a high degree of homology and sequence identity. The overall structural elements are highly conserved with a large extracellular domain (ECD) harboring an α-helix and 10 β-sheets. Following the ECD, four transmembrane domains (TMD) are connected by intracellular and extracellular loop structures. Except the TM3–4 loop, their length comprises 7–14 residues. The TM3–4 loop forms the largest part of the intracellular domain (ICD) and exhibits the most variable region between all CLRs. The ICD is defined by the TM3–4 loop together with the TM1–2 loop preceding the ion channel pore. During the last decade, crystallization approaches were successful for some members of the CLR family. To allow crystallization, the intracellular loop was in most structures replaced by a short linker present in prokaryotic CLRs. Therefore, no structural information about the large TM3–4 loop of CLRs including the glycine receptors (GlyRs) is available except for some basic stretches close to TM3 and TM4. The intracellular loop has been intensively studied with regard to functional aspects including desensitization, modulation of channel physiology by pharmacological substances, posttranslational modifications, and motifs important for trafficking. Furthermore, the ICD interacts with scaffold proteins enabling inhibitory synapse formation. This review focuses on attempts to define structural and functional elements within the ICD of GlyRs discussed with the background of protein-protein interactions and functional channel formation in the absence of the TM3–4 loop.
Collapse
Affiliation(s)
- Georg Langlhofer
- Institute of Clinical Neurobiology, University of Würzburg Würzburg, Germany
| | - Carmen Villmann
- Institute of Clinical Neurobiology, University of Würzburg Würzburg, Germany
| |
Collapse
|
13
|
Zhang Y, Bode A, Nguyen B, Keramidas A, Lynch JW. Investigating the Mechanism by Which Gain-of-function Mutations to the α1 Glycine Receptor Cause Hyperekplexia. J Biol Chem 2016; 291:15332-41. [PMID: 27226610 DOI: 10.1074/jbc.m116.728592] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Indexed: 11/06/2022] Open
Abstract
Hyperekplexia is a rare human neuromotor disorder caused by mutations that impair the efficacy of glycinergic inhibitory neurotransmission. Loss-of-function mutations in the GLRA1 or GLRB genes, which encode the α1 and β glycine receptor (GlyR) subunits, are the major cause. Paradoxically, gain-of-function GLRA1 mutations also cause hyperekplexia, although the mechanism is unknown. Here we identify two new gain-of-function mutations (I43F and W170S) and characterize these along with known gain-of-function mutations (Q226E, V280M, and R414H) to identify how they cause hyperekplexia. Using artificial synapses, we show that all mutations prolong the decay of inhibitory postsynaptic currents (IPSCs) and induce spontaneous GlyR activation. As these effects may deplete the chloride electrochemical gradient, hyperekplexia could potentially result from reduced glycinergic inhibitory efficacy. However, we consider this unlikely as the depleted chloride gradient should also lead to pain sensitization and to a hyperekplexia phenotype that correlates with mutation severity, neither of which is observed in patients with GLRA1 hyperekplexia mutations. We also rule out small increases in IPSC decay times (as caused by W170S and R414H) as a possible mechanism given that the clinically important drug, tropisetron, significantly increases glycinergic IPSC decay times without causing motor side effects. A recent study on cultured spinal neurons concluded that an elevated intracellular chloride concentration late during development ablates α1β glycinergic synapses but spares GABAergic synapses. As this mechanism satisfies all our considerations, we propose it is primarily responsible for the hyperekplexia phenotype.
Collapse
Affiliation(s)
- Yan Zhang
- From the Queensland Brain Institute and
| | - Anna Bode
- From the Queensland Brain Institute and
| | | | | | - Joseph W Lynch
- From the Queensland Brain Institute and School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia 4072
| |
Collapse
|
14
|
Zhang C, Rompani SB, Roska B, McCall MA. Adeno-associated virus-RNAi of GlyRα1 and characterization of its synapse-specific inhibition in OFF alpha transient retinal ganglion cells. J Neurophysiol 2014; 112:3125-37. [PMID: 25231618 DOI: 10.1152/jn.00505.2014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the central nervous system, inhibition shapes neuronal excitation. In spinal cord glycinergic inhibition predominates, whereas GABAergic inhibition predominates in the brain. The retina uses GABA and glycine in approximately equal proportions. Glycinergic crossover inhibition, initiated in the On retinal pathway, controls glutamate release from presynaptic OFF cone bipolar cells (CBCs) and directly shapes temporal response properties of OFF retinal ganglion cells (RGCs). In the retina, four glycine receptor (GlyR) α-subunit isoforms are expressed in different sublaminae and their synaptic currents differ in decay kinetics. GlyRα1, expressed in both On and Off sublaminae of the inner plexiform layer, could be the glycinergic isoform that mediates On-to-Off crossover inhibition. However, subunit-selective glycine contributions remain unknown because we lack selective antagonists or cell class-specific subunit knockouts. To examine the role of GlyRα1 in direct inhibition in mature RGCs, we used retrogradely transported adeno-associated virus (AAV) that performed RNAi and eliminated almost all glycinergic spontaneous and visually evoked responses in PV5 (OFFα(Transient)) RGCs. Comparisons of responses in PV5 RGCs infected with AAV-scrambled-short hairpin RNA (shRNA) or AAV-Glra1-shRNA confirm a role for GlyRα1 in crossover inhibition in cone-driven circuits. Our results also define a role for direct GlyRα1 inhibition in setting the resting membrane potential of PV5 RGCs. The absence of GlyRα1 input unmasked a serial and a direct feedforward GABA(A)ergic modulation in PV5 RGCs, reflecting a complex interaction between glycinergic and GABA(A)ergic inhibition.
Collapse
Affiliation(s)
- C Zhang
- Department of Ophthalmology and Visual Science, University of Louisville, Louisville, Kentucky; Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky; and
| | - S B Rompani
- Neural Circuit Laboratories, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - B Roska
- Neural Circuit Laboratories, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - M A McCall
- Department of Ophthalmology and Visual Science, University of Louisville, Louisville, Kentucky; Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky; and
| |
Collapse
|
15
|
Schaefer N, Langlhofer G, Kluck CJ, Villmann C. Glycine receptor mouse mutants: model systems for human hyperekplexia. Br J Pharmacol 2014; 170:933-52. [PMID: 23941355 DOI: 10.1111/bph.12335] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 07/19/2013] [Accepted: 08/02/2013] [Indexed: 11/30/2022] Open
Abstract
Human hyperekplexia is a neuromotor disorder caused by disturbances in inhibitory glycine-mediated neurotransmission. Mutations in genes encoding for glycine receptor subunits or associated proteins, such as GLRA1, GLRB, GPHN and ARHGEF9, have been detected in patients suffering from hyperekplexia. Classical symptoms are exaggerated startle attacks upon unexpected acoustic or tactile stimuli, massive tremor, loss of postural control during startle and apnoea. Usually patients are treated with clonazepam, this helps to dampen the severe symptoms most probably by up-regulating GABAergic responses. However, the mechanism is not completely understood. Similar neuromotor phenotypes have been observed in mouse models that carry glycine receptor mutations. These mouse models serve as excellent tools for analysing the underlying pathomechanisms. Yet, studies in mutant mice looking for postsynaptic compensation of glycinergic dysfunction via an up-regulation in GABAA receptor numbers have failed, as expression levels were similar to those in wild-type mice. However, presynaptic adaptation mechanisms with an unusual switch from mixed GABA/glycinergic to GABAergic presynaptic terminals have been observed. Whether this presynaptic adaptation explains the improvement in symptoms or other compensation mechanisms exist is still under investigation. With the help of spontaneous glycine receptor mouse mutants, knock-in and knock-out studies, it is possible to associate behavioural changes with pharmacological differences in glycinergic inhibition. This review focuses on the structural and functional characteristics of the various mouse models used to elucidate the underlying signal transduction pathways and adaptation processes and describes a novel route that uses gene-therapeutic modulation of mutated receptors to overcome loss of function mutations.
Collapse
Affiliation(s)
- Natascha Schaefer
- Institute for Clinical Neurobiology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | | | | | | |
Collapse
|
16
|
van Coevorden-Hameete MH, de Graaff E, Titulaer MJ, Hoogenraad CC, Sillevis Smitt PAE. Molecular and cellular mechanisms underlying anti-neuronal antibody mediated disorders of the central nervous system. Autoimmun Rev 2014; 13:299-312. [PMID: 24225076 DOI: 10.1016/j.autrev.2013.10.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 10/30/2013] [Indexed: 12/31/2022]
Abstract
Over the last decade multiple autoantigens located on the plasma membrane of neurons have been identified. Neuronal surface antigens include molecules directly involved in neurotransmission and excitability. Binding of the antibody to the antigen may directly alter the target protein's function, resulting in neurological disorders. The often striking reversibility of symptoms following early aggressive immunotherapy supports a pathogenic role for autoantibodies to neuronal surface antigens. In order to better understand and treat these neurologic disorders it is important to gain insight in the underlying mechanisms of antibody pathogenicity. In this review we discuss the clinical, circumstantial, in vitro and in vivo evidence for neuronal surface antibody pathogenicity and the possible underlying cellular and molecular mechanisms. This review shows that antibodies to neuronal surface antigens are often directed at conformational epitopes located in the extracellular domain of the antigen. The conformation of the epitope can be affected by specific posttranslational modifications. This may explain the distinct clinical phenotypes that are seen in patients with antibodies to antigens that are expressed throughout the brain. Furthermore, it is likely that there is a heterogeneous antibody population, consisting of different IgG subtypes and directed at multiple epitopes located in an immunogenic region. Binding of these antibodies may result in different pathophysiological mechanisms occurring in the same patient, together contributing to the clinical syndrome. Unraveling the predominant mechanism in each distinct antigen could provide clues for therapeutic interventions.
Collapse
Affiliation(s)
- M H van Coevorden-Hameete
- Department of Biology, Division of Cell Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - E de Graaff
- Department of Biology, Division of Cell Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - M J Titulaer
- Department of Neurology, Erasmus MC, 's-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands.
| | - C C Hoogenraad
- Department of Biology, Division of Cell Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - P A E Sillevis Smitt
- Department of Neurology, Erasmus MC, 's-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands.
| |
Collapse
|
17
|
Nikandrov V, Balashevich T. Glycine receptors in nervous tissue and their functional role. ACTA ACUST UNITED AC 2014; 60:403-15. [DOI: 10.18097/pbmc20146004403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The literature data on glycine metabolism in neural tissue, mitochondrial Gly-cleaving system, Gly-catching system in neural and glial cells are summarized. The peculiarities of localization and distribution of specific glycine receptors and binding-sites in nervous tissue of mammals are described. Four types of glycine-binding receptors are described: own specific glycine receptor (Gly-R), ionotropic receptor, which binds N-methyl-D-aspartate selectively (NMDA-R), and ionotropic receptors of g-aminobutyrate (GABA A -R, GABA С -R). The feutures of glycine effects in neuroglial cultures are discussed
Collapse
|