1
|
Xu ZH, Zhang JC, Chen K, Liu X, Li XZ, Yuan M, Wang Y, Tian JY. Mechanisms of the PD-1/PD-L1 pathway in itch: From acute itch model establishment to the role in chronic itch in mouse. Eur J Pharmacol 2023; 960:176128. [PMID: 37866747 DOI: 10.1016/j.ejphar.2023.176128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 09/22/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
Programmed cell death receptor/ligand 1 (PD-1/PD-L1) blockade therapy for various cancers induces itch. However, few studies have evaluated the mechanism underlying PD-1/PD-L1 inhibitor-induced itch. This study aimed to establish and evaluate a mouse model of acute itch induced by PD-1/PD-L1 inhibitors and to explore the role of the PD-1/PD-L1 pathway in chronic itch. The intradermal injection of the PD-1/PD-L1 small molecule inhibitors, or anti-PD-1/PD-L1 antibodies in the nape of the neck in the mice elicited intense spontaneous scratches. The model was evaluated using pharmacological methods. The number of scratches was reduced by naloxone but not by antihistamines or the transient receptor potential (TRP) channel inhibitor. Moreover, the PD-1 receptor was detected in the spinal cord of the mouse models of chronic itch that exhibited acetone, diethyl ether, and water (AEW)-induced dry skin, imiquimod-induced psoriasis, and 1-fluoro-2,4-dinitrobenzene (DNFB)-induced allergic contact dermatitis. Intrathecal PD-L1 (1 μg, 4 times a week for 1 week) suppressed the activation of the microglia in the spinal dorsal horn to relieve the chronic itch that was elicited by imiquimod-induced psoriasis and DNFB-induced allergic contact dermatitis. Although the activation of the microglia in the spinal dorsal horn was not detected in the AEW-treated mice, intrathecal PD-L1 still reduced the number of scratches that were elicited by AEW. Our findings suggest that histamine receptor inhibitors or TRP channel inhibitors have limited effects on PD-1/PD-L1 inhibitor-induced itch and that spinal PD-1 is important for the spinal activation of the microglia, which may underlie chronic itch.
Collapse
Affiliation(s)
- Zhe-Hao Xu
- Department of Pharmacology, Clinical College of Anhui Medical University, Hefei, China.
| | - Jing-Cheng Zhang
- Department of Biliary and Pancreatic Surgery, Anhui Provincial Hospital Affiliated with Anhui Medical University, China
| | - Ke Chen
- Department of General Surgery, The Frist Affiliated of Anhui Medical University, China
| | - Xuan Liu
- Department of Pharmacology, Clinical College of Anhui Medical University, Hefei, China
| | - Xian-Zhi Li
- Department of Pharmacology, Clinical College of Anhui Medical University, Hefei, China
| | - Ming Yuan
- Department of Pharmacology, Clinical College of Anhui Medical University, Hefei, China
| | - Yue Wang
- Department of Pharmacology, Clinical College of Anhui Medical University, Hefei, China
| | - Jing-Yu Tian
- Department of Pharmacology, Clinical College of Anhui Medical University, Hefei, China
| |
Collapse
|
2
|
Tlx3 controls the development of C-low threshold mechanoreceptors. Neuroreport 2022; 33:617-622. [DOI: 10.1097/wnr.0000000000001824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Cao Z, Huang C, Lu F, Jiang X, Hu Y, Cao C, Liu Z. Meis1 Regulates Nociceptor Development and Behavioral Response to Tactile Stimuli. Front Mol Neurosci 2022; 15:901466. [PMID: 35875660 PMCID: PMC9301487 DOI: 10.3389/fnmol.2022.901466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Nociceptors in the dorsal root ganglia (DRG) and trigeminal ganglia (TG) are necessary for transmitting pain and itch signals. However, the molecular mechanism regulating nociceptor development remains largely unknown. This study identifies that the transcription factor Meis1 is generally expressed in two groups of sensory neurons in the developing DRG. During prenatal and neonatal stages, approximately 2/3 of Meis1+ neurons are Runx1+ nociceptors, while 1/3 of Meis1+ neurons are NF200+ myelinated neurons. At postnatal stages, Meis1 expression in nociceptors is gradually reduced. Here, we constructed a Meis1 conditional knockout mouse line to selectively delete Meis1 in Nav1.8 lineage nociceptors. Microarray analyses showed that differentially expressed genes in the Meis1 mutant DRG were enriched in pathways related to sensory perception of pain and nervous system development. In addition, Meis1 regulates the expression of some marker genes of Nppb+ neurons and C-LTMRs. Furthermore, Meis1 mutant mice exhibit behavioral deficits in response to light mechanical pain, static touch and chemical itch. Therefore, this study reveals that Meis1 is required to regulate the development of nociceptors.
Collapse
Affiliation(s)
- Zheng Cao
- Beijing Institute of Biotechnology, Beijing, China.,School of Biological Engineering and Food Science, Hubei University of Technology, Wuhan, China
| | - Chengcheng Huang
- Beijing Institute of Biotechnology, Beijing, China.,General Hospital of Central Theater Command, Wuhan, China
| | - Fumin Lu
- Beijing Institute of Biotechnology, Beijing, China
| | - Xuequan Jiang
- Beijing Institute of Biotechnology, Beijing, China.,School of Biological Engineering and Food Science, Hubei University of Technology, Wuhan, China
| | - Yong Hu
- Beijing Institute of Biotechnology, Beijing, China
| | - Cheng Cao
- Beijing Institute of Biotechnology, Beijing, China
| | - Zijing Liu
- Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
4
|
Larsen EG, Cho TS, McBride ML, Feng J, Manivannan B, Madura C, Klein NE, Wright EB, Wickstead ES, Garcia-Verdugo HD, Jarvis C, Khanna R, Hu H, Largent-Milnes TM, Bhattacharya MRC. Transmembrane protein TMEM184B is necessary for interleukin-31-induced itch. Pain 2022; 163:e642-e653. [PMID: 34629389 PMCID: PMC8854445 DOI: 10.1097/j.pain.0000000000002452] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/22/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Nociceptive and pruriceptive neurons in the dorsal root ganglia (DRG) convey sensations of pain and itch to the spinal cord, respectively. One subtype of mature DRG neurons, comprising 6% to 8% of neurons in the ganglia, is responsible for sensing mediators of acute itch and atopic dermatitis, including the cytokine IL-31. How itch-sensitive (pruriceptive) neurons are specified is unclear. Here, we show that transmembrane protein 184B (TMEM184B), a protein with roles in axon degeneration and nerve terminal maintenance, is required for the expression of a large cohort of itch receptors, including those for interleukin 31 (IL-31), leukotriene C4, and histamine. Male and female mice lacking TMEM184B show reduced responses to IL-31 but maintain normal responses to pain and mechanical force, indicating a specific behavioral defect in IL-31-induced pruriception. Calcium imaging experiments indicate that a reduction in IL-31-induced calcium entry is a likely contributor to this phenotype. We identified an early failure of proper Wnt-dependent transcriptional signatures and signaling components in Tmem184b mutant mice that may explain the improper DRG neuronal subtype specification. Accordingly, lentiviral re-expression of TMEM184B in mutant embryonic neurons restores Wnt signatures. Together, these data demonstrate that TMEM184B promotes adult somatosensation through developmental Wnt signaling and promotion of proper pruriceptive gene expression. Our data illuminate a new key regulatory step in the processes controlling the establishment of diversity in the somatosensory system.
Collapse
Affiliation(s)
- Erik G Larsen
- Department of Neuroscience, University of Arizona, Tucson AZ, United States
| | - Tiffany S Cho
- Department of Neuroscience, University of Arizona, Tucson AZ, United States
| | - Matthew L McBride
- Department of Neuroscience, University of Arizona, Tucson AZ, United States
| | - Jing Feng
- Department of Anesthesiology, Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, United States
| | | | - Cynthia Madura
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ, United States
| | - Nathaniel E Klein
- Department of Neuroscience, University of Arizona, Tucson AZ, United States
| | - Elizabeth B Wright
- Department of Neuroscience, University of Arizona, Tucson AZ, United States
| | - Edward S Wickstead
- Department of Neuroscience, University of Arizona, Tucson AZ, United States
| | | | - Chelsea Jarvis
- Department of Neuroscience, University of Arizona, Tucson AZ, United States
| | - Rajesh Khanna
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ, United States
| | - Hongzhen Hu
- Department of Anesthesiology, Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, United States
| | - Tally M Largent-Milnes
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ, United States
| | | |
Collapse
|
5
|
Zhao Q, Yu CD, Wang R, Xu QJ, Dai Pra R, Zhang L, Chang RB. A multidimensional coding architecture of the vagal interoceptive system. Nature 2022; 603:878-884. [PMID: 35296859 PMCID: PMC8967724 DOI: 10.1038/s41586-022-04515-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 02/04/2022] [Indexed: 02/06/2023]
Abstract
Interoception, the ability to timely and precisely sense changes inside the body, is critical for survival1-4. Vagal sensory neurons (VSNs) form an important body-to-brain connection, navigating visceral organs along the rostral-caudal axis of the body and crossing the surface-lumen axis of organs into appropriate tissue layers5,6. The brain can discriminate numerous body signals through VSNs, but the underlying coding strategy remains poorly understood. Here we show that VSNs code visceral organ, tissue layer and stimulus modality-three key features of an interoceptive signal-in different dimensions. Large-scale single-cell profiling of VSNs from seven major organs in mice using multiplexed projection barcodes reveals a 'visceral organ' dimension composed of differentially expressed gene modules that code organs along the body's rostral-caudal axis. We discover another 'tissue layer' dimension with gene modules that code the locations of VSN endings along the surface-lumen axis of organs. Using calcium-imaging-guided spatial transcriptomics, we show that VSNs are organized into functional units to sense similar stimuli across organs and tissue layers; this constitutes a third 'stimulus modality' dimension. The three independent feature-coding dimensions together specify many parallel VSN pathways in a combinatorial manner and facilitate the complex projection of VSNs in the brainstem. Our study highlights a multidimensional coding architecture of the mammalian vagal interoceptive system for effective signal communication.
Collapse
Affiliation(s)
- Qiancheng Zhao
- grid.47100.320000000419368710Department of Neuroscience, Yale University School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT USA
| | - Chuyue D. Yu
- grid.47100.320000000419368710Department of Neuroscience, Yale University School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT USA
| | - Rui Wang
- grid.47100.320000000419368710Department of Neuroscience, Yale University School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT USA
| | - Qian J. Xu
- grid.47100.320000000419368710Department of Neuroscience, Yale University School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT USA
| | - Rafael Dai Pra
- grid.47100.320000000419368710Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT USA
| | - Le Zhang
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA.
| | - Rui B. Chang
- grid.47100.320000000419368710Department of Neuroscience, Yale University School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT USA
| |
Collapse
|
6
|
Su S, Li M, Wu D, Cao J, Ren X, Tao YX, Zang W. Gene Transcript Alterations in the Spinal Cord, Anterior Cingulate Cortex, and Amygdala in Mice Following Peripheral Nerve Injury. Front Cell Dev Biol 2021; 9:634810. [PMID: 33898422 PMCID: PMC8059771 DOI: 10.3389/fcell.2021.634810] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/05/2021] [Indexed: 12/19/2022] Open
Abstract
Chronic neuropathic pain caused by nerve damage is a most common clinical symptom, often accompanied by anxiety- and depression-like symptoms. Current treatments are very limited at least in part due to incompletely understanding mechanisms underlying this disorder. Changes in gene expression in the dorsal root ganglion (DRG) have been acknowledged to implicate in neuropathic pain genesis, but how peripheral nerve injury alters the gene expression in other pain-associated regions remains elusive. The present study carried out strand-specific next-generation RNA sequencing with a higher sequencing depth and observed the changes in whole transcriptomes in the spinal cord (SC), anterior cingulate cortex (ACC), and amygdala (AMY) following unilateral fourth lumbar spinal nerve ligation (SNL). In addition to providing novel transcriptome profiles of long non-coding RNAs (lncRNAs) and mRNAs, we identified pain- and emotion-related differentially expressed genes (DEGs) and revealed that numbers of these DEGs displayed a high correlation to neuroinflammation and apoptosis. Consistently, functional analyses showed that the most significant enriched biological processes of the upregulated mRNAs were involved in the immune system process, apoptotic process, defense response, inflammation response, and sensory perception of pain across three regions. Moreover, the comparisons of pain-, anxiety-, and depression-related DEGs among three regions present a particular molecular map among the spinal cord and supraspinal structures and indicate the region-dependent and region-independent alterations of gene expression after nerve injury. Our study provides a resource for gene transcript expression patterns in three distinct pain-related regions after peripheral nerve injury. Our findings suggest that neuroinflammation and apoptosis are important pathogenic mechanisms underlying neuropathic pain and that some DEGs might be promising therapeutic targets.
Collapse
Affiliation(s)
- Songxue Su
- Department of Anatomy, College of Basic Medicine, Zhengzhou University, Zhengzhou, China.,Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, China
| | - Mengqi Li
- Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, China.,Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Di Wu
- Department of Bioinformatics, College of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Jing Cao
- Department of Anatomy, College of Basic Medicine, Zhengzhou University, Zhengzhou, China.,Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, China
| | - Xiuhua Ren
- Department of Anatomy, College of Basic Medicine, Zhengzhou University, Zhengzhou, China.,Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, China
| | - Yuan-Xiang Tao
- Department of Anesthesiology, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, United States
| | - Weidong Zang
- Department of Anatomy, College of Basic Medicine, Zhengzhou University, Zhengzhou, China.,Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, China
| |
Collapse
|