1
|
Ibrahim KA, Naidu AS, Miljkovic H, Radenovic A, Yang W. Label-Free Techniques for Probing Biomolecular Condensates. ACS NANO 2024; 18:10738-10757. [PMID: 38609349 DOI: 10.1021/acsnano.4c01534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Biomolecular condensates play important roles in a wide array of fundamental biological processes, such as cellular compartmentalization, cellular regulation, and other biochemical reactions. Since their discovery and first observations, an extensive and expansive library of tools has been developed to investigate various aspects and properties, encompassing structural and compositional information, material properties, and their evolution throughout the life cycle from formation to eventual dissolution. This Review presents an overview of the expanded set of tools and methods that researchers use to probe the properties of biomolecular condensates across diverse scales of length, concentration, stiffness, and time. In particular, we review recent years' exciting development of label-free techniques and methodologies. We broadly organize the set of tools into 3 categories: (1) imaging-based techniques, such as transmitted-light microscopy (TLM) and Brillouin microscopy (BM), (2) force spectroscopy techniques, such as atomic force microscopy (AFM) and the optical tweezer (OT), and (3) microfluidic platforms and emerging technologies. We point out the tools' key opportunities, challenges, and future perspectives and analyze their correlative potential as well as compatibility with other techniques. Additionally, we review emerging techniques, namely, differential dynamic microscopy (DDM) and interferometric scattering microscopy (iSCAT), that have huge potential for future applications in studying biomolecular condensates. Finally, we highlight how some of these techniques can be translated for diagnostics and therapy purposes. We hope this Review serves as a useful guide for new researchers in this field and aids in advancing the development of new biophysical tools to study biomolecular condensates.
Collapse
|
2
|
Ullah A, Lee GJ, Kwon HT, Lim SI. Covalent immobilization of human serum albumin on cellulose acetate membrane for scavenging amyloid beta - A stepping extracorporeal strategy for ameliorating Alzheimer's disease. Colloids Surf B Biointerfaces 2024; 234:113753. [PMID: 38241888 DOI: 10.1016/j.colsurfb.2024.113753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/21/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by interrupted neurocognitive functions and impaired mental development presumably caused by the accumulation of amyloid beta (Aβ) in the form of plaques. Targeting Aβ has been considered a promising approach for treating AD. In the current study, human serum albumin (HSA), a natural Aβ binder, is covalently immobilized onto the surface of a cellulose acetate (CA) membrane to devise an extracorporeal Aβ sequester. The immobilization of HSA at 3.06 ± 0.22 μg/mm2 of the CA membrane was found to be active functionally, as evidenced by the esterase-like activity converting p-nitrophenyl acetate into p-nitrophenol. The green fluorescent protein-Aβ (GFP-Aβ) fusion protein, recombinantly produced as a model ligand, exhibited characteristics of native Aβ. These features include the propensity to form aggregates or fibrils and an affinity for HSA with a dissociation constant (KD) of 0.91 μM. The HSA on the CA membrane showed concentration-dependent sequestration of GFP-Aβ in the 1-10-μM range. Moreover, it had a greater binding capacity than HSA immobilized on a commercial amine-binding plate. Results suggest that the covalent immobilization of HSA on the CA surface can be used as a potential platform for sequestering Aβ to alleviate AD.
Collapse
Affiliation(s)
- Aziz Ullah
- Department of Chemical Engineering, Pukyong National University, Busan 48513, Republic of Korea; Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Khyber Pakhtunkhwa, Pakistan
| | - Gyu-Jin Lee
- Department of Chemical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Hyuk Taek Kwon
- Department of Chemical Engineering, Pukyong National University, Busan 48513, Republic of Korea.
| | - Sung In Lim
- Department of Chemical Engineering, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
3
|
Ibrahim KA, Grußmayer KS, Riguet N, Feletti L, Lashuel HA, Radenovic A. Label-free identification of protein aggregates using deep learning. Nat Commun 2023; 14:7816. [PMID: 38016971 PMCID: PMC10684545 DOI: 10.1038/s41467-023-43440-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 11/09/2023] [Indexed: 11/30/2023] Open
Abstract
Protein misfolding and aggregation play central roles in the pathogenesis of various neurodegenerative diseases (NDDs), including Huntington's disease, which is caused by a genetic mutation in exon 1 of the Huntingtin protein (Httex1). The fluorescent labels commonly used to visualize and monitor the dynamics of protein expression have been shown to alter the biophysical properties of proteins and the final ultrastructure, composition, and toxic properties of the formed aggregates. To overcome this limitation, we present a method for label-free identification of NDD-associated aggregates (LINA). Our approach utilizes deep learning to detect unlabeled and unaltered Httex1 aggregates in living cells from transmitted-light images, without the need for fluorescent labeling. Our models are robust across imaging conditions and on aggregates formed by different constructs of Httex1. LINA enables the dynamic identification of label-free aggregates and measurement of their dry mass and area changes during their growth process, offering high speed, specificity, and simplicity to analyze protein aggregation dynamics and obtain high-fidelity information.
Collapse
Affiliation(s)
- Khalid A Ibrahim
- Laboratory of Nanoscale Biology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Kristin S Grußmayer
- Department of Bionanoscience and Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands.
| | - Nathan Riguet
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Lely Feletti
- Laboratory of Nanoscale Biology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Aleksandra Radenovic
- Laboratory of Nanoscale Biology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
4
|
Fan LY, Yang J, Liu RY, Kong Y, Guo GY, Xu YM. Integrating single-nucleus sequence profiling to reveal the transcriptional dynamics of Alzheimer's disease, Parkinson's disease, and multiple sclerosis. J Transl Med 2023; 21:649. [PMID: 37735671 PMCID: PMC10515258 DOI: 10.1186/s12967-023-04516-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/08/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS) are three nervous system diseases that partially overlap clinically and genetically. However, bulk RNA-sequencing did not accurately detect the core pathogenic molecules in them. The availability of high-quality single cell RNA-sequencing data of post-mortem brain collections permits the generation of a large-scale gene expression in different cells in human brain, focusing on the molecular features and relationships between diseases and genes. We integrated single-nucleus RNA-sequencing (snRNA-seq) datasets of human brains with AD, PD, and MS to identify transcriptomic commonalities and distinctions among them. METHODS The snRNA-seq datasets were downloaded from Gene Expression Omnibus (GEO) database. The Seurat package was used for snRNA-seq data processing. The uniform manifold approximation and projection (UMAP) were utilized for cluster identification. The FindMarker function in Seurat was used to identify the differently expressed genes. Functional enrichment analysis was carried out using the Gene Set Enrichment Analysis (GSEA) and Gene ontology (GO). The protein-protein interaction (PPI) analysis of differentially expressed genes (DEGs) was analyzed using STRING database ( http://string-db.org ). SCENIC analysis was performed using utilizing pySCENIC (v0.10.0) based on the hg19-tss-centered-10 kb-10species databases. The analysis of potential therapeutic drugs was analyzed on Connectivity Map ( https://clue.io ). RESULTS The gene regulatory network analysis identified several hub genes regulated in AD, PD, and MS, in which HSPB1 and HSPA1A were key molecules. These upregulated HSP family genes interact with ribosome genes in AD and MS, and with immunomodulatory genes in PD. We further identified several transcriptional regulators (SPI1, CEBPA, TFE3, GRHPR, and TP53) of the hub genes, which has important implications for uncovering the molecular crosstalk among AD, PD, and MS. Arctigenin was identified as a potential therapeutic drug for AD, PD, and MS. CONCLUSIONS Together, the integrated snRNA-seq data and findings have significant implications for unraveling the shared and unique molecular crosstalk among AD, PD, and MS. HSPB1 and HSPA1A as promising targets involved in the pathological mechanisms of neurodegenerative diseases. Additionally, the identification of arctigenin as a potential therapeutic drug for AD, PD, and MS further highlights its potential in treating these neurological disorders. These discoveries lay the groundwork for future research and interventions to enhance our understanding and treatment of AD, PD, and MS.
Collapse
Affiliation(s)
- Li-Yuan Fan
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Jing Yang
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Ruo-Yu Liu
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Ying Kong
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Guang-Yu Guo
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.
| | - Yu-Ming Xu
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
5
|
Porosk L, Härk HH, Bicev RN, Gaidutšik I, Nebogatova J, Armolik EJ, Arukuusk P, da Silva ER, Langel Ü. Aggregation Limiting Cell-Penetrating Peptides Derived from Protein Signal Sequences. Int J Mol Sci 2023; 24:ijms24054277. [PMID: 36901707 PMCID: PMC10002422 DOI: 10.3390/ijms24054277] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease (ND) and the leading cause of dementia. It is characterized by non-linear, genetic-driven pathophysiological dynamics with high heterogeneity in the biological alterations and the causes of the disease. One of the hallmarks of the AD is the progression of plaques of aggregated amyloid-β (Aβ) or neurofibrillary tangles of Tau. Currently there is no efficient treatment for the AD. Nevertheless, several breakthroughs in revealing the mechanisms behind progression of the AD have led to the discovery of possible therapeutic targets. Some of these include the reduction in inflammation in the brain, and, although highly debated, limiting of the aggregation of the Aβ. In this work we show that similarly to the Neural cell adhesion molecule 1 (NCAM1) signal sequence, other Aβ interacting protein sequences, especially derived from Transthyretin, can be used successfully to reduce or target the amyloid aggregation/aggregates in vitro. The modified signal peptides with cell-penetrating properties reduce the Aβ aggregation and are predicted to have anti-inflammatory properties. Furthermore, we show that by expressing the Aβ-EGFP fusion protein, we can efficiently assess the potential for reduction in aggregation, and the CPP properties of peptides in mammalian cells.
Collapse
Affiliation(s)
- Ly Porosk
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
- Correspondence:
| | - Heleri Heike Härk
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Renata Naporano Bicev
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Ilja Gaidutšik
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | | | - Eger-Jasper Armolik
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Piret Arukuusk
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | | | - Ülo Langel
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
- Department Biochemistry and Biophysics, Stockholm University, S.Arrheniusv. 16B, Room C472, 106 91 Stockholm, Sweden
| |
Collapse
|
6
|
Abstract
Molecular chaperones and co-chaperones facilitate the assembly of newly synthesized polypeptides and refolding of unfolded or misfolded proteins, thereby maintaining protein homeostasis in cells. As co-chaperones of the master chaperone heat shock protein (HSP) 70, the HSP40 (DNAJ) proteins are largest chaperone family in eukaryotic cells. They contain a characteristic J-domain which mediates interaction with HSP70, thereby helping protein folding. It is well perceived that protein homeostasis is vital for neuronal health. DNAJ family proteins have been linked to the occurrence and progression of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, spinocerebellar ataxia, Charcot-Marie-Tooth disease, spinal muscular atrophy, distal hereditary motor neuropathy, limb-girdle type muscular dystrophy, neuronal ceroid lipofuscinosis and essential tremor in recent studies. DNAJA1 effectively degrades huntington aggregates; DNAJB1 can degrade protein aggregates ataxin-3; DNAJB2 can inhibit the formation of huntington aggregates; DNAJB6 can inhibit the aggregation of Aβ 42 and α-synuclein; DNAJC5 can promote the release of TDP-43, τ protein, and α-synuclein into the extracellular space. Mutations in the essential tremor-associated DNAJC13 gene can prevent endosome protein trafficking. This article reviews the mechanism of DNAJ protein family in neurodegenerative diseases.
Collapse
|
7
|
Suraritdechachai S, Lakkanasirorat B, Uttamapinant C. Molecular probes for cellular imaging of post-translational proteoforms. RSC Chem Biol 2022; 3:201-219. [PMID: 35360891 PMCID: PMC8826509 DOI: 10.1039/d1cb00190f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/04/2022] [Indexed: 12/29/2022] Open
Abstract
Specific post-translational modification (PTM) states of a protein affect its property and function; understanding their dynamics in cells would provide deep insight into diverse signaling pathways and biological processes. However, it is not trivial to visualize post-translational modifications in a protein- and site-specific manner, especially in a living-cell context. Herein, we review recent advances in the development of molecular imaging tools to detect diverse classes of post-translational proteoforms in individual cells, and their applications in studying precise roles of PTMs in regulating the function of cellular proteins.
Collapse
Affiliation(s)
- Surased Suraritdechachai
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC) Rayong Thailand
| | - Benya Lakkanasirorat
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC) Rayong Thailand
| | - Chayasith Uttamapinant
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC) Rayong Thailand
| |
Collapse
|
8
|
Folke J, Arkan S, Martinsson I, Aznar S, Gouras G, Brudek T, Hansen C. DNAJB6b is Downregulated in Synucleinopathies. JOURNAL OF PARKINSONS DISEASE 2021; 11:1791-1803. [PMID: 34334418 PMCID: PMC8609689 DOI: 10.3233/jpd-202512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND α-synuclein (α-syn) aggregation contributes to the progression of multiple neurodegenerative diseases. We recently found that the isoform b of the co-chaperone DNAJB6 is a strong suppressor of α-syn aggregation in vivo and in vitro. However, nothing is known about the role of the endogenous isoform b of DNAJB6 (DNAJB6b) in health and disease, due to lack of specific antibodies. OBJECTIVE Here we generated a novel anti-DNAJB6b antibody to analyze the localization and expression of this isoform in cells, in tissue and in clinical material. METHODS To address this we used immunocytochemistry, immunohistochemistry, as well as a novel quantitative DNAJB6 specific ELISA method. RESULTS The endogenous protein is mainly expressed in the cytoplasm and in neurites in vitro, where it is found more in dendrites than in axons. We further verified in vivo that DNAJB6b is expressed in the dopaminergic neurons of the substantia nigra pars compacta (SNpc), which is a neuronal subpopulation highly sensitive to α-syn aggregation, that degenerate to a large extend in patients with Parkinson's disease (PD) and multiple system atrophy (MSA). When we analyzed the expression levels of DNAJB6b in brain material from PD and MSA patients, we found a downregulation of DNAJB6b by use of ELISA based quantification. Interestingly, this was also true when analyzing tissue from patients with progressive supranuclear palsy, a taupathic atypical parkinsonian disorder. However, the total level of DNAJB6 was upregulated in these three diseases, which may indicate an upregulation of the other major isoform of DNAJB6, DNAJB6a. CONCLUSION This study shows that DNAJB6b is downregulated in several different neurodegenerative diseases, which makes it an interesting target to further investigate in relation to amyloid protein aggregation and disease progression.
Collapse
Affiliation(s)
- Jonas Folke
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Sertan Arkan
- Molecular Neurobiology, Department of Experimental Medical Science, Lund, Sweden
| | - Isak Martinsson
- Experimental Dementia Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Susana Aznar
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Gunnar Gouras
- Experimental Dementia Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Tomasz Brudek
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Christian Hansen
- Molecular Neurobiology, Department of Experimental Medical Science, Lund, Sweden.,Department of Technology, University College Copenhagen, Denmark
| |
Collapse
|
9
|
Sappakhaw K, Jantarug K, Slavoff SA, Israsena N, Uttamapinant C. A Genetic Code Expansion-Derived Molecular Beacon for the Detection of Intracellular Amyloid-β Peptide Generation. Angew Chem Int Ed Engl 2021; 60:3934-3939. [PMID: 33063327 PMCID: PMC7898502 DOI: 10.1002/anie.202010703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/19/2020] [Indexed: 12/01/2022]
Abstract
Polypeptides generated from proteolytic processing of protein precursors, or proteolytic proteoforms, play an important role in diverse biological functions and diseases. However, their often-small size and intricate post-translational biogenesis preclude the use of simple genetic tagging in their cellular studies. Herein, we develop a labeling strategy for this class of proteoforms, based on residue-specific genetic code expansion labeling with a molecular beacon design. We demonstrate the utility of such a design by creating a molecular beacon reporter to detect amyloid-β peptides, known to be involved in the pathogenesis of Alzheimer's disease, as they are produced from amyloid precursor protein (APP) along the endocytic pathway of living cells.
Collapse
Affiliation(s)
- Khomkrit Sappakhaw
- School of Biomolecular Science and EngineeringVidyasirimedhi Institute of Science and Technology (VISTEC)Rayong21210Thailand
| | - Krittapas Jantarug
- School of Biomolecular Science and EngineeringVidyasirimedhi Institute of Science and Technology (VISTEC)Rayong21210Thailand
| | | | - Nipan Israsena
- Stem Cell and Cell Therapy Research Unit and Department of PharmacologyFaculty of MedicineChulalongkorn UniversityBangkok10330Thailand
| | - Chayasith Uttamapinant
- School of Biomolecular Science and EngineeringVidyasirimedhi Institute of Science and Technology (VISTEC)Rayong21210Thailand
| |
Collapse
|
10
|
Sappakhaw K, Jantarug K, Slavoff SA, Israsena N, Uttamapinant C. A Genetic Code Expansion-Derived Molecular Beacon for the Detection of Intracellular Amyloid-β Peptide Generation. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 133:3980-3985. [PMID: 38504667 PMCID: PMC10946459 DOI: 10.1002/ange.202010703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/19/2020] [Indexed: 11/09/2022]
Abstract
Polypeptides generated from proteolytic processing of protein precursors, or proteolytic proteoforms, play an important role in diverse biological functions and diseases. However, their often-small size and intricate post-translational biogenesis preclude the use of simple genetic tagging in their cellular studies. Herein, we develop a labeling strategy for this class of proteoforms, based on residue-specific genetic code expansion labeling with a molecular beacon design. We demonstrate the utility of such a design by creating a molecular beacon reporter to detect amyloid-β peptides, known to be involved in the pathogenesis of Alzheimer's disease, as they are produced from amyloid precursor protein (APP) along the endocytic pathway of living cells.
Collapse
Affiliation(s)
- Khomkrit Sappakhaw
- School of Biomolecular Science and EngineeringVidyasirimedhi Institute of Science and Technology (VISTEC)Rayong21210Thailand
| | - Krittapas Jantarug
- School of Biomolecular Science and EngineeringVidyasirimedhi Institute of Science and Technology (VISTEC)Rayong21210Thailand
| | | | - Nipan Israsena
- Stem Cell and Cell Therapy Research Unit and Department of PharmacologyFaculty of MedicineChulalongkorn UniversityBangkok10330Thailand
| | - Chayasith Uttamapinant
- School of Biomolecular Science and EngineeringVidyasirimedhi Institute of Science and Technology (VISTEC)Rayong21210Thailand
| |
Collapse
|
11
|
Deshayes N, Arkan S, Hansen C. The Molecular Chaperone DNAJB6, but Not DNAJB1, Suppresses the Seeded Aggregation of Alpha-Synuclein in Cells. Int J Mol Sci 2019; 20:ijms20184495. [PMID: 31514384 PMCID: PMC6769935 DOI: 10.3390/ijms20184495] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/07/2019] [Accepted: 09/08/2019] [Indexed: 11/16/2022] Open
Abstract
Alpha-synuclein (α-Syn) can misfold and aggregate, causing the degeneration of dopaminergic neurons, as seen in Parkinson’s disease (PD). We recently demonstrated that DNAJB6, a co-chaperone found in Lewy bodies (LB), suppresses the aggregation of α-Syn in cells and in vitro. In this study, we compared the capacities of DNAJB1 and DNAJB6 to suppress the seeded α-Syn aggregation in HEK293 cells expressing α-Syn tagged with cyan fluorescent protein (CFP) or yellow fluorescent protein (YFP). The aggregation of α-Syn was seeded by the transfection of the cells with recombinant α-Syn pre-formed fibrils (PFFs), following the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9-mediated knockout (KO) of these two genes, respectively. We quantified the α-Syn aggregation by fluorescence microscopy and fluorescence resonance energy transfer (FRET) analysis. We detected significantly more aggregates in the DNAJB6 KO cells compared with the parental cells, whereas the DNAJB1 KO had no effect on the α-Syn aggregation. This is the first evidence that DNAJB6 can suppress α-Syn aggregation, induced by exogenous α-Syn seeds, in cells. Next, we explored whether this mechanism could be dependent on protein degradation pathways. We observed that the increase in the α-Syn PFF-induced aggregation in the DNAJB6 KO cells compared with the parental cells was strongly diminished upon the incubation of the cells with the proteasomal inhibitor MG132. These results consolidate that DNAJB6 is a suppressor of α-Syn aggregation, and suggest that DNAJB6 may target misfolded and/or aggregated α-Syn for proteasomal degradation.
Collapse
Affiliation(s)
- Natasja Deshayes
- Molecular Neurobiology, Department of Experimental Medical Science, BMC B11, Lund University, 221 84 Lund, Sweden.
| | - Sertan Arkan
- Molecular Neurobiology, Department of Experimental Medical Science, BMC B11, Lund University, 221 84 Lund, Sweden.
| | - Christian Hansen
- Molecular Neurobiology, Department of Experimental Medical Science, BMC B11, Lund University, 221 84 Lund, Sweden.
| |
Collapse
|
12
|
Ayala S, Genevaux P, Hureau C, Faller P. (Bio)chemical Strategies To Modulate Amyloid-β Self-Assembly. ACS Chem Neurosci 2019; 10:3366-3374. [PMID: 31265239 DOI: 10.1021/acschemneuro.9b00239] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Amyloid plaques are one of the two hallmarks of Alzheimer's disease (AD). They consist mainly of fibrils made of self-assembled amyloid-β (Aβ) peptides. Aβ is produced in healthy brains from proteolytic cleavage of the amyloid precursor protein. Aβ aggregates, in particular smaller, soluble aggregates, are toxic to cells. Hence, modulating the self-assembly of Aβ became a very active field of research, with the aim to reduce the amount of the toxic aggregates of Aβ or to block their toxic action. A great variety of molecules, chemical and biological, are able to modify the aggregation of Aβ. Here we give an overview of the different mechanistic ways to modulate Aβ aggregation and on which step in the self-assembly molecules can interfere. We discuss the aggregation modulators according to different important parameters, including the type of interaction (weak interaction, coordination or covalent bonds), the importance of kinetics and thermodynamics, the size of the modulating molecules, and binding specificity.
Collapse
Affiliation(s)
- Sara Ayala
- LCC, CNRS & University of Toulouse (UPS, INPT), 205 route de Narbonne, 31077 Toulouse, France
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Pierre Genevaux
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Christelle Hureau
- LCC, CNRS & University of Toulouse (UPS, INPT), 205 route de Narbonne, 31077 Toulouse, France
| | - Peter Faller
- LCC, CNRS & University of Toulouse (UPS, INPT), 205 route de Narbonne, 31077 Toulouse, France
- Institut de Chimie, UMR 7177, CNRS-Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| |
Collapse
|
13
|
Meister SW, Hendrikse NM, Löfblom J. Directed evolution of the 3C protease from coxsackievirus using a novel fluorescence-assisted intracellular method. Biol Chem 2019; 400:405-415. [PMID: 30521472 DOI: 10.1515/hsz-2018-0362] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/21/2018] [Indexed: 01/08/2023]
Abstract
Proteases are crucial for regulating biological processes in organisms through hydrolysis of peptide bonds. Recombinant proteases have moreover become important tools in biotechnological, and biomedical research and as therapeutics. We have developed a label-free high-throughput method for quantitative assessment of proteolytic activity in Escherichia coli. The screening method is based on co-expression of a protease of interest and a reporter complex. This reporter consists of an aggregation-prone peptide fused to a fluorescent protein via a linker that contains the corresponding substrate sequence. Cleavage of the substrate rescues the fluorescent protein from aggregation, resulting in increased fluorescence that correlates to proteolytic activity, which can be monitored using flow cytometry. In one round of flow-cytometric cell sorting, we isolated an efficiently cleaved tobacco etch virus (TEV) substrate from a 1:100 000 background of non-cleavable sequences, with around 6000-fold enrichment. We then engineered the 3C protease from coxsackievirus B3 (CVB3 3Cpro) towards improved proteolytic activity on the substrate LEVLFQ↓GP. We isolated highly proteolytic active variants from a randomly mutated CVB3 3Cpro library with up to 4-fold increase in activity. The method enables simultaneous measurement of proteolytic activity and protease expression levels and can therefore be applied for protease substrate profiling, as well as directed evolution of proteases.
Collapse
Affiliation(s)
- Sebastian W Meister
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Natalie M Hendrikse
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - John Löfblom
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| |
Collapse
|
14
|
Derf A, Verekar SA, Jain SK, Deshmukh SK, Bharate SB, Chaudhuri B. Radicicol rescues yeast cell death triggered by expression of human α-synuclein and its A53T mutant, but not by human βA4 peptide and proapoptotic protein bax. Bioorg Chem 2019; 85:152-158. [PMID: 30612081 DOI: 10.1016/j.bioorg.2018.12.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/18/2018] [Accepted: 12/24/2018] [Indexed: 11/24/2022]
Abstract
Aggregation/misfolding of α-synuclein and βA4 proteins cause neuronal cell death (NCD) associated with Parkinson's and Alzheimer's disease. It has been suggested that a heat shock protein-90 (Hsp90) inhibitor can prevent NCD by activating the heat shock transcription factor-1 which, in turn, upregulates molecular chaperones such as Hsp70 that targets aggregated/misfolded proteins for refolding/degradation. We have isolated radicicol, an Hsp90 inhibitor, from a fungus occurring in the crevices of marble rocks of Central India. Radicicol, which was found to be a strong antioxidant, was tested for its ability to rescue yeast cells from death induced by expression of wild-type α-synuclein, its more toxic A53T mutant, and βA4. It effectively overcomes wild-type/mutant α-synuclein mediated yeast cell death, concomitantly diminishes ROS levels, reverses mitochondrial dysfunction and prevents nuclear DNA-fragmentation, a hallmark of apoptosis. Surprisingly however, radicicol is unable to rescue yeast cells from death triggered by expression of secreted βA4. Moreover, although radicicol acts as an antioxidant it fails to prevent yeast cell death inflicted by the proapoptotic protein, Bax. Our results indicate that radicicol specifically targets aggregated/misfolded α-synuclein's toxicity and opens up the possibility of using multiple yeast assays to screen natural product libraries for compounds that would unambiguously target α-synuclein aggregation/misfolding.
Collapse
Affiliation(s)
- Asma Derf
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Shilpa A Verekar
- Piramal Life Sciences Limited, Goregaon (East), Mumbai 400 063, India
| | - Shreyans K Jain
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Sunil K Deshmukh
- Piramal Life Sciences Limited, Goregaon (East), Mumbai 400 063, India
| | - Sandip B Bharate
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.
| | - Bhabatosh Chaudhuri
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK.
| |
Collapse
|
15
|
An Aβ42 variant that inhibits intra- and extracellular amyloid aggregation and enhances cell viability. Biochem J 2018; 475:3087-3103. [DOI: 10.1042/bcj20180247] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 09/02/2018] [Accepted: 09/07/2018] [Indexed: 01/06/2023]
Abstract
Aggregation and accumulation of the 42-residue amyloid β peptide (Aβ42) in the extracellular matrix and within neuronal cells is considered a major cause of neuronal cell cytotoxicity and death in Alzheimer's disease (AD) patients. Therefore, molecules that bind to Aβ42 and prevent its aggregation are therapeutically promising as AD treatment. Here, we show that a non-self-aggregating Aβ42 variant carrying two surface mutations, F19S and L34P (Aβ42DM), inhibits wild-type Aβ42 aggregation and significantly reduces Aβ42-mediated cell cytotoxicity. In addition, Aβ42DM inhibits the uptake and internalization of extracellularly added pre-formed Aβ42 aggregates into cells. This was the case in both neuronal and non-neuronal cells co-expressing Aβ42 and Aβ42DM or following pre-treatment of cells with extracellular soluble forms of the two peptides, even at high Aβ42 to Aβ42DM molar ratios. In cells, Aβ42DM associates with Aβ42, while in vitro, the two soluble recombinant peptides exhibit nano-molar binding affinity. Importantly, Aβ42DM potently suppresses Aβ42 amyloid aggregation in vitro, as demonstrated by thioflavin T fluorescence and transmission electron microscopy for detecting amyloid fibrils. Overall, we present a new approach for inhibiting Aβ42 fibril formation both within and outside cells. Accordingly, Aβ42DM should be evaluated in vivo for potential use as a therapeutic lead for treating AD.
Collapse
|
16
|
Establishment of Constraints on Amyloid Formation Imposed by Steric Exclusion of Globular Domains. J Mol Biol 2018; 430:3835-3846. [DOI: 10.1016/j.jmb.2018.05.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/15/2018] [Accepted: 05/27/2018] [Indexed: 11/18/2022]
|
17
|
Rode S, Hayn M, Röcker A, Sieste S, Lamla M, Markx D, Meier C, Kirchhoff F, Walther P, Fändrich M, Weil T, Münch J. Generation and Characterization of Virus-Enhancing Peptide Nanofibrils Functionalized with Fluorescent Labels. Bioconjug Chem 2017; 28:1260-1270. [DOI: 10.1021/acs.bioconjchem.7b00079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Sascha Rode
- Institute
of Molecular Virology, Ulm University Medical Center, Meyerhofstraße
1, 89081 Ulm, Germany
| | - Manuel Hayn
- Institute
of Molecular Virology, Ulm University Medical Center, Meyerhofstraße
1, 89081 Ulm, Germany
| | - Annika Röcker
- Institute
of Molecular Virology, Ulm University Medical Center, Meyerhofstraße
1, 89081 Ulm, Germany
| | - Stefanie Sieste
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Markus Lamla
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Daniel Markx
- Institute
of Protein Biochemistry, Ulm University, Helmholtzstraße 8/1, 89081 Ulm, Germany
| | | | - Frank Kirchhoff
- Institute
of Molecular Virology, Ulm University Medical Center, Meyerhofstraße
1, 89081 Ulm, Germany
| | | | - Marcus Fändrich
- Institute
of Protein Biochemistry, Ulm University, Helmholtzstraße 8/1, 89081 Ulm, Germany
| | - Tanja Weil
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Jan Münch
- Institute
of Molecular Virology, Ulm University Medical Center, Meyerhofstraße
1, 89081 Ulm, Germany
- Core
Facility Functional Peptidomics, Ulm University Medical Center, Albert-Einstein-Allee
11, 89081 Ulm, Germany
| |
Collapse
|