1
|
Peng H, Wang M, Wang N, Yang C, Guo W, Li G, Huang S, Wei D, Liu D. Different N-Glycosylation Sites Reduce the Activity of Recombinant DSPAα2. Curr Issues Mol Biol 2022; 44:3930-3947. [PMID: 36135182 PMCID: PMC9497888 DOI: 10.3390/cimb44090270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 12/01/2022] Open
Abstract
Bat plasminogen activators α2 (DSPAα2) has extremely high medicinal value as a powerful natural thrombolytic protein. However, wild-type DSPAα2 has two N-glycosylation sites (N185 and N398) and its non-human classes of high-mannose-type N-glycans may cause immune responses in vivo. By mutating the N-glycosylation sites, we aimed to study the effect of its N-glycan chain on plasminogen activation, fibrin sensitivity, and to observe the physicochemical properties of DSPAα2. A logical structure design was performed in this study. Four single mutants and one double mutant were constructed and expressed in Pichia pastoris. When the N398 site was eliminated, the plasminogen activator in the mutants had their activities reduced to ~40%. When the N185 site was inactivated, there was a weak decrease in the plasminogen activation of its mutant, while the fibrin sensitivity significantly decreased by ~10-fold. Neither N-glycosylation nor deglycosylation mutations changed the pH resistance or heat resistance of DSPAα2. This study confirms that N-glycosylation affects the biochemical function of DSPAα2, which provides a reference for subsequent applications of DSPAα2.
Collapse
Affiliation(s)
- Huakang Peng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mengqi Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Nan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Caifeng Yang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenfang Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Gangqiang Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Sumei Huang
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Di Wei
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Dehu Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence:
| |
Collapse
|
2
|
Wang X, Li Y, Wang Y, Liu Y, Xue C, Cong P, Xu J. Sea urchin gangliosides exhibit neuritogenic effects in neuronal PC12 cells via TrkA- and TrkB-related pathways. Biosci Biotechnol Biochem 2021; 85:675-686. [PMID: 33589896 DOI: 10.1093/bbb/zbaa088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/16/2020] [Indexed: 12/21/2022]
Abstract
Gangliosides (GLSs) are ubiquitously distributed in all tissues but highly enriched in nervous system. Currently, it is unclear how exogenous GLSs regulate neuritogenesis, although neural functions of endogenous GLSs are widely studied. Herein, we evaluated the neuritogenic activities and mechanism of sea urchin gangliosides (SU-GLSs) in vitro. These different glycosylated SU-GLSs, including GM4(1S), GD4(1S), GD4(2A), and GD4(2G), promoted differentiation of NGF-induced PC12 cells in a dose-dependent and structure-selective manner. Sulfate-type and disialo-type GLSs exhibited stronger neuritogenic effects than monosialoganglioside GM1. Furthermore, SU-GLSs might act as neurotrophic factors possessing neuritogenic effects, via targeting tyrosine-kinase receptors (TrkA and TrkB) and activating MEK1/2-ERK1/2-CREB and PI3K-Akt-CREB pathways. This activation resulted in increased expression and secretion of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF). These pathways were verified by specific inhibitors. Our results confirmed the neuritogenic functions of SU-GLS in vitro and indicated their potential roles as natural nutrition for neuritogenesis.
Collapse
Affiliation(s)
- Xiaoxu Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, People's Republic of China
| | - Yiyang Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, People's Republic of China
| | - Yuliu Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, People's Republic of China
| | - Yanjun Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, People's Republic of China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, People's Republic of China.,Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong, People's Republic of China
| | - Peixu Cong
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, People's Republic of China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, People's Republic of China
| |
Collapse
|
3
|
Han C, Liu Y, Liu M, Wang S, Wang Q. Improving the thermostability of a thermostable endoglucanase from Chaetomium thermophilum by engineering the conserved noncatalytic residue and N-glycosylation site. Int J Biol Macromol 2020; 164:3361-3368. [PMID: 32888988 DOI: 10.1016/j.ijbiomac.2020.08.225] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 08/15/2020] [Accepted: 08/29/2020] [Indexed: 12/16/2022]
Abstract
Endoglucanases provide an attractive avenue for the bioconversion of lignocellulosic materials into fermentable sugars to supply cellulosic feedstock for biofuels and other value-added chemicals. Thermostable endoglucanases with high catalytic activity are preferred in practical processes. To improve the thermostability and activity of the thermostable β-1,4-endoglucanase CTendo45 isolated from the thermophilic fungus Chaetomium thermophilum, structure-based rational design was performed by using site-directed mutagenesis. When inactivated mutation of the unique N-glycosylation sequon (N88-E89-T90) was implemented and the conserved Y173 residue was substituted with phenylalanine, a double mutant T90A/Y173F demonstrated enzymatic activity that dramatically increased 2.12- and 1.82-fold towards CMC-Na and β-D-glucan, respectively. Additionally, T90A/Y173F exhibited extraordinary heat endurance after 300 min of incubation at elevated temperatures. This study provides a valid approach to the improvement of enzyme redesign protocols and the properties of this endoglucanase mutant distinguish it as an excellent candidate enzyme for industrial biomass conversion.
Collapse
Affiliation(s)
- Chao Han
- Shandong Key Laboratory for Agricultural Microbiology, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Yifan Liu
- Shandong Key Laboratory for Agricultural Microbiology, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Mengyu Liu
- Shandong Key Laboratory for Agricultural Microbiology, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Siqi Wang
- Shandong Key Laboratory for Agricultural Microbiology, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Qunqing Wang
- Shandong Key Laboratory for Agricultural Microbiology, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| |
Collapse
|
4
|
Bodoor K, Almomani R, Alqudah M, Haddad Y, Samouri W. LAT1 (SLC7A5) Overexpression in Negative Her2 Group of Breast Cancer: A Potential Therapy Target. Asian Pac J Cancer Prev 2020; 21:1453-1458. [PMID: 32458655 PMCID: PMC7541863 DOI: 10.31557/apjcp.2020.21.5.1453] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Indexed: 02/07/2023] Open
Abstract
Objective: HER2 negative carcinomas of the breast pose a challenge for treatment due to redundancies in potential drug targets and poor patient outcomes. Our aim was to investigate the role of L-type amino acid transporter – LAT1 as a potential prognosticator and a drug target. Methods: In this retrospective work, we have studied the expression of LAT1 in 145 breast cancer tissues via immunohistochemistry. Overall survival analysis was used to evaluate patient outcome in various groups of our cohort. Results: Positive LAT1 expression was found in 27 (84.4%) luminal A subtype, 27 (64.3%) luminal B/triple positive subtype, 29 (82.9%) triple negative subtype, and 24 (66.7%) HER2-only positive subtype (p=0.1). Interestingly, negative correlation was found between LAT1 and HER2; where positive expression of LAT1 was found in 56 (83.6%) cases in negative HER2 group and 51 (65.4%) cases from positive HER2 group (p=0.01). Unfortunately, we were unable to report significant survival differences when LAT1 expression was studied in the negative HER2 group. Nevertheless, five incidents of mortality (out of 55) were reported in LAT1+/HER2- group compared to none in the LAT1-/HER2- group (N=11). Conclusion: Our findings of overexpression of LAT1 in negative HER2 group suggest a role of this protein as prognosticator and drug target in a challenging therapeutic cohort.
Collapse
Affiliation(s)
- Khaldon Bodoor
- Department of Applied Biology, Jordan University of Science and Technology, Irbid, Jordan
| | - Rowida Almomani
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohammad Alqudah
- Department of Pathology, Jordan University of Science and Technology, Irbid, Jordan
| | - Yazan Haddad
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Purkynova, Brno, Czech Republic
| | - Walaa Samouri
- Department of Pathology, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
5
|
Abstract
The purpose of this quick guide is to help new modelers who have little or no background in comparative modeling yet are keen to produce high-resolution protein 3D structures for their study by following systematic good modeling practices, using affordable personal computers or online computational resources. Through the available experimental 3D-structure repositories, the modeler should be able to access and use the atomic coordinates for building homology models. We also aim to provide the modeler with a rationale behind making a simple list of atomic coordinates suitable for computational analysis abiding to principles of physics (e.g., molecular mechanics). Keeping that objective in mind, these quick tips cover the process of homology modeling and some postmodeling computations such as molecular docking and molecular dynamics (MD). A brief section was left for modeling nonprotein molecules, and a short case study of homology modeling is discussed.
Collapse
Affiliation(s)
- Yazan Haddad
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| |
Collapse
|
6
|
Han C, Wang Q, Sun Y, Yang R, Liu M, Wang S, Liu Y, Zhou L, Li D. Improvement of the catalytic activity and thermostability of a hyperthermostable endoglucanase by optimizing N-glycosylation sites. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:30. [PMID: 32127917 PMCID: PMC7045587 DOI: 10.1186/s13068-020-1668-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 01/26/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND Endoglucanase has been extensively employed in industrial processes as a key biocatalyst for lignocellulosic biomass degradation. Thermostable endoglucanases with high catalytic activity at elevated temperatures are preferred in industrial use. To improve the activity and thermostability, site-directed mutagenesis was conducted to modify the N-glycosylation sites of the thermostable β-1,4-endoglucanase CTendo45 from Chaetomium thermophilum. RESULTS In this study, structure-based rational design was performed based on the modification of N-glycosylation sites in CTendo45. Eight single mutants and one double mutant were constructed and successfully expressed in Pichia pastoris. When the unique N-glycosylation site of N88 was eliminated, a T90A variant was active, and its specific activity towards CMC-Na and β-d-glucan was increased 1.85- and 1.64-fold, respectively. The mutant R67S with an additional N-glycosylation site of N65 showed a distinct enhancement in catalytic efficiency. Moreover, T90A and R67S were endowed with extraordinary heat endurance after 200 min of incubation at different temperatures ranging from 30 to 90 °C. Likewise, the half-lives (t 1/2) indicated that T90A and R67S exhibited improved enzyme thermostability at 80 °C and 90 °C. Notably, the double-mutant T90A/R67S possessed better hydrolysis activity and thermal stability than its single-mutant counterparts and the wild type. CONCLUSIONS This study provides initial insight into the biochemical function of N-glycosylation in thermostable endoglucanases. Moreover, the design approach to the optimization of N-glycosylation sites presents an effective and feasible strategy to improve enzymatic activity and thermostability.
Collapse
Affiliation(s)
- Chao Han
- Shandong Key Laboratory for Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Qunqing Wang
- Shandong Key Laboratory for Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Yanxu Sun
- Shandong Key Laboratory for Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Ruirui Yang
- Shandong Key Laboratory for Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Mengyu Liu
- Shandong Key Laboratory for Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Siqi Wang
- Shandong Key Laboratory for Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Yifan Liu
- Shandong Key Laboratory for Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Lifan Zhou
- Shandong Key Laboratory for Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Duochuan Li
- Shandong Key Laboratory for Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, 271018 Shandong China
| |
Collapse
|
7
|
Wang X, Cong P, Liu Y, Tao S, Chen Q, Wang J, Xu J, Xue C. Neuritogenic effect of sea cucumber glucocerebrosides on NGF-induced PC12 cells via activation of the TrkA/CREB/BDNF signalling pathway. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.04.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
8
|
Haddad Y, Adam V, Heger Z. Trk Receptors and Neurotrophin Cross-Interactions: New Perspectives Toward Manipulating Therapeutic Side-Effects. Front Mol Neurosci 2017; 10:130. [PMID: 28515680 PMCID: PMC5414483 DOI: 10.3389/fnmol.2017.00130] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/18/2017] [Indexed: 12/02/2022] Open
Abstract
Some therapeutic side-effects result from simultaneous activation of homolog receptors by the same ligand. Tropomyosin receptor kinases (TrkA, TrkB and TrkC) play a major role in the development and biology of neurons through neurotrophin signaling. The wide range of cross-interactions between Trk receptors and neurotrophins vary in selectivity, affinity and function. In this study, we discuss new perspectives to the manipulation of side-effects via a better understanding of the cross-interactions at the molecular level, derived by computational methods. Available crystal structures of Trk receptors and neurotrophins are a valuable resource for exploitation via molecular mechanics (MM) and dynamics (MD). The study of the energetics and dynamics of neurotrophins or neurotrophic peptides interacting with Trk receptors will provide insight to structural regions that may be candidates for drug targeting and signaling pathway selection.
Collapse
Affiliation(s)
- Yazan Haddad
- Department of Chemistry and Biochemistry, Mendel University in BrnoBrno, Czechia.,Central European Institute of Technology, Brno University of TechnologyBrno, Czechia
| | - Vojtěch Adam
- Department of Chemistry and Biochemistry, Mendel University in BrnoBrno, Czechia.,Central European Institute of Technology, Brno University of TechnologyBrno, Czechia
| | - Zbyněk Heger
- Department of Chemistry and Biochemistry, Mendel University in BrnoBrno, Czechia.,Central European Institute of Technology, Brno University of TechnologyBrno, Czechia
| |
Collapse
|