1
|
Zhan A, Zhong K, Zhang K. Novel subcellular regulatory mechanisms of protein homeostasis and its implications in amyotrophic lateral sclerosis. Biochem Biophys Res Commun 2025; 756:151582. [PMID: 40056503 DOI: 10.1016/j.bbrc.2025.151582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/26/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron degenerative disorder. Protein aggregates induce various forms of neuronal dysfunction and represent pathological hallmarks in ALS patients. Reducing protein aggregates could be a promising therapeutic strategy for ALS. While most studies have focused on cytoplasmic protein homeostasis, neurons adaptively reduce aggregates across subcellular compartments during stress through previously uncharacterized mechanisms. Here, we summarize novel compartment-specific proteostatic mechanisms: (1) the ERAD/RESET pathways, (2) HSPs-mediated nuclear sequestration, (3) mitochondrial aggregate import (MAGIC), (4) neurite-localized UPS/autophagosome and NMP, and (5) exopher-mediated extracellular disposal. These mechanisms collectively ensure cellular stress adaptation and provide novel therapeutic targets for ALS treatment.
Collapse
Affiliation(s)
- Aisheng Zhan
- Institute of Translational Medicine, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Keke Zhong
- Institute of Translational Medicine, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Kejing Zhang
- Institute of Translational Medicine, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China.
| |
Collapse
|
2
|
Liang W, Zhang C, Wang D, Su X, Tan X, Yang Y, Cong C, Wang Y, Huo D, Wang H, Wang S, Wang X, Feng H. Inhibition of Salt-Inducible Kinase 2 Protects Motor Neurons From Degeneration in ALS by Activating Autophagic Flux and Enhancing mTORC1 Activity. CNS Neurosci Ther 2025; 31:e70341. [PMID: 40135564 PMCID: PMC11937914 DOI: 10.1111/cns.70341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/10/2025] [Accepted: 03/04/2025] [Indexed: 03/27/2025] Open
Abstract
OBJECTIVES Autophagic impairment has been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS). Salt-inducible kinase 2 (SIK2), a member of the AMP-activated protein kinase (AMPK) family widely expressed in the central nervous system, plays critical roles in neuronal survival, neurogenesis, and the regulation of autophagy. This study aims to investigate the effects and underlying mechanisms of SIK2 in the pathogenesis of ALS. METHODS In our work, we used both in vivo and in vitro models of ALS to study the effect of SIK2. Protein and RNA levels were assessed by Western blot, RT-qPCR, immunofluorescence, and immunohistochemistry. Cell viability and apoptosis were evaluated using CCK-8 assay and flow cytometry. Transmission electron microscopy was employed to examine autophagic vacuoles. Additionally, lentivirus particles carrying shRNA targeting SIK2 (sh-SIK2) were injected into the lateral ventricle of ALS mice at 60 days of age. Motor performance was evaluated by the rotarod test. RESULTS We observed that increased expression of SIK2 significantly contributed to the degeneration of motor neurons in both the cellular model and the hSOD1G93A transgenic mice model of ALS. SIK2 knockdown enhanced neuronal survival and restored mTORC1 activity. Furthermore, SIK2 suppression facilitated the clearance of mutant SOD1 accumulation by activating autophagic flux and enhancing lysosomal acidification. Conversely, SIK2 overexpression impaired mTORC1 activity, exacerbating autophagy dysfunction by inhibiting lysosomal function, and ultimately led to motor neuron degeneration. In vivo, SIK2 deficiency delayed disease onset and extended the lifespan of ALS mice by enhancing autophagy-mediated clearance of mutant SOD1 aggregates. CONCLUSIONS Our findings reveal that SIK2 regulates autophagic flux by modulating lysosomal acidification, thereby influencing the degradation of mutant SOD1 aggregates. SIK2 suppression enhances autophagy-mediated clearance of toxic protein aggregates and protects motor neurons, highlighting its potential as a therapeutic target for ALS.
Collapse
Affiliation(s)
- Weiwei Liang
- Department of NeurologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinP.R. China
- Department of NeurologyThe Second Affiliated Hospital of Harbin Medical UniversityHarbinP.R. China
| | - Chunting Zhang
- Division of Life Science and Technology of China, Department of NeurologyThe First Affiliated Hospital of USTCHefeiP.R. China
| | - Di Wang
- Department of NeurologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinP.R. China
| | - Xiaoli Su
- Department of NeurologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinP.R. China
| | - Xingli Tan
- Department of NeurologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinP.R. China
| | - Yueqing Yang
- Department of NeurologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinP.R. China
| | - Chaohua Cong
- Department of NeurologyShanghai No. 9 People's Hospital, Shanghai Jiaotong University School of MedicineShanghaiP.R. China
| | - Ying Wang
- Department of NeurologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinP.R. China
| | - Di Huo
- Department of NeurologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinP.R. China
| | - Hongyong Wang
- Department of NeurologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinP.R. China
| | - Shuyu Wang
- Department of NeurologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinP.R. China
| | - Xudong Wang
- Department of NeurologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinP.R. China
| | - Honglin Feng
- Department of NeurologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinP.R. China
| |
Collapse
|
3
|
Mohan M, Mannan A, Nauriyal A, Singh TG. Emerging targets in amyotrophic lateral sclerosis (ALS): The promise of ATP-binding cassette (ABC) transporter modulation. Behav Brain Res 2025; 476:115242. [PMID: 39243983 DOI: 10.1016/j.bbr.2024.115242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative primarily affecting motor neurons, leading to disability and neuronal death, and ATP-Binding Cassette (ABC) transporter due to their role in drug efflux and modulation of various cellular pathways contributes to the pathogenesis of ALS. In this article, we extensively investigated various molecular and mechanistic pathways linking ALS transporter to the pathogenesis of ALS; this involves inflammatory pathways such as Mitogen-Activated Protein Kinase (MAPK), Phosphatidylinositol-3-Kinase/Protein Kinase B (PI3K/Akt), Toll-Like Receptor (TLR), Glycogen Synthase Kinase 3β (GSK-3β), Nuclear Factor Kappa-B (NF-κB), and Cyclooxygenase (COX). Oxidative pathways such as Astrocytes, Glutamate, Nuclear factor (erythroid-derived 2)-like 2 (Nrf2), Sirtuin 1 (SIRT-1), Forkhead box protein O (FOXO), Extracellular signal-regulated kinase (ERK). Additionally, we delve into the role of autophagic pathways like TAR DNA-binding protein 43 (TDP-43), AMP-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), and lastly, the apoptotic pathways. Furthermore, by understanding these intricate interactions, we aim to develop novel therapeutic strategies targeting ABC transporters, improving drug delivery, and ultimately offering a promising avenue for treating ALS.
Collapse
Affiliation(s)
- Maneesh Mohan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Aayush Nauriyal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| |
Collapse
|
4
|
Nogueira-Machado JA, das Chagas Lima E Silva F, Rocha-Silva F, Gomes N. Amyotrophic Lateral Sclerosis (ALS): An Overview of Genetic and Metabolic Signaling Mechanisms. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2025; 24:83-90. [PMID: 39171600 DOI: 10.2174/0118715273315891240801065231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 08/23/2024]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a rare, progressive, and incurable disease. Sporadic (sALS) accounts for ninety percent of ALS cases, while familial ALS (fALS) accounts for around ten percent. Reports have identified over 30 different forms of familial ALS. Multiple types of fALS exhibit comparable symptoms with mutations in different genes and possibly with different predominant metabolic signals. Clinical diagnosis takes into account patient history but not genetic mutations, misfolded proteins, or metabolic signaling. As research on genetics and metabolic pathways advances, it is expected that the intricate complexity of ALS will compound further. Clinicians discuss whether a gene's presence is a cause of the disease or just an association or consequence. They believe that a mutant gene alone is insufficient to diagnose ALS. ALS, often perceived as a single disease, appears to be a complex collection of diseases with similar symptoms. This review highlights gene mutations, metabolic pathways, and muscle-neuron interactions.
Collapse
Affiliation(s)
| | | | - Fabiana Rocha-Silva
- Programa de Pós-Graduação Stricto Sensu em Medicina/Biomedicina, Belo Horizonte, Minas Gerais, Brazil
| | - Nathalia Gomes
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
5
|
Argueti-Ostrovsky S, Barel S, Kahn J, Israelson A. VDAC1: A Key Player in the Mitochondrial Landscape of Neurodegeneration. Biomolecules 2024; 15:33. [PMID: 39858428 PMCID: PMC11762377 DOI: 10.3390/biom15010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/19/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
Voltage-Dependent Anion Channel 1 (VDAC1) is a mitochondrial outer membrane protein that plays a crucial role in regulating cellular energy metabolism and apoptosis by mediating the exchange of ions and metabolites between mitochondria and the cytosol. Mitochondrial dysfunction and oxidative stress are central features of neurodegenerative diseases. The pivotal functions of VDAC1 in controlling mitochondrial membrane permeability, regulating calcium balance, and facilitating programmed cell death pathways, position it as a key determinant in the delicate balance between neuronal viability and degeneration. Accordingly, increasing evidence suggests that VDAC1 is implicated in the pathophysiology of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and others. This review summarizes the current findings on the contribution of VDAC1 to neurodegeneration, focusing on its interactions with disease-specific proteins, such as amyloid-β, α-synuclein, and mutant SOD1. By unraveling the complex involvement of VDAC1 in neurodegenerative processes, this review highlights potential avenues for future research and drug development aimed at alleviating mitochondrial-related neurodegeneration.
Collapse
Affiliation(s)
- Shirel Argueti-Ostrovsky
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel
- The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel
| | - Shir Barel
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel
- The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel
| | - Joy Kahn
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel
- The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel
| | - Adrian Israelson
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel
- The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel
| |
Collapse
|
6
|
de Calbiac H, Renault S, Haouy G, Jung V, Roger K, Zhou Q, Campanari ML, Chentout L, Demy DL, Marian A, Goudin N, Edbauer D, Guerrera C, Ciura S, Kabashi E. Poly-GP accumulation due to C9orf72 loss of function induces motor neuron apoptosis through autophagy and mitophagy defects. Autophagy 2024; 20:2164-2185. [PMID: 39316747 PMCID: PMC11423671 DOI: 10.1080/15548627.2024.2358736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 09/26/2024] Open
Abstract
The GGGGCC hexanucleotide repeat expansion (HRE) of the C9orf72 gene is the most frequent cause of amyotrophic lateral sclerosis (ALS), a devastative neurodegenerative disease characterized by motor neuron degeneration. C9orf72 HRE is associated with lowered levels of C9orf72 expression and its translation results in the production of dipeptide-repeats (DPRs). To recapitulate C9orf72-related ALS disease in vivo, we developed a zebrafish model where we expressed glycine-proline (GP) DPR in a c9orf72 knockdown context. We report that C9orf72 gain- and loss-of-function properties act synergistically to induce motor neuron degeneration and paralysis with poly(GP) accumulating preferentially within motor neurons along with Sqstm1/p62 aggregation indicating macroautophagy/autophagy deficits. Poly(GP) levels were shown to accumulate upon c9orf72 downregulation and were comparable to levels assessed in autopsy samples of patients carrying C9orf72 HRE. Chemical boosting of autophagy using rapamycin or apilimod, is able to rescue motor deficits. Proteomics analysis of zebrafish-purified motor neurons unravels mitochondria dysfunction confirmed through a comparative analysis of previously published C9orf72 iPSC-derived motor neurons. Consistently, 3D-reconstructions of motor neuron demonstrate that poly(GP) aggregates colocalize to mitochondria, thus inducing their elongation and swelling and the failure of their processing by mitophagy, with mitophagy activation through urolithin A preventing locomotor deficits. Finally, we report apoptotic-related increased amounts of cleaved Casp3 (caspase 3, apoptosis-related cysteine peptidase) and rescue of motor neuron degeneration by constitutive inhibition of Casp9 or treatment with decylubiquinone. Here we provide evidence of key pathogenic steps in C9ALS-FTD that can be targeted through pharmacological avenues, thus raising new therapeutic perspectives for ALS patients.
Collapse
Affiliation(s)
- Hortense de Calbiac
- Imagine Institute, INSERM UMR 1163, Team Translational Research for Neurological Diseases, Paris Descartes University, Paris, France
| | - Solène Renault
- Imagine Institute, INSERM UMR 1163, Team Translational Research for Neurological Diseases, Paris Descartes University, Paris, France
| | - Grégoire Haouy
- Imagine Institute, INSERM UMR 1163, Team Translational Research for Neurological Diseases, Paris Descartes University, Paris, France
| | - Vincent Jung
- Proteomics Platform 3P5Necker, INSERM US24/CNRS UMS, Paris Descartes University, Structure Fédérative de Recherche Necker, Paris, France
| | - Kevin Roger
- Proteomics Platform 3P5Necker, INSERM US24/CNRS UMS, Paris Descartes University, Structure Fédérative de Recherche Necker, Paris, France
| | - Qihui Zhou
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (Synergy), Munich, Germany
| | - Maria-Letizia Campanari
- Imagine Institute, INSERM UMR 1163, Team Translational Research for Neurological Diseases, Paris Descartes University, Paris, France
| | - Loïc Chentout
- Imagine Institute, INSERM UMR 1163, Team Translational Research for Neurological Diseases, Paris Descartes University, Paris, France
| | - Doris Lou Demy
- Imagine Institute, INSERM UMR 1163, Team Translational Research for Neurological Diseases, Paris Descartes University, Paris, France
| | - Anca Marian
- Imagine Institute, INSERM UMR 1163, Team Translational Research for Neurological Diseases, Paris Descartes University, Paris, France
| | - Nicolas Goudin
- Imaging Core Facility, INSERM US24/CNRS UMS3633, Paris, France
| | - Dieter Edbauer
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (Synergy), Munich, Germany
- Ludwig-Maximilians-Universität (LMU) Munich, Graduate School of Systemic Neurosciences (GSN), Munich, Germany
| | - Chiara Guerrera
- Proteomics Platform 3P5Necker, INSERM US24/CNRS UMS, Paris Descartes University, Structure Fédérative de Recherche Necker, Paris, France
| | - Sorana Ciura
- Imagine Institute, INSERM UMR 1163, Team Translational Research for Neurological Diseases, Paris Descartes University, Paris, France
| | - Edor Kabashi
- Imagine Institute, INSERM UMR 1163, Team Translational Research for Neurological Diseases, Paris Descartes University, Paris, France
| |
Collapse
|
7
|
Ho PC, Hsieh TC, Tsai KJ. TDP-43 proteinopathy in frontotemporal lobar degeneration and amyotrophic lateral sclerosis: From pathomechanisms to therapeutic strategies. Ageing Res Rev 2024; 100:102441. [PMID: 39069095 DOI: 10.1016/j.arr.2024.102441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/12/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Proteostasis failure is a common pathological characteristic in neurodegenerative diseases. Revitalizing clearance systems could effectively mitigate these diseases. The transactivation response (TAR) DNA-binding protein 43 (TDP-43) plays a critical role as an RNA/DNA-binding protein in RNA metabolism and synaptic function. Accumulation of TDP-43 aggregates in the central nervous system is a hallmark of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Autophagy, a major and highly conserved degradation pathway, holds the potential for degrading aggregated TDP-43 and alleviating FTLD/ALS. This review explores the causes of TDP-43 aggregation, FTLD/ALS-related genes, key autophagy factors, and autophagy-based therapeutic strategies targeting TDP-43 proteinopathy. Understanding the underlying pathological mechanisms of TDP-43 proteinopathy can facilitate therapeutic interventions.
Collapse
Affiliation(s)
- Pei-Chuan Ho
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tsung-Chi Hsieh
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuen-Jer Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
8
|
Kim S, Chun H, Kim Y, Kim Y, Park U, Chu J, Bhalla M, Choi SH, Yousefian-Jazi A, Kim S, Hyeon SJ, Kim S, Kim Y, Ju YH, Lee SE, Lee H, Lee K, Oh SJ, Hwang EM, Lee J, Lee CJ, Ryu H. Astrocytic autophagy plasticity modulates Aβ clearance and cognitive function in Alzheimer's disease. Mol Neurodegener 2024; 19:55. [PMID: 39044253 PMCID: PMC11267931 DOI: 10.1186/s13024-024-00740-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/20/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Astrocytes, one of the most resilient cells in the brain, transform into reactive astrocytes in response to toxic proteins such as amyloid beta (Aβ) in Alzheimer's disease (AD). However, reactive astrocyte-mediated non-cell autonomous neuropathological mechanism is not fully understood yet. We aimed our study to find out whether Aβ-induced proteotoxic stress affects the expression of autophagy genes and the modulation of autophagic flux in astrocytes, and if yes, how Aβ-induced autophagy-associated genes are involved Aβ clearance in astrocytes of animal model of AD. METHODS Whole RNA sequencing (RNA-seq) was performed to detect gene expression patterns in Aβ-treated human astrocytes in a time-dependent manner. To verify the role of astrocytic autophagy in an AD mouse model, we developed AAVs expressing shRNAs for MAP1LC3B/LC3B (LC3B) and Sequestosome1 (SQSTM1) based on AAV-R-CREon vector, which is a Cre recombinase-dependent gene-silencing system. Also, the effect of astrocyte-specific overexpression of LC3B on the neuropathology in AD (APP/PS1) mice was determined. Neuropathological alterations of AD mice with astrocytic autophagy dysfunction were observed by confocal microscopy and transmission electron microscope (TEM). Behavioral changes of mice were examined through novel object recognition test (NOR) and novel object place recognition test (NOPR). RESULTS Here, we show that astrocytes, unlike neurons, undergo plastic changes in autophagic processes to remove Aβ. Aβ transiently induces expression of LC3B gene and turns on a prolonged transcription of SQSTM1 gene. The Aβ-induced astrocytic autophagy accelerates urea cycle and putrescine degradation pathway. Pharmacological inhibition of autophagy exacerbates mitochondrial dysfunction and oxidative stress in astrocytes. Astrocyte-specific knockdown of LC3B and SQSTM1 significantly increases Aβ plaque formation and GFAP-positive astrocytes in APP/PS1 mice, along with a significant reduction of neuronal marker and cognitive function. In contrast, astrocyte-specific overexpression of LC3B reduced Aβ aggregates in the brain of APP/PS1 mice. An increase of LC3B and SQSTM1 protein is found in astrocytes of the hippocampus in AD patients. CONCLUSIONS Taken together, our data indicates that Aβ-induced astrocytic autophagic plasticity is an important cellular event to modulate Aβ clearance and maintain cognitive function in AD mice.
Collapse
Affiliation(s)
- Suhyun Kim
- K-Laboratory, Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Heejung Chun
- College of Pharmacy, Yonsei-SL Bigen Institute (YSLI), Yonsei University, Incheon, 21983, Republic of Korea
| | - Yunha Kim
- K-Laboratory, Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Yeyun Kim
- K-Laboratory, Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul, 02841, Republic of Korea
| | - Uiyeol Park
- K-Laboratory, Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Deaprtment of Medicine, Hanyang University Medical School, Seoul, 04763, Republic of Korea
| | - Jiyeon Chu
- K-Laboratory, Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul, 02841, Republic of Korea
| | - Mridula Bhalla
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea
- IBS School, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Seung-Hye Choi
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Ali Yousefian-Jazi
- K-Laboratory, Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Sojung Kim
- K-Laboratory, Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul, 02841, Republic of Korea
| | - Seung Jae Hyeon
- K-Laboratory, Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Seungchan Kim
- K-Laboratory, Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Yeonseo Kim
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Yeon Ha Ju
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea
- IBS School, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Seung Eun Lee
- Research Animal Resource Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hyunbeom Lee
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Kyungeun Lee
- Advanced Analysis and Data Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Soo-Jin Oh
- K-Laboratory, Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Eun Mi Hwang
- Center for Brain Function, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Junghee Lee
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA.
- VA Boston Healthcare System, Boston, MA, 02130, USA.
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea.
- IBS School, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| | - Hoon Ryu
- K-Laboratory, Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
- Department of Converging Science and Technology, KHU-KIST, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
9
|
Tsekrekou M, Giannakou M, Papanikolopoulou K, Skretas G. Protein aggregation and therapeutic strategies in SOD1- and TDP-43- linked ALS. Front Mol Biosci 2024; 11:1383453. [PMID: 38855322 PMCID: PMC11157337 DOI: 10.3389/fmolb.2024.1383453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/02/2024] [Indexed: 06/11/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with severe socio-economic impact. A hallmark of ALS pathology is the presence of aberrant cytoplasmic inclusions composed of misfolded and aggregated proteins, including both wild-type and mutant forms. This review highlights the critical role of misfolded protein species in ALS pathogenesis, particularly focusing on Cu/Zn superoxide dismutase (SOD1) and TAR DNA-binding protein 43 (TDP-43), and emphasizes the urgent need for innovative therapeutic strategies targeting these misfolded proteins directly. Despite significant advancements in understanding ALS mechanisms, the disease remains incurable, with current treatments offering limited clinical benefits. Through a comprehensive analysis, the review focuses on the direct modulation of the misfolded proteins and presents recent discoveries in small molecules and peptides that inhibit SOD1 and TDP-43 aggregation, underscoring their potential as effective treatments to modify disease progression and improve clinical outcomes.
Collapse
Affiliation(s)
- Maria Tsekrekou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Maria Giannakou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina Papanikolopoulou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Centre “Alexander Fleming”, Vari, Greece
- ResQ Biotech, Patras Science Park, Rio, Greece
| | - Georgios Skretas
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
- ResQ Biotech, Patras Science Park, Rio, Greece
- Institute for Bio-innovation, Biomedical Sciences Research Centre “Alexander Fleming”, Vari, Greece
| |
Collapse
|
10
|
Genge A, Wainwright S, Vande Velde C. Amyotrophic lateral sclerosis: exploring pathophysiology in the context of treatment. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:225-236. [PMID: 38001557 DOI: 10.1080/21678421.2023.2278503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a complex, neurodegenerative disorder in which alterations in structural, physiological, and metabolic parameters act synergistically. Over the last decade there has been a considerable focus on developing drugs to slow the progression of the disease. Despite this, only four disease-modifying therapies are approved in North America. Although additional research is required for a thorough understanding of ALS, we have accumulated a large amount of knowledge that could be better integrated into future clinical trials to accelerate drug development and provide patients with improved treatment options. It is likely that future, successful ALS treatments will take a multi-pronged therapeutic approach, targeting different pathways, akin to personalized medicine in oncology. In this review, we discuss the link between ALS pathophysiology and treatments, looking at the therapeutic failures as learning opportunities that can help us refine and optimize drug development.
Collapse
Affiliation(s)
- Angela Genge
- Clinical Research Unit Director, ALS Clinic, Montreal, Quebec, Canada
| | - Steven Wainwright
- Amylyx Pharmaceuticals, Inc, Vancouver, British Columbia, Canada, and
| | - Christine Vande Velde
- CHUM Research Center, Department of Neurosciences, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
11
|
Hu Y, Chen W, Wei C, Jiang S, Li S, Wang X, Xu R. Pathological mechanisms of amyotrophic lateral Sclerosis. Neural Regen Res 2024; 19:1036-1044. [PMID: 37862206 PMCID: PMC10749610 DOI: 10.4103/1673-5374.382985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/12/2023] [Accepted: 07/06/2023] [Indexed: 10/22/2023] Open
Abstract
Amyotrophic lateral sclerosis refers to a neurodegenerative disease involving the motor system, the cause of which remains unexplained despite several years of research. Thus, the journey to understanding or treating amyotrophic lateral sclerosis is still a long one. According to current research, amyotrophic lateral sclerosis is likely not due to a single factor but rather to a combination of mechanisms mediated by complex interactions between molecular and genetic pathways. The progression of the disease involves multiple cellular processes and the interaction between different complex mechanisms makes it difficult to identify the causative factors of amyotrophic lateral sclerosis. Here, we review the most common amyotrophic lateral sclerosis-associated pathogenic genes and the pathways involved in amyotrophic lateral sclerosis, as well as summarize currently proposed potential mechanisms responsible for amyotrophic lateral sclerosis disease and their evidence for involvement in amyotrophic lateral sclerosis. In addition, we discuss current emerging strategies for the treatment of amyotrophic lateral sclerosis. Studying the emergence of these new therapies may help to further our understanding of the pathogenic mechanisms of the disease.
Collapse
Affiliation(s)
- Yushu Hu
- Department of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, China
- Department of Neurology, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi Province, China
| | - Wenzhi Chen
- Department of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, China
- Department of Neurology, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi Province, China
| | - Caihui Wei
- Department of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, China
- Department of Neurology, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi Province, China
| | - Shishi Jiang
- Department of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, China
- Department of Neurology, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi Province, China
| | - Shu Li
- Department of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, China
- Department of Neurology, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi Province, China
| | - Xinxin Wang
- Department of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, China
- Department of Neurology, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi Province, China
| | - Renshi Xu
- Department of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, China
- Department of Neurology, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi Province, China
- Department of Neurology, The First Affiliated Hospital of Nanchang Medical College; The Clinical College of Nanchang Medical College, Nanchang, Jiangxi Province, China
| |
Collapse
|
12
|
Ma B, Xiu L, Ding L. The m6 RNA methylation regulator KIAA1429 is associated with autophagy-mediated drug resistance in lung cancer. FASEB Bioadv 2024; 6:105-117. [PMID: 38585432 PMCID: PMC10995705 DOI: 10.1096/fba.2023-00083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 04/09/2024] Open
Abstract
N6-methyladenosine (m6A) modification plays a crucial role in cancer progression. However, the role of m6A modification-mediated autophagy underlying non-small cell lung cancer (NSCLC) gefitinib resistance remains unknown. Here, we discovered that m6A methyltransferase KIAA1429 was highly expressed in NSCLC gefitinib-resistant cells (PC9-GR) as well as tissues, and KIAA1429 high expression was associated with poor survival. In addition, silent KIAA1429 repressed gefitinib resistance in NSCLC and reduced tumor growth in vivo. Mechanistically, KIAA1429 stabilized WTAP, a significant player in autophagy, by binding to the 3' untranslated regions (3'-UTR) of WTAP. In a word, our findings indicated that KIAA1429 could elevate NSCLC gefitinib resistance, which may provide a promising targeted therapy for NSCLC patients.
Collapse
Affiliation(s)
- Bo Ma
- Department of General Thoracic SurgeryGeneral Hospital of Ningxia Medical UniversityYinchuanChina
| | - Lei Xiu
- Department of Thoracic and Cardiac SurgeryGeneral Hospital of Ningxia Medical UniversityYinchuanChina
| | - Lili Ding
- Department of Obstetrics and Gynecology ExaminationGeneral Hospital of Ningxia Medical UniversityYinchuanChina
| |
Collapse
|
13
|
Rayner SL, Hogan A, Davidson JM, Cheng F, Luu L, Morsch M, Blair I, Chung R, Lee A. Cyclin F, Neurodegeneration, and the Pathogenesis of ALS/FTD. Neuroscientist 2024; 30:214-228. [PMID: 36062310 DOI: 10.1177/10738584221120182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common form of motor neuron disease and is characterized by the degeneration of upper and lower motor neurons of the brain and spinal cord. ALS is also linked clinically, genetically, and pathologically to a form of dementia known as frontotemporal dementia (FTD). Identifying gene mutations that cause ALS/FTD has provided valuable insight into the disease process. Several ALS/FTD-causing mutations occur within proteins with roles in protein clearance systems. This includes ALS/FTD mutations in CCNF, which encodes the protein cyclin F: a component of a multiprotein E3 ubiquitin ligase that mediates the ubiquitylation of substrates for their timely degradation. In this review, we provide an update on the link between ALS/FTD CCNF mutations and neurodegeneration.
Collapse
Affiliation(s)
| | - Alison Hogan
- Macquarie Medical School, Macquarie University, Sydney, Australia
| | | | - Flora Cheng
- Macquarie Medical School, Macquarie University, Sydney, Australia
| | - Luan Luu
- Macquarie Medical School, Macquarie University, Sydney, Australia
| | - Marco Morsch
- Macquarie Medical School, Macquarie University, Sydney, Australia
| | - Ian Blair
- Macquarie Medical School, Macquarie University, Sydney, Australia
| | - Roger Chung
- Macquarie Medical School, Macquarie University, Sydney, Australia
| | - Albert Lee
- Macquarie Medical School, Macquarie University, Sydney, Australia
| |
Collapse
|
14
|
Watchon M, Wright AL, Ahel HI, Robinson KJ, Plenderleith SK, Kuriakose A, Yuan KC, Laird AS. Spermidine treatment: induction of autophagy but also apoptosis? Mol Brain 2024; 17:15. [PMID: 38443995 PMCID: PMC10916058 DOI: 10.1186/s13041-024-01085-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/23/2024] [Indexed: 03/07/2024] Open
Abstract
Machado-Joseph disease (MJD), also known as spinocerebellar ataxia type 3, is a fatal neurodegenerative disease that causes loss of balance and motor co-ordination, eventually leading to paralysis. It is caused by the autosomal dominant inheritance of a long CAG trinucleotide repeat sequence within the ATXN3 gene, encoding for an expanded polyglutamine (polyQ) repeat sequence within the ataxin-3 protein. Ataxin-3 containing an expanded polyQ repeat is known to be highly prone to intraneuronal aggregation, and previous studies have demonstrated that protein quality control pathways, such as autophagy, are impaired in MJD patients and animal models of the disease. In this study, we tested the therapeutic potential of spermidine on zebrafish and rodent models of MJD to determine its capacity to induce autophagy and improve functional output. Spermidine treatment of transgenic MJD zebrafish induced autophagy and resulted in increased distances swum by the MJD zebrafish. Interestingly, treatment of the CMVMJD135 mouse model of MJD with spermidine added to drinking water did not produce any improvement in motor behaviour assays, neurological testing or neuropathology. In fact, wild type mice treated with spermidine were found to have decreased rotarod performance when compared to control animals. Immunoblot analysis of protein lysates extracted from mouse cerebellar tissue found little differences between the groups, except for an increased level of phospho-ULK1 in spermidine treated animals, suggesting that autophagy was indeed induced. As we detected decreased motor performance in wild type mice following treatment with spermidine, we conducted follow up studies into the effects of spermidine treatment in zebrafish. Interestingly, we found that in addition to inducing autophagy, spermidine treatment also induced apoptosis, particularly in wild type zebrafish. These findings suggest that spermidine treatment may not be therapeutically beneficial for the treatment of MJD, and in fact warrants caution due to the potential negative side effects caused by induction of apoptosis.
Collapse
Affiliation(s)
- Maxinne Watchon
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Rd, 2109, Sydney, NSW, Australia
| | - Amanda L Wright
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Rd, 2109, Sydney, NSW, Australia
| | - Holly I Ahel
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Rd, 2109, Sydney, NSW, Australia
| | - Katherine J Robinson
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Rd, 2109, Sydney, NSW, Australia
| | - Stuart K Plenderleith
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Rd, 2109, Sydney, NSW, Australia
| | - Andrea Kuriakose
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Rd, 2109, Sydney, NSW, Australia
| | - Kristy C Yuan
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Rd, 2109, Sydney, NSW, Australia
| | - Angela S Laird
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Rd, 2109, Sydney, NSW, Australia.
| |
Collapse
|
15
|
Jagaraj CJ, Shadfar S, Kashani SA, Saravanabavan S, Farzana F, Atkin JD. Molecular hallmarks of ageing in amyotrophic lateral sclerosis. Cell Mol Life Sci 2024; 81:111. [PMID: 38430277 PMCID: PMC10908642 DOI: 10.1007/s00018-024-05164-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/21/2024] [Accepted: 02/06/2024] [Indexed: 03/03/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal, severely debilitating and rapidly progressing disorder affecting motor neurons in the brain, brainstem, and spinal cord. Unfortunately, there are few effective treatments, thus there remains a critical need to find novel interventions that can mitigate against its effects. Whilst the aetiology of ALS remains unclear, ageing is the major risk factor. Ageing is a slowly progressive process marked by functional decline of an organism over its lifespan. However, it remains unclear how ageing promotes the risk of ALS. At the molecular and cellular level there are specific hallmarks characteristic of normal ageing. These hallmarks are highly inter-related and overlap significantly with each other. Moreover, whilst ageing is a normal process, there are striking similarities at the molecular level between these factors and neurodegeneration in ALS. Nine ageing hallmarks were originally proposed: genomic instability, loss of telomeres, senescence, epigenetic modifications, dysregulated nutrient sensing, loss of proteostasis, mitochondrial dysfunction, stem cell exhaustion, and altered inter-cellular communication. However, these were recently (2023) expanded to include dysregulation of autophagy, inflammation and dysbiosis. Hence, given the latest updates to these hallmarks, and their close association to disease processes in ALS, a new examination of their relationship to pathophysiology is warranted. In this review, we describe possible mechanisms by which normal ageing impacts on neurodegenerative mechanisms implicated in ALS, and new therapeutic interventions that may arise from this.
Collapse
Affiliation(s)
- Cyril Jones Jagaraj
- MND Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Sina Shadfar
- MND Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Sara Assar Kashani
- MND Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Sayanthooran Saravanabavan
- MND Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Fabiha Farzana
- MND Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Julie D Atkin
- MND Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia.
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
16
|
Dzik KP, Flis DJ, Kaczor-Keller KB, Bytowska ZK, Karnia MJ, Ziółkowski W, Kaczor JJ. Spinal cord abnormal autophagy and mitochondria energy metabolism are modified by swim training in SOD1-G93A mice. J Mol Med (Berl) 2024; 102:379-390. [PMID: 38197966 PMCID: PMC10879285 DOI: 10.1007/s00109-023-02410-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 11/16/2023] [Accepted: 12/12/2023] [Indexed: 01/11/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) may result from the dysfunctions of various mechanisms such as protein accumulation, mitophagy, and biogenesis of mitochondria. The purpose of the study was to evaluate the molecular mechanisms in ALS development and the impact of swim training on these processes. In the present study, an animal model of ALS, SOD1-G93A mice, was used with the wild-type mice as controls. Mice swam five times per week for 30 min. Mice were analyzed before ALS onset (70 days old), at ALS 1 disease onset (116 days old), and at the terminal stage of the disease ALS (130 days old), and compared with the corresponding ALS untrained groups and normalized to the wild-type group. Enzyme activity and protein content were analyzed in the spinal cord homogenates. The results show autophagy disruptions causing accumulation of p62 accompanied by low PGC-1α and IGF-1 content in the spinal cord of SOD1-G93A mice. Swim training triggered a neuroprotective effect, attenuation of NF-l degradation, less accumulated p62, and lower autophagy initiation. The IGF-1 pathway induces pathophysiological adaptation to maintain energy demands through anaerobic metabolism and mitochondrial protection. KEY MESSAGES: The increased protein content of p62 in the spinal cord of SOD1-G93A mice suggests that autophagic clearance and transportation are disrupted. Swim training attenuates neurofilament light destruction in the spinal cord of SOD1-G93A mice. Swim training reducing OGDH provokes suppression of ATP-consuming anabolic pathways. Swim training induces energy metabolic changes and mitochondria protection through the IGF-1 signaling pathway.
Collapse
Affiliation(s)
- Katarzyna Patrycja Dzik
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Bazynskiego 8, 80-309, Gdansk, Poland
| | - Damian Józef Flis
- Department of Pharmaceutical Pathophysiology, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Katarzyna Barbara Kaczor-Keller
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Science, Magdalenka, Poland
| | - Zofia Kinga Bytowska
- Division of Bioenergetics and Physiology of Exercise, Faculty of Health Sciences With Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Mateusz Jakub Karnia
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Bazynskiego 8, 80-309, Gdansk, Poland
| | - Wiesław Ziółkowski
- Department of Rehabilitation Medicine, Faculty of Health Sciences With Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Jan Jacek Kaczor
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Bazynskiego 8, 80-309, Gdansk, Poland.
| |
Collapse
|
17
|
Geraci J, Bhargava R, Qorri B, Leonchyk P, Cook D, Cook M, Sie F, Pani L. Machine learning hypothesis-generation for patient stratification and target discovery in rare disease: our experience with Open Science in ALS. Front Comput Neurosci 2024; 17:1199736. [PMID: 38260713 PMCID: PMC10801647 DOI: 10.3389/fncom.2023.1199736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/20/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Advances in machine learning (ML) methodologies, combined with multidisciplinary collaborations across biological and physical sciences, has the potential to propel drug discovery and development. Open Science fosters this collaboration by releasing datasets and methods into the public space; however, further education and widespread acceptance and adoption of Open Science approaches are necessary to tackle the plethora of known disease states. Motivation In addition to providing much needed insights into potential therapeutic protein targets, we also aim to demonstrate that small patient datasets have the potential to provide insights that usually require many samples (>5,000). There are many such datasets available and novel advancements in ML can provide valuable insights from these patient datasets. Problem statement Using a public dataset made available by patient advocacy group AnswerALS and a multidisciplinary Open Science approach with a systems biology augmented ML technology, we aim to validate previously reported drug targets in ALS and provide novel insights about ALS subpopulations and potential drug targets using a unique combination of ML methods and graph theory. Methodology We use NetraAI to generate hypotheses about specific patient subpopulations, which were then refined and validated through a combination of ML techniques, systems biology methods, and expert input. Results We extracted 8 target classes, each comprising of several genes that shed light into ALS pathophysiology and represent new avenues for treatment. These target classes are broadly categorized as inflammation, epigenetic, heat shock, neuromuscular junction, autophagy, apoptosis, axonal transport, and excitotoxicity. These findings are not mutually exclusive, and instead represent a systematic view of ALS pathophysiology. Based on these findings, we suggest that simultaneous targeting of ALS has the potential to mitigate ALS progression, with the plausibility of maintaining and sustaining an improved quality of life (QoL) for ALS patients. Even further, we identified subpopulations based on disease onset. Conclusion In the spirit of Open Science, this work aims to bridge the knowledge gap in ALS pathophysiology to aid in diagnostic, prognostic, and therapeutic strategies and pave the way for the development of personalized treatments tailored to the individual's needs.
Collapse
Affiliation(s)
- Joseph Geraci
- NetraMark Corp, Toronto, ON, Canada
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
- Centre for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Arthur C. Clarke Center for Human Imagination, School of Physical Sciences, University of California San Diego, San Diego, CA, United States
| | - Ravi Bhargava
- Department of Biomedical and Molecular Science, Queens University, Kingston, ON, Canada
- Science and Research, Roche Integrated Informatics, F. Hoffmann La-Roche, Toronto, ON, Canada
| | | | | | - Douglas Cook
- NetraMark Corp, Toronto, ON, Canada
- Department of Surgery, Queen's University, Kingston, ON, Canada
| | - Moses Cook
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Fanny Sie
- Science and Research, Roche Integrated Informatics, F. Hoffmann La-Roche, Toronto, ON, Canada
| | - Luca Pani
- NetraMark Corp, Toronto, ON, Canada
- Department of Psychiatry and Behavioral Sciences, Leonard M. Miller School of Medicine, University of Miami, Coral Gables, FL, United States
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
18
|
Rezvykh A, Shteinberg D, Bronovitsky E, Ustyugov A, Funikov S. Animal Models of FUS-Proteinopathy: A Systematic Review. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:S34-S56. [PMID: 38621743 DOI: 10.1134/s0006297924140037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 04/17/2024]
Abstract
Mutations that disrupt the function of the DNA/RNA-binding protein FUS could cause amyotrophic lateral sclerosis (ALS) and other neurodegenerative diseases. One of the key features in ALS pathogenesis is the formation of insoluble protein aggregates containing aberrant isoforms of the FUS protein in the cytoplasm of upper and lower motor neurons. Reproduction of human pathology in animal models is the main tool for studying FUS-associated pathology and searching for potential therapeutic agents for ALS treatment. In this review, we provide a systematic analysis of the role of FUS protein in ALS pathogenesis and an overview of the results of modelling FUS-proteinopathy in animals.
Collapse
Affiliation(s)
- Alexander Rezvykh
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Daniil Shteinberg
- Institute of Physiologically Active Compounds, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432, Russia
| | | | - Aleksey Ustyugov
- Institute of Physiologically Active Compounds, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432, Russia
| | - Sergei Funikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
19
|
Dey B, Kumar A, Patel AB. Pathomechanistic Networks of Motor System Injury in Amyotrophic Lateral Sclerosis. Curr Neuropharmacol 2024; 22:1778-1806. [PMID: 37622689 PMCID: PMC11284732 DOI: 10.2174/1570159x21666230824091601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/25/2023] [Accepted: 06/06/2023] [Indexed: 08/26/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is the most common, adult-onset, progressive motor neurodegenerative disorder that results in death within 3 years of the clinical diagnosis. Due to the clinicopathological heterogeneity, any reliable biomarkers for diagnosis or prognosis of ALS have not been identified till date. Moreover, the only three clinically approved treatments are not uniformly effective in slowing the disease progression. Over the last 15 years, there has been a rapid advancement in research on the complex pathomechanistic landscape of ALS that has opened up new avenues for successful clinical translation of targeted therapeutics. Multiple studies suggest that the age-dependent interaction of risk-associated genes with environmental factors and endogenous modifiers is critical to the multi-step process of ALS pathogenesis. In this review, we provide an updated discussion on the dysregulated cross-talk between intracellular homeostasis processes, the unique molecular networks across selectively vulnerable cell types, and the multisystemic nature of ALS pathomechanisms. Importantly, this work highlights the alteration in epigenetic and epitranscriptomic landscape due to gene-environment interactions, which have been largely overlooked in the context of ALS pathology. Finally, we suggest that precision medicine research in ALS will be largely benefitted from the stratification of patient groups based on the clinical phenotype, onset and progression, genome, exposome, and metabolic identities.
Collapse
Affiliation(s)
- Bedaballi Dey
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, Telangana, India
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Arvind Kumar
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, Telangana, India
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Anant Bahadur Patel
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, Telangana, India
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
20
|
Wang Y, Sun S, Zhai J, Liu Y, Song C, Sun C, Li Q, Liu J, Jiang H, Liu Y. scAAV9-VEGF alleviates symptoms of amyotrophic lateral sclerosis (ALS) mice through regulating aromatase. Exp Brain Res 2023; 241:2817-2827. [PMID: 37882882 DOI: 10.1007/s00221-023-06721-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 10/11/2023] [Indexed: 10/27/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset, chronic, progressive, and fatal neurodegenerative disease that leads to progressive atrophy and weakness of the muscles throughout the body. Herein, we found that the intrathecal injection of adeno-associated virus (AAV)-delivered VEGF in SOD1-G93A transgenic mice, as well as ALS mice, could significantly delay disease onset and preserve motor functions and neurological functions, thus prolonging the survival of mice models. Moreover, we found that VEGF treatment could induce the elevated expression of aromatase, which is a key enzyme in estrogen synthesis, in neurons but not in astrocytes. On the other hand, the changes in the expression of oxidative stress-related factors HO-1 and GCLM and autophagy-related proteins p62 and LC3II upon the administration of VEGF revealed the involvement of oxidative stress and autophagy underlying the downstream of the VEGF-induced mitigation of ALS. In conclusion, this study proved the protective effects of VEGF in the onset and development of ALS and revealed the involvement of estrogen, oxidative stress and autophagy in the VEGF-induced alleviation of ALS. Our results highlighted the potential of VEGF as a promising therapeutic agent in the treatment of ALS.
Collapse
Affiliation(s)
- Ying Wang
- West Department of Neurology, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zibo, 255036, Shandong, People's Republic of China
| | - Shuo Sun
- Department of Neurosurgery, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zibo, 255036, Shandong, People's Republic of China
| | - Jingxu Zhai
- The Third Department of Pediatrics, Xingtai People's Hospital, 16 Hongxing Street, Xingtai, Hebei, People's Republic of China
| | - Yuanyuan Liu
- General practice department, Cangzhou Central Hospital, 16 Xinhua West Road, Cangzhou, Hebei, People's Republic of China
| | - Chaoyuan Song
- West Department of Neurology, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zibo, 255036, Shandong, People's Republic of China
| | - Cuimei Sun
- West Department of Neurology, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zibo, 255036, Shandong, People's Republic of China
| | - Qiang Li
- West Department of Neurology, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zibo, 255036, Shandong, People's Republic of China
| | - Jianqiang Liu
- West Department of Neurology, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zibo, 255036, Shandong, People's Republic of China
| | - Hong Jiang
- West Department of Neurology, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zibo, 255036, Shandong, People's Republic of China
| | - Yaling Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang, Hebei, People's Republic of China.
| |
Collapse
|
21
|
Sanghai N, Tranmer GK. Biochemical and Molecular Pathways in Neurodegenerative Diseases: An Integrated View. Cells 2023; 12:2318. [PMID: 37759540 PMCID: PMC10527779 DOI: 10.3390/cells12182318] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/05/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Neurodegenerative diseases (NDDs) like Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS) are defined by a myriad of complex aetiologies. Understanding the common biochemical molecular pathologies among NDDs gives an opportunity to decipher the overlapping and numerous cross-talk mechanisms of neurodegeneration. Numerous interrelated pathways lead to the progression of neurodegeneration. We present evidence from the past pieces of literature for the most usual global convergent hallmarks like ageing, oxidative stress, excitotoxicity-induced calcium butterfly effect, defective proteostasis including chaperones, autophagy, mitophagy, and proteosome networks, and neuroinflammation. Herein, we applied a holistic approach to identify and represent the shared mechanism across NDDs. Further, we believe that this approach could be helpful in identifying key modulators across NDDs, with a particular focus on AD, PD, and ALS. Moreover, these concepts could be applied to the development and diagnosis of novel strategies for diverse NDDs.
Collapse
Affiliation(s)
- Nitesh Sanghai
- College of Pharmacy, Rady Faculty of Health Science, University of Manitoba, Winnipeg, MB R3E 0T5, Canada;
| | - Geoffrey K. Tranmer
- College of Pharmacy, Rady Faculty of Health Science, University of Manitoba, Winnipeg, MB R3E 0T5, Canada;
- Department of Chemistry, Faculty of Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
22
|
Mead RJ, Shan N, Reiser HJ, Marshall F, Shaw PJ. Amyotrophic lateral sclerosis: a neurodegenerative disorder poised for successful therapeutic translation. Nat Rev Drug Discov 2023; 22:185-212. [PMID: 36543887 PMCID: PMC9768794 DOI: 10.1038/s41573-022-00612-2] [Citation(s) in RCA: 179] [Impact Index Per Article: 89.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2022] [Indexed: 12/24/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating disease caused by degeneration of motor neurons. As with all major neurodegenerative disorders, development of disease-modifying therapies has proven challenging for multiple reasons. Nevertheless, ALS is one of the few neurodegenerative diseases for which disease-modifying therapies are approved. Significant discoveries and advances have been made in ALS preclinical models, genetics, pathology, biomarkers, imaging and clinical readouts over the last 10-15 years. At the same time, novel therapeutic paradigms are being applied in areas of high unmet medical need, including neurodegenerative disorders. These developments have evolved our knowledge base, allowing identification of targeted candidate therapies for ALS with diverse mechanisms of action. In this Review, we discuss how this advanced knowledge, aligned with new approaches, can enable effective translation of therapeutic agents from preclinical studies through to clinical benefit for patients with ALS. We anticipate that this approach in ALS will also positively impact the field of drug discovery for neurodegenerative disorders more broadly.
Collapse
Affiliation(s)
- Richard J Mead
- Sheffield Institute for Translational Neuroscience, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
- Keapstone Therapeutics, The Innovation Centre, Broomhall, Sheffield, UK
| | - Ning Shan
- Aclipse Therapeutics, Radnor, PA, US
| | | | - Fiona Marshall
- MSD UK Discovery Centre, Merck, Sharp and Dohme (UK) Limited, London, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, UK.
- Neuroscience Institute, University of Sheffield, Sheffield, UK.
- Keapstone Therapeutics, The Innovation Centre, Broomhall, Sheffield, UK.
| |
Collapse
|
23
|
Basri R, Awan FM, Yang BB, Awan UA, Obaid A, Naz A, Ikram A, Khan S, Haq IU, Khan SN, Aqeel MB. Brain-protective mechanisms of autophagy associated circRNAs: Kick starting self-cleaning mode in brain cells via circRNAs as a potential therapeutic approach for neurodegenerative diseases. Front Mol Neurosci 2023; 15:1078441. [PMID: 36727091 PMCID: PMC9885805 DOI: 10.3389/fnmol.2022.1078441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/13/2022] [Indexed: 01/19/2023] Open
Abstract
Altered autophagy is a hallmark of neurodegeneration but how autophagy is regulated in the brain and dysfunctional autophagy leads to neuronal death has remained cryptic. Being a key cellular waste-recycling and housekeeping system, autophagy is implicated in a range of brain disorders and altering autophagy flux could be an effective therapeutic strategy and has the potential for clinical applications down the road. Tight regulation of proteins and organelles in order to meet the needs of complex neuronal physiology suggests that there is distinct regulatory pattern of neuronal autophagy as compared to non-neuronal cells and nervous system might have its own separate regulator of autophagy. Evidence has shown that circRNAs participates in the biological processes of autophagosome assembly. The regulatory networks between circRNAs, autophagy, and neurodegeneration remains unknown and warrants further investigation. Understanding the interplay between autophagy, circRNAs and neurodegeneration requires a knowledge of the multiple steps and regulatory interactions involved in the autophagy pathway which might provide a valuable resource for the diagnosis and therapy of neurodegenerative diseases. In this review, we aimed to summarize the latest studies on the role of brain-protective mechanisms of autophagy associated circRNAs in neurodegenerative diseases (including Alzheimer's disease, Parkinson's disease, Huntington's disease, Spinal Muscular Atrophy, Amyotrophic Lateral Sclerosis, and Friedreich's ataxia) and how this knowledge can be leveraged for the development of novel therapeutics against them. Autophagy stimulation might be potential one-size-fits-all therapy for neurodegenerative disease as per considerable body of evidence, therefore future research on brain-protective mechanisms of autophagy associated circRNAs will illuminate an important feature of nervous system biology and will open the door to new approaches for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Rabea Basri
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Pakistan
| | - Faryal Mehwish Awan
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Pakistan,*Correspondence: Faryal Mehwish Awan, ✉ ;
| | - Burton B. Yang
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON, Canada,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Usman Ayub Awan
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Pakistan
| | - Ayesha Obaid
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Pakistan
| | - Anam Naz
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore (UOL), Lahore, Pakistan
| | - Aqsa Ikram
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore (UOL), Lahore, Pakistan
| | - Suliman Khan
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Pakistan
| | - Ijaz ul Haq
- Department of Public Health and Nutrition, The University of Haripur (UOH), Haripur, Pakistan
| | - Sadiq Noor Khan
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Pakistan
| | - Muslim Bin Aqeel
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Pakistan
| |
Collapse
|
24
|
Gomes NA, Lima e Silva FDC, de Oliveira Volpe CM, Villar-Delfino PH, de Sousa CF, Rocha-Silva F, Nogueira-Machado JA. Overexpression of mTOR in Leukocytes from ALS8 Patients. Curr Neuropharmacol 2023; 21:482-490. [PMID: 36722478 PMCID: PMC10207909 DOI: 10.2174/1570159x21666230201151016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The mutated VAPBP56S (vesicle B associated membrane protein - P56S) protein has been described in a Brazilian family and classified as Amyotrophic Lateral Sclerosis type 8 (ALS8). OBJECTIVE We aimed to study altered biochemical and immunological parameters in cells from ALS8 patients to identify possible biomarkers or therapeutic targets. METHODS Wild-type VAPB, VAPBP56S, mTOR, proinflammatory cytokines, and oxidant/reducing levels in serum, leucocytes, and cellular lysate from ALS8 patients and health Controls were performed by ELISA, fluorimetry, and spectrophotometry. RESULTS Our results showed similar levels of mutant and wild-type VAPB in serum and intracellular lysate (p > 0.05) when ALS8 patients and Controls were compared. IL-1β, IL-6, and IL-18 levels in patients and Controls showed no difference, suggesting an absence of peripheral inflammation (p > 0.05). Oxidative metabolic response, assessed by mitochondrial ROS production, and reductive response by MTT reduction, were higher in the ALS8 group compared to Controls (p < 0.05), although not characterizing typical oxidative stress in ALS8 patients. Total mTOR levels (phosphorylated or non-phosphorylated) of ALS8 patients were significantly lower in serum and higher in intracellular lysate than the mean equivalents in Controls (p < 0.05). A similar result was observed when we quantified the phosphorylated protein (p < 0.05). CONCLUSION We demonstrate the possibility of using these biochemical and immunological parameters as potential therapeutic targets or biomarkers. Furthermore, by hypothesis, we suggest a hormetic response in which both VAPB forms could coexist in different proportions throughout life. The mutated VAPBP56S production would increase with aging and predominate over the wild-type VAPB levels, determining the onset of symptoms and aggravating the disease.
Collapse
Affiliation(s)
- Nathália Augusta Gomes
- Programa de Pós-Graduação Stricto Sensu em Medicina/Biomedicina, Faculdade Santa Casa de BH, Belo Horizonte, Minas Gerais, Brazil
| | | | - Caroline Maria de Oliveira Volpe
- Programa de Pós-Graduação Stricto Sensu em Medicina/Biomedicina, Faculdade Santa Casa de BH, Belo Horizonte, Minas Gerais, Brazil
| | - Pedro Henrique Villar-Delfino
- Programa de Pós-Graduação Stricto Sensu em Medicina/Biomedicina, Faculdade Santa Casa de BH, Belo Horizonte, Minas Gerais, Brazil
| | - Camila Ferreira de Sousa
- Programa de Pós-Graduação Stricto Sensu em Medicina/Biomedicina, Faculdade Santa Casa de BH, Belo Horizonte, Minas Gerais, Brazil
| | - Fabiana Rocha-Silva
- Programa de Pós-Graduação Stricto Sensu em Medicina/Biomedicina, Faculdade Santa Casa de BH, Belo Horizonte, Minas Gerais, Brazil
| | - José Augusto Nogueira-Machado
- Programa de Pós-Graduação Stricto Sensu em Medicina/Biomedicina, Faculdade Santa Casa de BH, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
25
|
Molecular Investigations of Protein Aggregation in the Pathogenesis of Amyotrophic Lateral Sclerosis. Int J Mol Sci 2022; 24:ijms24010704. [PMID: 36614144 PMCID: PMC9820914 DOI: 10.3390/ijms24010704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating progressive neurodegenerative disorder characterized by selective loss of lower and upper motor neurons (MNs) in the brain and spinal cord, resulting in paralysis and eventually death due to respiratory insufficiency. Although the fundamental physiological mechanisms underlying ALS are not completely understood, the key neuropathological hallmarks of ALS pathology are the aggregation and accumulation of ubiquitinated protein inclusions within the cytoplasm of degenerating MNs. Herein, we discuss recent insights into the molecular mechanisms that lead to the accumulation of protein aggregates in ALS. This will contribute to a better understanding of the pathophysiology of the disease and may open novel avenues for the development of therapeutic strategies.
Collapse
|
26
|
Sarkar A, Kumar L, Hameed R, Nazir A. Multiple checkpoints of protein clearance machinery are modulated by a common microRNA, miR-4813-3p, through its putative target genes: Studies employing transgenic C. elegans model. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119342. [PMID: 35998789 DOI: 10.1016/j.bbamcr.2022.119342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
In order to maintain cellular homeostasis and a healthy state, aberrant and aggregated proteins are to be recognized and rapidly cleared from cells. Parkinson's disease, known to be associated with multiple factors; presents with impaired clearance of aggregated alpha synuclein as a key factor. We endeavored to study microRNA molecules with potential role on regulating multiple checkpoints of protein quality control within cells. Carrying out global miRNA profiling in a transgenic C. elegans model that expresses human alpha synuclein, we identified novel miRNA, miR-4813-3p, as a significantly downregulated molecule. Further studying its putative downstream target genes, we were able to mechanistically characterize six genes gbf-1, vha-5, cup-5, cpd-2, acs-1 and C27A12.7, which relate to endpoints associated with alpha synuclein expression, oxidative stress, locomotory behavior, autophagy and apoptotic pathways. Our study reveals the novel role of miR-4813-3p and provides potential functional characterization of its putative target genes, in regulating the various pathways associated with PQC network. miR-4813-3p modulates ERUPR, MTUPR, autophagosome-lysosomal-pathway and the ubiquitin-proteasomal-system, making this molecule an interesting target for further studies towards therapeutically addressing multifactorial aspect of Parkinson's disease.
Collapse
Affiliation(s)
- Arunabh Sarkar
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Lalit Kumar
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Rohil Hameed
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Aamir Nazir
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
27
|
Tamaki Y, Urushitani M. Molecular Dissection of TDP-43 as a Leading Cause of ALS/FTLD. Int J Mol Sci 2022; 23:ijms232012508. [PMID: 36293362 PMCID: PMC9604209 DOI: 10.3390/ijms232012508] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
TAR DNA binding protein 43 (TDP-43) is a DNA/RNA binding protein involved in pivotal cellular functions, especially in RNA metabolism. Hyperphosphorylated and ubiquitinated TDP-43-positive neuronal cytoplasmic inclusions are identified in the brain and spinal cord in most cases of amyotrophic lateral sclerosis (ALS) and a substantial proportion of frontotemporal lobar degeneration (FTLD) cases. TDP-43 dysfunctions and cytoplasmic aggregation seem to be the central pathogenicity in ALS and FTLD. Therefore, unraveling both the physiological and pathological mechanisms of TDP-43 may enable the exploration of novel therapeutic strategies. This review highlights the current understanding of TDP-43 biology and pathology, describing the cellular processes involved in the pathogeneses of ALS and FTLD, such as post-translational modifications, RNA metabolism, liquid–liquid phase separation, proteolysis, and the potential prion-like propagation propensity of the TDP-43 inclusions.
Collapse
Affiliation(s)
- Yoshitaka Tamaki
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Makoto Urushitani
- Department of Neurology, Shiga University of Medical Science, Otsu 520-2192, Japan
- Correspondence:
| |
Collapse
|
28
|
Jiao F, Zhou B, Meng L. The regulatory mechanism and therapeutic potential of transcription factor EB in neurodegenerative diseases. CNS Neurosci Ther 2022; 29:37-59. [PMID: 36184826 PMCID: PMC9804079 DOI: 10.1111/cns.13985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/29/2022] [Accepted: 09/14/2022] [Indexed: 02/06/2023] Open
Abstract
The autophagy-lysosomal pathway (ALP) is involved in the degradation of protein aggregates and damaged organelles. Transcription factor EB (TFEB), a major regulator of ALP, has emerged as a leading factor in addressing neurodegenerative disease pathology, including Alzheimer's disease (AD), Parkinson's disease (PD), PolyQ diseases, and Amyotrophic lateral sclerosis (ALS). In this review, we delineate the regulation of TFEB expression and its functions in ALP. Dysfunctions of TFEB and its role in the pathogenesis of several neurodegenerative diseases are reviewed. We summarize the protective effects and molecular mechanisms of some TFEB-targeted agonists in neurodegenerative diseases. We also offer our perspective on analyzing the pros and cons of these agonists in the treatment of neurodegenerative diseases from the perspective of drug development. More studies on the regulatory mechanisms of TFEB in other biological processes will aid our understanding of the application of TFEB-targeted therapy in neurodegeneration.
Collapse
Affiliation(s)
- Fengjuan Jiao
- School of Mental HealthJining Medical UniversityJiningChina,Shandong Key Laboratory of Behavioral Medicine, School of Mental HealthJining Medical UniversityJiningChina
| | - Bojie Zhou
- School of Mental HealthJining Medical UniversityJiningChina,Shandong Key Laboratory of Behavioral Medicine, School of Mental HealthJining Medical UniversityJiningChina
| | - Lingyan Meng
- School of Mental HealthJining Medical UniversityJiningChina,Shandong Key Laboratory of Behavioral Medicine, School of Mental HealthJining Medical UniversityJiningChina
| |
Collapse
|
29
|
Tyler SEB, Tyler LDK. Therapeutic roles of plants for 15 hypothesised causal bases of Alzheimer's disease. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:34. [PMID: 35996065 PMCID: PMC9395556 DOI: 10.1007/s13659-022-00354-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/15/2022] [Indexed: 05/26/2023]
Abstract
Alzheimer's disease (AD) is progressive and ultimately fatal, with current drugs failing to reverse and cure it. This study aimed to find plant species which may provide therapeutic bioactivities targeted to causal agents proposed to be driving AD. A novel toolkit methodology was employed, whereby clinical symptoms were translated into categories recognized in ethnomedicine. These categories were applied to find plant species with therapeutic effects, mined from ethnomedical surveys. Survey locations were mapped to assess how this data is at risk. Bioactivities were found of therapeutic relevance to 15 hypothesised causal bases for AD. 107 species with an ethnological report of memory improvement demonstrated therapeutic activity for all these 15 causal bases. The majority of the surveys were found to reside within biodiversity hotspots (centres of high biodiversity under threat), with loss of traditional knowledge the most common threat. Our findings suggest that the documented plants provide a large resource of AD therapeutic potential. In demonstrating bioactivities targeted to these causal bases, such plants may have the capacity to reduce or reverse AD, with promise as drug leads to target multiple AD hallmarks. However, there is a need to preserve ethnomedical knowledge, and the habitats on which this knowledge depends.
Collapse
Affiliation(s)
| | - Luke D K Tyler
- School of Natural Sciences, Bangor University, Gwynedd, UK
| |
Collapse
|
30
|
Autophagy-Mediated Inflammatory Cytokine Secretion in Sporadic ALS Patient iPSC-Derived Astrocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6483582. [PMID: 36046683 PMCID: PMC9423978 DOI: 10.1155/2022/6483582] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/04/2022] [Accepted: 07/28/2022] [Indexed: 11/18/2022]
Abstract
Background. Astrocytes can be involved in motor neuron toxicity in amyotrophic lateral sclerosis (ALS) induced by noncell autonomous effects, and inflammatory cytokines may play the main role in mediating this process. However, the etiology of aberrant cytokine secretion is unclear. The present study assessed possible involvement of the mTOR-autophagy pathway in aberrant cytokine secretion by ALS patient iPSC-derived astrocytes. Method and Results. PBMCs from sporadic ALS patients and control subjects were reprogrammed into iPSCs, which were then differentiated into astrocytes and/or motor neurons. Comparison with control astrocytes indicated that conditioned medium of ALS astrocytes reduced the viability of the control motor neurons (
) assessed using the MTT assay. The results of ELISA showed that the concentrations of TNFα, IL1β, and IL6 in cell culture medium of ALS astrocytes were increased (
). ALS astrocytes had higher p62 and mTOR levels and lower LC3BII/LC3BI ratio and ULK1 and p-Beclin-1 (Ser15) levels (
), indicating defective autophagy. Exogenous inhibition of the mTOR-autophagy pathway, but not the activation of the pathway in control subject astrocytes, increased the levels of p62 and mTOR and concentration of IL-1β, TNF-α, and IL-6 in cell culture medium and decreased the LC3BII/LC3BI ratio and levels of ULK1 and p-Beclin-1 (Ser15), and these changes were comparable to those in ALS astrocytes. After 48 h of rapamycin (autophagy activator) and 3-methyladenine (autophagy inhibitor) treatments, the exogenous activation of the mTOR-autophagy pathway, but not inhibition of the pathway, in ALS astrocytes significantly reduced the concentrations of TNFα, IL1β, and IL6 in cell culture medium and reduced the levels of p62, while increasing the levels of LC3B-II/LC3B-I, ULK1, and p-Beclin-1 (Ser15), and these changes were comparable to those in control subject astrocytes. Conclusion. Alteration in the mTOR/ULK1/Beclin-1 pathway regulated cytokine secretion in ALS astrocytes, which was able to lead to noncell autonomous toxicity. Autophagy activation mitigated cytokine secretion by ALS astrocytes.
Collapse
|
31
|
Jalali H, Khoshaeen A, Mahdavi MR, Mahdavi M. First report of novel mutation (c.790del) on SQSTM1 gene on a family with childhood onset of progressive cerebellar ataxia with vertical gaze palsy. Clin Case Rep 2022; 10:e6203. [PMID: 35957775 PMCID: PMC9361805 DOI: 10.1002/ccr3.6203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/07/2022] [Accepted: 05/16/2022] [Indexed: 11/23/2022] Open
Abstract
SQSTM1 gene encodes a protein called p62 that acts as an autophagy receptor in the degradation of protein molecules. A homozygous deletion variant that changes the frame shift in the SQSTM1 gene named c.790 Del A .T was detected in case childhood onset and progressive neurodegeneration with ataxia, and gaze palsy.
Collapse
Affiliation(s)
- Hossein Jalali
- Thalassemia Research Center, Hemoglobinopathies InstituteMazandaran University of Medical SciencesSariIran
- Sinayemehr Research CenterMazandaran UniversitySariIran
| | | | - Mohammad Reza Mahdavi
- Thalassemia Research Center, Hemoglobinopathies InstituteMazandaran University of Medical SciencesSariIran
| | - Mahan Mahdavi
- Sinayemehr Research CenterMazandaran UniversitySariIran
- Department of Biomedical Engineering, Science and Research BranchIslamic Azad UniversityTehranIran
| |
Collapse
|
32
|
Regulating Phase Transition in Neurodegenerative Diseases by Nuclear Import Receptors. BIOLOGY 2022; 11:biology11071009. [PMID: 36101390 PMCID: PMC9311884 DOI: 10.3390/biology11071009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022]
Abstract
RNA-binding proteins (RBPs) with a low-complexity prion-like domain (PLD) can undergo aberrant phase transitions and have been implicated in neurodegenerative diseases such as ALS and FTD. Several nuclear RBPs mislocalize to cytoplasmic inclusions in disease conditions. Impairment in nucleocytoplasmic transport is another major event observed in ageing and in neurodegenerative disorders. Nuclear import receptors (NIRs) regulate the nucleocytoplasmic transport of different RBPs bearing a nuclear localization signal by restoring their nuclear localization. NIRs can also specifically dissolve or prevent the aggregation and liquid–liquid phase separation of wild-type or disease-linked mutant RBPs, due to their chaperoning activity. This review focuses on the LLPS of intrinsically disordered proteins and the role of NIRs in regulating LLPS in neurodegeneration. This review also discusses the implication of NIRs as therapeutic agents in neurogenerative diseases.
Collapse
|
33
|
Biological Potential, Gastrointestinal Digestion, Absorption, and Bioavailability of Algae-Derived Compounds with Neuroprotective Activity: A Comprehensive Review. Mar Drugs 2022; 20:md20060362. [PMID: 35736165 PMCID: PMC9227170 DOI: 10.3390/md20060362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022] Open
Abstract
Currently, there is no known cure for neurodegenerative disease. However, the available therapies aim to manage some of the symptoms of the disease. Human neurodegenerative diseases are a heterogeneous group of illnesses characterized by progressive loss of neuronal cells and nervous system dysfunction related to several mechanisms such as protein aggregation, neuroinflammation, oxidative stress, and neurotransmission dysfunction. Neuroprotective compounds are essential in the prevention and management of neurodegenerative diseases. This review will focus on the neurodegeneration mechanisms and the compounds (proteins, polyunsaturated fatty acids (PUFAs), polysaccharides, carotenoids, phycobiliproteins, phenolic compounds, among others) present in seaweeds that have shown in vivo and in vitro neuroprotective activity. Additionally, it will cover the recent findings on the neuroprotective effects of bioactive compounds from macroalgae, with a focus on their biological potential and possible mechanism of action, including microbiota modulation. Furthermore, gastrointestinal digestion, absorption, and bioavailability will be discussed. Moreover, the clinical trials using seaweed-based drugs or extracts to treat neurodegenerative disorders will be presented, showing the real potential and limitations that a specific metabolite or extract may have as a new therapeutic agent considering the recent approval of a seaweed-based drug to treat Alzheimer’s disease.
Collapse
|
34
|
Houghton OH, Mizielinska S, Gomez-Suaga P. The Interplay Between Autophagy and RNA Homeostasis: Implications for Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Front Cell Dev Biol 2022; 10:838402. [PMID: 35573690 PMCID: PMC9096704 DOI: 10.3389/fcell.2022.838402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/14/2022] [Indexed: 01/18/2023] Open
Abstract
Amyotrophic lateral sclerosis and frontotemporal dementia are neurodegenerative disorders that lie on a disease spectrum, sharing genetic causes and pathology, and both without effective therapeutics. Two pathways that have been shown to play major roles in disease pathogenesis are autophagy and RNA homeostasis. Intriguingly, there is an increasing body of evidence suggesting a critical interplay between these pathways. Autophagy is a multi-stage process for bulk and selective clearance of malfunctional cellular components, with many layers of regulation. Although the majority of autophagy research focuses on protein degradation, it can also mediate RNA catabolism. ALS/FTD-associated proteins are involved in many stages of autophagy and autophagy-mediated RNA degradation, particularly converging on the clearance of persistent pathological stress granules. In this review, we will summarise the progress in understanding the autophagy-RNA homeostasis interplay and how that knowledge contributes to our understanding of the pathobiology of ALS/FTD.
Collapse
Affiliation(s)
- O H Houghton
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom.,UK Dementia Research Institute at King's College London, London, United Kingdom
| | - S Mizielinska
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom.,UK Dementia Research Institute at King's College London, London, United Kingdom
| | - P Gomez-Suaga
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom.,Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| |
Collapse
|
35
|
Jamieson-Lucy AH, Kobayashi M, James Aykit Y, Elkouby YM, Escobar-Aguirre M, Vejnar CE, Giraldez AJ, Mullins MC. A proteomics approach identifies novel resident zebrafish Balbiani body proteins Cirbpa and Cirbpb. Dev Biol 2022; 484:1-11. [PMID: 35065906 PMCID: PMC8967276 DOI: 10.1016/j.ydbio.2022.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 01/17/2023]
Abstract
The Balbiani body (Bb) is the first marker of polarity in vertebrate oocytes. The Bb is a conserved structure found in diverse animals including insects, fish, amphibians, and mammals. During early zebrafish oogenesis, the Bb assembles as a transient aggregate of mRNA, proteins, and membrane-bound organelles at the presumptive vegetal side of the oocyte. As the early oocyte develops, the Bb appears to grow slowly, until at the end of stage I of oogenesis it disassembles and deposits its cargo of localized mRNAs and proteins. In fish and frogs, this cargo includes the germ plasm as well as gene products required to specify dorsal tissues of the future embryo. We demonstrate that the Bb is a stable, solid structure that forms a size exclusion barrier similar to other biological hydrogels. Despite its central role in oocyte polarity, little is known about the mechanism behind the Bb's action. Analysis of the few known protein components of the Bb is insufficient to explain how the Bb assembles, translocates, and disassembles. We isolated Bbs from zebrafish oocytes and performed mass spectrometry to define the Bb proteome. We successfully identified 77 proteins associated with the Bb sample, including known Bb proteins and novel RNA-binding proteins. In particular, we identified Cirbpa and Cirbpb, which have both an RNA-binding domain and a predicted self-aggregation domain. In stage I oocytes, Cirbpa and Cirbpb localize to the Bb rather than the nucleus (as in somatic cells), indicating that they may have a specialized function in the germ line. Both the RNA-binding domain and the self-aggregation domain are sufficient to localize to the Bb, suggesting that Cirbpa and Cirbpb interact with more than just their mRNA targets within the Bb. We propose that Cirbp proteins crosslink mRNA cargo and proteinaceous components of the Bb as it grows. Beyond Cirbpa and Cirbpb, our proteomics dataset presents many candidates for further study, making it a valuable resource for building a comprehensive mechanism for Bb function at a protein level.
Collapse
Affiliation(s)
- Allison H Jamieson-Lucy
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Manami Kobayashi
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Y James Aykit
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yaniv M Elkouby
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Matias Escobar-Aguirre
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Charles E Vejnar
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Antonio J Giraldez
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Mary C Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
36
|
Mytiliniou M, Wondergem JAJ, Schmidt T, Heinrich D. Impact of neurite alignment on organelle motion. J R Soc Interface 2022; 19:20210617. [PMID: 35135294 PMCID: PMC8825987 DOI: 10.1098/rsif.2021.0617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Intracellular transport is pivotal for cell growth and survival. Malfunctions in this process have been associated with devastating neurodegenerative diseases, highlighting the need for a deeper understanding of the mechanisms involved. Here, we use an experimental methodology that leads neurites of differentiated PC12 cells into either one of two configurations: a one-dimensional configuration, where the neurites align along lines, or a two-dimensional configuration, where the neurites adopt a random orientation and shape on a flat substrate. We subsequently monitored the motion of functional organelles, the lysosomes, inside the neurites. Implementing a time-resolved analysis of the mean-squared displacement, we quantitatively characterized distinct motion modes of the lysosomes. Our results indicate that neurite alignment gives rise to faster diffusive and super-diffusive lysosomal motion than the situation in which the neurites are randomly oriented. After inducing lysosome swelling through an osmotic challenge by sucrose, we confirmed the predicted slowdown in diffusive mobility. Surprisingly, we found that the swelling-induced mobility change affected each of the (sub-/super-)diffusive motion modes differently and depended on the alignment configuration of the neurites. Our findings imply that intracellular transport is significantly and robustly dependent on cell morphology, which might in part be controlled by the extracellular matrix.
Collapse
Affiliation(s)
- Maria Mytiliniou
- Leiden Institute of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, 2333 CA Leiden, The Netherlands
| | - Joeri A J Wondergem
- Leiden Institute of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, 2333 CA Leiden, The Netherlands
| | - Thomas Schmidt
- Leiden Institute of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, 2333 CA Leiden, The Netherlands
| | - Doris Heinrich
- Leiden Institute of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, 2333 CA Leiden, The Netherlands.,Institute for Bioprocessing and Analytical Measurement Techniques, Rosenhof, 37308 Heilbad Heiligenstadt, Germany.,Faculty for Mathematics and Natural Sciences, Technische Universität Ilmenau, 98693 Ilmenau, Germany.,Fraunhofer Institute for Silicate Research ISC, 97082 Würzburg, Germany
| |
Collapse
|
37
|
TDP-43 pathology: from noxious assembly to therapeutic removal. Prog Neurobiol 2022; 211:102229. [DOI: 10.1016/j.pneurobio.2022.102229] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/08/2021] [Accepted: 01/26/2022] [Indexed: 02/08/2023]
|
38
|
Cai Q, Ganesan D. Regulation of neuronal autophagy and the implications in neurodegenerative diseases. Neurobiol Dis 2022; 162:105582. [PMID: 34890791 PMCID: PMC8764935 DOI: 10.1016/j.nbd.2021.105582] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/22/2021] [Accepted: 12/06/2021] [Indexed: 01/03/2023] Open
Abstract
Neurons are highly polarized and post-mitotic cells with the specific requirements of neurotransmission accompanied by high metabolic demands that create a unique challenge for the maintenance of cellular homeostasis. Thus, neurons rely heavily on autophagy that constitutes a key quality control system by which dysfunctional cytoplasmic components, protein aggregates, and damaged organelles are sequestered within autophagosomes and then delivered to the lysosome for degradation. While mature lysosomes are predominantly located in the soma of neurons, the robust, constitutive biogenesis of autophagosomes occurs in the synaptic terminal via a conserved pathway that is required to maintain synaptic integrity and function. Following formation, autophagosomes fuse with late endosomes and then are rapidly and efficiently transported by the microtubule-based cytoplasmic dynein motor along the axon toward the soma for lysosomal clearance. In this review, we highlight the recent knowledge of the roles of autophagy in neuronal health and disease. We summarize the available evidence about the normal functions of autophagy as a protective factor against neurodegeneration and discuss the mechanism underlying neuronal autophagy regulation. Finally, we describe how autophagy function is affected in major neurodegenerative diseases with a special focus on Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis.
Collapse
|
39
|
Saffari A, Schröter J, Garbade SF, Alecu JE, Ebrahimi-Fakhari D, Hoffmann GF, Kölker S, Ries M, Syrbe S. Quantitative retrospective natural history modeling of WDR45-related developmental and epileptic encephalopathy - a systematic cross-sectional analysis of 160 published cases. Autophagy 2021; 18:1715-1727. [PMID: 34818117 DOI: 10.1080/15548627.2021.1990671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
WDR45-related neurodevelopmental disorder (NDD) is a clinically-heterogenous congenital disorder of macroautophagy/autophagy. The natural history of this ultra-orphan disease remains incompletely understood, leading to delays in diagnosis and lack of quantifiable outcome measures. In this cross-sectional study, we model quantitative natural history data for WDR45-related NDD using a standardized analysis of 160 published cases, representing the largest cohort to date. The primary outcome of this study was survival. Age at disease onset, diagnostic delay and geographic distribution were quantified as secondary endpoints. Our tertiary aim was to explore and quantify the spectrum of WDR45-related phenotypes. Survival estimations showed low mortality until 39 years of age. Median age at onset was 10 months, with a median diagnostic delay of 6.2 years. Geographic distribution appeared worldwide with clusters in North America, East Asia, Western Europe and the Middle East. The clinical spectrum was highly variable with a bi-phasic evolution characterized by early-onset developmental and epileptic encephalopathy during childhood followed by a progressive dystonia-parkinsonism syndrome along with cognitive decline during early adulthood. Female individuals showed milder disease severity. The majority of pathogenic WDR45 variants were predicted to result in a loss of WDR45 expression, without clear genotype-phenotype associations. Our results provide clinical and epidemiological data that may facilitate an earlier diagnosis, enable anticipatory guidance and counseling of affected families and provide the foundation for endpoints for future interventional trials.Abbreviations: BPAN: beta-propeller protein-associated neurodegeneration; CNS: central nervous system; DEE: developmental and epileptic encephalopathy; MRI: magnetic resonance imaging; NBIA: neurodegeneration with brain iron accumulation; NDD: neurodevelopmental disorder; NGS: next-generation sequencing; WDR45/WIPI4: WD repeat domain 45.
Collapse
Affiliation(s)
- Afshin Saffari
- Division of Pediatric Epileptology, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany.,Division of Neuropediatrics and Inherited Metabolic Diseases, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Julian Schröter
- Division of Pediatric Epileptology, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany.,Division of Neuropediatrics and Inherited Metabolic Diseases, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Sven F Garbade
- Division of Neuropediatrics and Inherited Metabolic Diseases, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Julian E Alecu
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Darius Ebrahimi-Fakhari
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Georg F Hoffmann
- Division of Neuropediatrics and Inherited Metabolic Diseases, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Kölker
- Division of Neuropediatrics and Inherited Metabolic Diseases, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Markus Ries
- Division of Neuropediatrics and Inherited Metabolic Diseases, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Steffen Syrbe
- Division of Pediatric Epileptology, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
40
|
Bonifacino T, Zerbo RA, Balbi M, Torazza C, Frumento G, Fedele E, Bonanno G, Milanese M. Nearly 30 Years of Animal Models to Study Amyotrophic Lateral Sclerosis: A Historical Overview and Future Perspectives. Int J Mol Sci 2021; 22:ijms222212236. [PMID: 34830115 PMCID: PMC8619465 DOI: 10.3390/ijms222212236] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/20/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal, multigenic, multifactorial, and non-cell autonomous neurodegenerative disease characterized by upper and lower motor neuron loss. Several genetic mutations lead to ALS development and many emerging gene mutations have been discovered in recent years. Over the decades since 1990, several animal models have been generated to study ALS pathology including both vertebrates and invertebrates such as yeast, worms, flies, zebrafish, mice, rats, guinea pigs, dogs, and non-human primates. Although these models show different peculiarities, they are all useful and complementary to dissect the pathological mechanisms at the basis of motor neuron degeneration and ALS progression, thus contributing to the development of new promising therapeutics. In this review, we describe the up to date and available ALS genetic animal models, classified by the different genetic mutations and divided per species, pointing out their features in modeling, the onset and progression of the pathology, as well as their specific pathological hallmarks. Moreover, we highlight similarities, differences, advantages, and limitations, aimed at helping the researcher to select the most appropriate experimental animal model, when designing a preclinical ALS study.
Collapse
Affiliation(s)
- Tiziana Bonifacino
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Genoa, Italy
| | - Roberta Arianna Zerbo
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
| | - Matilde Balbi
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
| | - Carola Torazza
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
| | - Giulia Frumento
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
| | - Ernesto Fedele
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Correspondence:
| | - Giambattista Bonanno
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Marco Milanese
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Genoa, Italy
| |
Collapse
|
41
|
Li G, Deng L, Huang N, Cui Z, Wu Q, Ma J, Pan Q, Sun F. m 6A mRNA Methylation Regulates LKB1 to Promote Autophagy of Hepatoblastoma Cells through Upregulated Phosphorylation of AMPK. Genes (Basel) 2021; 12:1747. [PMID: 34828353 PMCID: PMC8621998 DOI: 10.3390/genes12111747] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/28/2022] Open
Abstract
The N6-methyladenosine (m6A) RNA modification can regulate autophagy to modulate the growth and development of tumors, but the mechanism of m6A modification for the regulation of autophagy in hepatocellular carcinoma cells (HCC) remains unclear. In the study, the knockdown of the Wilms' tumor 1-associating protein (WTAP) was made in HCC to study the correlation between m6A modification and autophagy. A fluorescent confocal microscopy analysis showed that the knockdown of WTAP could facilitate the autophagy of HCC. A Western blot analysis showed that the level of p-AMPK was decreased in WTAP-knockdown HCC cells. Additionally, LKB1, the upstream kinase of AMPK, was regulated by WTAP and it could mediate the phosphorylation of AMPK in an m6A-dependent manner. Further studies revealed that the knockdown of WTAP could reduce the level of LKB1 mRNA with m6A. This could result in the increased stability of LKB1 mRNA to promote its expression. The knockdown of WTAP could upregulate the level of autophagy and inhibit HCC proliferation. However, the overexpression of WTAP could resist autophagic cell death.
Collapse
Affiliation(s)
- Guohui Li
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China; (G.L.); (L.D.)
| | - Liang Deng
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China; (G.L.); (L.D.)
- Department of Clinical Laboratory Medicine, Shanghai Tenth People’s Hospital of Tongji University, Shanghai 200072, China; (N.H.); (Z.C.); (Q.W.)
| | - Nan Huang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People’s Hospital of Tongji University, Shanghai 200072, China; (N.H.); (Z.C.); (Q.W.)
| | - Zhongqi Cui
- Department of Clinical Laboratory Medicine, Shanghai Tenth People’s Hospital of Tongji University, Shanghai 200072, China; (N.H.); (Z.C.); (Q.W.)
| | - Qi Wu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People’s Hospital of Tongji University, Shanghai 200072, China; (N.H.); (Z.C.); (Q.W.)
| | - Ji Ma
- Department of Laboratory Medicine, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200072, China; (J.M.); (Q.P.)
| | - Qiuhui Pan
- Department of Laboratory Medicine, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200072, China; (J.M.); (Q.P.)
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai 200072, China
| | - Fenyong Sun
- Department of Clinical Laboratory Medicine, Shanghai Tenth People’s Hospital of Tongji University, Shanghai 200072, China; (N.H.); (Z.C.); (Q.W.)
| |
Collapse
|
42
|
Yoneda R, Ueda N, Kurokawa R. m 6A Modified Short RNA Fragments Inhibit Cytoplasmic TLS/FUS Aggregation Induced by Hyperosmotic Stress. Int J Mol Sci 2021; 22:ijms222011014. [PMID: 34681673 PMCID: PMC8539258 DOI: 10.3390/ijms222011014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 12/24/2022] Open
Abstract
Translocated in LipoSarcoma/Fused in Sarcoma (TLS/FUS) is a nuclear RNA binding protein whose mutations cause amyotrophic lateral sclerosis. TLS/FUS undergoes LLPS and forms membraneless particles with other proteins and nucleic acids. Interaction with RNA alters conformation of TLS/FUS, which affects binding with proteins, but the effect of m6A RNA modification on the TLS/FUS–RNA interaction remains elusive. Here, we investigated the binding specificity of TLS/FUS to m6A RNA fragments by RNA pull down assay, and elucidated that both wild type and ALS-related TLS/FUS mutants strongly bound to m6A modified RNAs. TLS/FUS formed cytoplasmic foci by treating hyperosmotic stress, but the cells transfected with m6A-modified RNAs had a smaller number of foci. Moreover, m6A-modified RNA transfection resulted in the cells obtaining higher resistance to the stress. In summary, we propose TLS/FUS as a novel candidate of m6A recognition protein, and m6A-modified RNA fragments diffuse cytoplasmic TLS/FUS foci and thereby enhance cell viability.
Collapse
|
43
|
Storage of Mutant Human SOD1 in Non-Neural Cells from the Type-1 Amyotrophic Lateral Sclerosis rat G93A Model Correlated with the Lysosomes' Dysfunction. Biomedicines 2021; 9:biomedicines9091080. [PMID: 34572266 PMCID: PMC8470315 DOI: 10.3390/biomedicines9091080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 02/07/2023] Open
Abstract
Herein, we explored the impact of the lysosome dysfunction during the progression of Amyotrophic Lateral Sclerosis type-1 (ALS1). We conducted the study in non-neural cells, primary fibroblasts (rFFFs), and bone marrow-mesenchymal stem cells (rBM-MSCs), isolated from the animal model ratG93A for ALS1 at two stages of the disease: Pre-symptomatic-stage (ALS1-PreS) and Terminal-stage (ALS1-EndS). We documented the storage of human mutant Superoxide Dismutase 1, SOD1G93A (SOD1*) in the lysosomes of ALS1-rFFFs and ALS1-rBM-MSCs and demonstrated the hallmarks of the disease in non-neural cells as in ratG93A-ALS1-tissues. We showed that the SOD1* storage is associated with the altered glycohydrolases and proteases levels in tissues and both cell types from ALS1-PreS to ALS1-EndS. Only in ALS1-rFFFs, the lysosomes lost homeostasis, enlarge drastically, and contribute to the cell metabolic damage. Contrariwise, in ALS1-rBM-MSCs, we found a negligible metabolic dysfunction, which makes these cells’ status similar to WT. We addressed this phenomenon to a safety mechanism perhaps associated with an enhanced lysosomal autophagic activity in ALS1-rBM-MSCs compared to ALS1-rFFFs, in which the lysosomal level of LC3-II/LC3I was comparable to that of WT-rFFFs. We suggested that the autophagic machinery could balance the storage of SOD1* aggregates and the lysosomal enzyme dysfunction even in ALS1-EndS-stem cells.
Collapse
|
44
|
Cell Stress Induces Mislocalization of Transcription Factors with Mitochondrial Enrichment. Int J Mol Sci 2021; 22:ijms22168853. [PMID: 34445555 PMCID: PMC8396249 DOI: 10.3390/ijms22168853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 02/03/2023] Open
Abstract
Previous evidence links the formation of extranuclear inclusions of transcription factors, such as ERK, Jun, TDP-43, and REST, with oxidative, endoplasmic-reticulum, proteasomal, and osmotic stress. To further characterize its extranuclear location, we performed a high-content screening based on confocal microscopy and automatized image analyses of an epithelial cell culture treated with hydrogen peroxide, thapsigargin, epoxomicin, or sorbitol at different concentrations and times to recreate the stresses mentioned above. We also performed a subcellular fractionation of the brain from transgenic mice overexpressing the Q331K-mutated TARDBP, and we analyzed the REST-regulated mRNAs. The results show that these nuclear proteins exhibit a mitochondrial location, together with significant nuclear/extranuclear ratio changes, in a protein and stress-specific manner. The presence of these proteins in enriched mitochondrial fractions in vivo confirmed the results of the image analyses. TDP-43 aggregation was associated with alterations in the mRNA levels of the REST target genes involved in calcium homeostasis, apoptosis, and metabolism. In conclusion, cell stress increased the mitochondrial translocation of nuclear proteins, increasing the chance of proteostasis alterations. Furthermore, TDP-43 aggregation impacts REST target genes, disclosing an exciting interaction between these two transcription factors in neurodegenerative processes.
Collapse
|
45
|
Kok JR, Palminha NM, Dos Santos Souza C, El-Khamisy SF, Ferraiuolo L. DNA damage as a mechanism of neurodegeneration in ALS and a contributor to astrocyte toxicity. Cell Mol Life Sci 2021; 78:5707-5729. [PMID: 34173837 PMCID: PMC8316199 DOI: 10.1007/s00018-021-03872-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/27/2021] [Accepted: 06/05/2021] [Indexed: 12/11/2022]
Abstract
Increasing evidence supports the involvement of DNA damage in several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Elevated levels of DNA damage are consistently observed in both sporadic and familial forms of ALS and may also play a role in Western Pacific ALS, which is thought to have an environmental cause. The cause of DNA damage in ALS remains unclear but likely differs between genetic subgroups. Repeat expansion in the C9ORF72 gene is the most common genetic cause of familial ALS and responsible for about 10% of sporadic cases. These genetic mutations are known to cause R-loops, thus increasing genomic instability and DNA damage, and generate dipeptide repeat proteins, which have been shown to lead to DNA damage and impairment of the DNA damage response. Similarly, several genes associated with ALS including TARDBP, FUS, NEK1, SQSTM1 and SETX are known to play a role in DNA repair and the DNA damage response, and thus may contribute to neuronal death via these pathways. Another consistent feature present in both sporadic and familial ALS is the ability of astrocytes to induce motor neuron death, although the factors causing this toxicity remain largely unknown. In this review, we summarise the evidence for DNA damage playing a causative or secondary role in the pathogenesis of ALS as well as discuss the possible mechanisms involved in different genetic subtypes with particular focus on the role of astrocytes initiating or perpetuating DNA damage in neurons.
Collapse
Affiliation(s)
- Jannigje Rachel Kok
- University of Sheffield, Sheffield Institute for Translational Neuroscience (SITraN), Sheffield, UK
| | - Nelma M Palminha
- Department of Molecular Biology and Biotechnology, The Healthy Lifespan Institute, Sheffield, UK
- The Institute of Neuroscience, University of Sheffield, Sheffield, UK
| | - Cleide Dos Santos Souza
- University of Sheffield, Sheffield Institute for Translational Neuroscience (SITraN), Sheffield, UK
| | - Sherif F El-Khamisy
- Department of Molecular Biology and Biotechnology, The Healthy Lifespan Institute, Sheffield, UK.
- The Institute of Neuroscience, University of Sheffield, Sheffield, UK.
- The Institute of Cancer Therapeutics, West Yorkshire, UK.
| | - Laura Ferraiuolo
- University of Sheffield, Sheffield Institute for Translational Neuroscience (SITraN), Sheffield, UK.
- The Institute of Neuroscience, University of Sheffield, Sheffield, UK.
| |
Collapse
|
46
|
Linda K, Lewerissa EI, Verboven AHA, Gabriele M, Frega M, Klein Gunnewiek TM, Devilee L, Ulferts E, Hommersom M, Oudakker A, Schoenmaker C, van Bokhoven H, Schubert D, Testa G, Koolen DA, de Vries BBA, Nadif Kasri N. Imbalanced autophagy causes synaptic deficits in a human model for neurodevelopmental disorders. Autophagy 2021; 18:423-442. [PMID: 34286667 PMCID: PMC8942553 DOI: 10.1080/15548627.2021.1936777] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Macroautophagy (hereafter referred to as autophagy) is a finely tuned process of programmed degradation and recycling of proteins and cellular components, which is crucial in neuronal function and synaptic integrity. Mounting evidence implicates chromatin remodeling in fine-tuning autophagy pathways. However, this epigenetic regulation is poorly understood in neurons. Here, we investigate the role in autophagy of KANSL1, a member of the nonspecific lethal complex, which acetylates histone H4 on lysine 16 (H4K16ac) to facilitate transcriptional activation. Loss-of-function of KANSL1 is strongly associated with the neurodevelopmental disorder Koolen-de Vries Syndrome (KdVS). Starting from KANSL1-deficient human induced-pluripotent stem cells, both from KdVS patients and genome-edited lines, we identified SOD1 (superoxide dismutase 1), an antioxidant enzyme, to be significantly decreased, leading to a subsequent increase in oxidative stress and autophagosome accumulation. In KANSL1-deficient neurons, autophagosome accumulation at excitatory synapses resulted in reduced synaptic density, reduced GRIA/AMPA receptor-mediated transmission and impaired neuronal network activity. Furthermore, we found that increased oxidative stress-mediated autophagosome accumulation leads to increased MTOR activation and decreased lysosome function, further preventing the clearing of autophagosomes. Finally, by pharmacologically reducing oxidative stress, we could rescue the aberrant autophagosome formation as well as synaptic and neuronal network activity in KANSL1-deficient neurons. Our findings thus point toward an important relation between oxidative stress-induced autophagy and synapse function, and demonstrate the importance of H4K16ac-mediated changes in chromatin structure to balance reactive oxygen species- and MTOR-dependent autophagy. Abbreviations: APO: apocynin; ATG: autophagy related; BAF: bafilomycin A1; BSO: buthionine sulfoximine; CV: coefficient of variation; DIV: days in vitro; H4K16ac: histone 4 lysine 16 acetylation; iPSC: induced-pluripotent stem cell; KANSL1: KAT8 regulatory NSL complex subunit 1; KdVS: Koolen-de Vries Syndrome; LAMP1: lysosomal associated membrane protein 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MEA: micro-electrode array; MTOR: mechanistic target of rapamycin kinase; NSL complex: nonspecific lethal complex; 8-oxo-dG: 8-hydroxydesoxyguanosine; RAP: rapamycin; ROS: reactive oxygen species; sEPSCs: spontaneous excitatory postsynaptic currents; SOD1: superoxide dismutase 1; SQSTM1/p62: sequestosome 1; SYN: synapsin; WRT: wortmannin.
Collapse
Affiliation(s)
- Katrin Linda
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, The Netherlands
| | - Elly I Lewerissa
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, The Netherlands
| | - Anouk H A Verboven
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, The Netherlands
| | - Michele Gabriele
- Department of Oncology and Haemato-Oncology, University of Milan, Milan, Italy.,Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Monica Frega
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, The Netherlands.,Department of Clinical Neurophysiology, University of Twente, Enschede, The Netherlands
| | - Teun M Klein Gunnewiek
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, The Netherlands.,Department of Anatomy, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, The Netherlands
| | - Lynn Devilee
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, The Netherlands
| | - Edda Ulferts
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, The Netherlands
| | - Marina Hommersom
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, The Netherlands
| | - Astrid Oudakker
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, The Netherlands
| | - Chantal Schoenmaker
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, The Netherlands
| | - Hans van Bokhoven
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, The Netherlands.,Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
| | - Dirk Schubert
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
| | - Giuseppe Testa
- Department of Oncology and Haemato-Oncology, University of Milan, Milan, Italy.,Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - David A Koolen
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, The Netherlands
| | - Bert B A de Vries
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, The Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, The Netherlands.,Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
| |
Collapse
|
47
|
Puglisi-Allegra S, Ruggieri S, Fornai F. Translational evidence for lithium-induced brain plasticity and neuroprotection in the treatment of neuropsychiatric disorders. Transl Psychiatry 2021; 11:366. [PMID: 34226487 PMCID: PMC8257731 DOI: 10.1038/s41398-021-01492-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023] Open
Abstract
Increasing evidence indicates lithium (Li+) efficacy in neuropsychiatry, pointing to overlapping mechanisms that occur within distinct neuronal populations. In fact, the same pathway depending on which circuitry operates may fall in the psychiatric and/or neurological domains. Li+ restores both neurotransmission and brain structure unveiling that psychiatric and neurological disorders share common dysfunctional molecular and morphological mechanisms, which may involve distinct brain circuitries. Here an overview is provided concerning the therapeutic/neuroprotective effects of Li+ in different neuropsychiatric disorders to highlight common molecular mechanisms through which Li+ produces its mood-stabilizing effects and to what extent these overlap with plasticity in distinct brain circuitries. Li+ mood-stabilizing effects are evident in typical bipolar disorder (BD) characterized by a cyclic course of mania or hypomania followed by depressive episodes, while its efficacy is weaker in the opposite pattern. We focus here on neural adaptations that may underlie psychostimulant-induced psychotic development and to dissect, through the sensitization process, which features are shared in BD and other psychiatric disorders, including schizophrenia. The multiple functions of Li+ highlighted here prove its exceptional pharmacology, which may help to elucidate its mechanisms of action. These may serve as a guide toward a multi-drug strategy. We propose that the onset of sensitization in a specific BD subtype may predict the therapeutic efficacy of Li+. This model may help to infer in BD which molecular mechanisms are relevant to the therapeutic efficacy of Li+.
Collapse
Affiliation(s)
| | | | - Francesco Fornai
- IRCCS Neuromed, Via Atinense 18, 86077, Pozzilli (IS), Italy.
- Human Anatomy, Department of Translational Research and New technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126, Pisa (PI), Italy.
| |
Collapse
|
48
|
Schultheis N, Jiang M, Selleck SB. Putting the brakes on autophagy: The role of heparan sulfate modified proteins in the balance of anabolic and catabolic pathways and intracellular quality control. Matrix Biol 2021; 100-101:173-181. [PMID: 33548399 DOI: 10.1016/j.matbio.2021.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/11/2022]
Abstract
Autophagy is a fundamental cellular process discovered as a response to nutrient deprivation. It provides the cellular and molecular machinery for catabolism of cellular constituents, generating energy and providing building blocks for continued survival. However, autophagy does much more than provide an entry into catabolic pathways, it provides a mechanism for intracellular quality control, removing damaged organelles and misfolded proteins, processes critical for cellular health. Autophagy serves as a counterpoint to cell growth and anabolic events, activated when growth is not possible or is suppressed. Hence, there is an inherent antagonism between autophagy and growth. Heparan sulfate modified proteins are important co-receptors that generally promote growth factor activity and are therefore positioned within signaling networks that inhibit, or negatively regulate autophagy levels. This review summarizes evidence that heparan sulfate modified proteins provide an evolutionarily conserved inhibitory modulation of autophagy that can have profound effects on cell physiology and organismal responses to stress.
Collapse
Affiliation(s)
- Nicholas Schultheis
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, PA 16802, United States
| | - Mei Jiang
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, PA 16802, United States
| | - Scott B Selleck
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, PA 16802, United States.
| |
Collapse
|
49
|
Foster AD, Flynn LL, Cluning C, Cheng F, Davidson JM, Lee A, Polain N, Mejzini R, Farrawell N, Yerbury JJ, Layfield R, Akkari PA, Rea SL. p62 overexpression induces TDP-43 cytoplasmic mislocalisation, aggregation and cleavage and neuronal death. Sci Rep 2021; 11:11474. [PMID: 34075102 PMCID: PMC8169680 DOI: 10.1038/s41598-021-90822-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 05/11/2021] [Indexed: 11/21/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) that exist on a spectrum of neurodegenerative disease. A hallmark of pathology is cytoplasmic TDP-43 aggregates within neurons, observed in 97% of ALS cases and ~ 50% of FTLD cases. This mislocalisation from the nucleus into the cytoplasm and TDP-43 cleavage are associated with pathology, however, the drivers of these changes are unknown. p62 is invariably also present within these aggregates. We show that p62 overexpression causes TDP-43 mislocalisation into cytoplasmic aggregates, and aberrant TDP-43 cleavage that was dependent on both the PB1 and ubiquitin-associated (UBA) domains of p62. We further show that p62 overexpression induces neuron death. We found that stressors (proteasome inhibition and arsenic) increased p62 expression and that this shifted the nuclear:cytoplasmic TDP-43 ratio. Overall, our study suggests that environmental factors that increase p62 may thereby contribute to TDP-43 pathology in ALS and FTLD.
Collapse
Affiliation(s)
- A D Foster
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
- Harry Perkins Institute of Medical Research, University of Western Australia, Crawley, WA, Australia
| | - L L Flynn
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, 6009, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Health Research Building, Discovery Way, Murdoch, WA, 6150, Australia
| | - C Cluning
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - F Cheng
- Department of Biomedical Sciences, Macquarie University, Sydney, Australia
| | - J M Davidson
- Department of Biomedical Sciences, Macquarie University, Sydney, Australia
| | - A Lee
- Department of Biomedical Sciences, Macquarie University, Sydney, Australia
| | - N Polain
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, 6009, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Health Research Building, Discovery Way, Murdoch, WA, 6150, Australia
| | - R Mejzini
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, 6009, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Health Research Building, Discovery Way, Murdoch, WA, 6150, Australia
| | - N Farrawell
- School of Biological Sciences, University of Wollongong, Wollongong, 2522, Australia
| | - J J Yerbury
- School of Biological Sciences, University of Wollongong, Wollongong, 2522, Australia
| | - R Layfield
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - P A Akkari
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, 6009, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Health Research Building, Discovery Way, Murdoch, WA, 6150, Australia
| | - S L Rea
- Harry Perkins Institute of Medical Research, University of Western Australia, Crawley, WA, Australia.
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, 6009, Australia.
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Health Research Building, Discovery Way, Murdoch, WA, 6150, Australia.
| |
Collapse
|
50
|
Wood A, Gurfinkel Y, Polain N, Lamont W, Lyn Rea S. Molecular Mechanisms Underlying TDP-43 Pathology in Cellular and Animal Models of ALS and FTLD. Int J Mol Sci 2021; 22:4705. [PMID: 33946763 PMCID: PMC8125728 DOI: 10.3390/ijms22094705] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/22/2021] [Accepted: 04/28/2021] [Indexed: 02/03/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are neurodegenerative disorders that exist on a disease spectrum due to pathological, clinical and genetic overlap. In up to 97% of ALS cases and ~50% of FTLD cases, the primary pathological protein observed in affected tissues is TDP-43, which is hyperphosphorylated, ubiquitinated and cleaved. The TDP-43 is observed in aggregates that are abnormally located in the cytoplasm. The pathogenicity of TDP-43 cytoplasmic aggregates may be linked with both a loss of nuclear function and a gain of toxic functions. The cellular processes involved in ALS and FTLD disease pathogenesis include changes to RNA splicing, abnormal stress granules, mitochondrial dysfunction, impairments to axonal transport and autophagy, abnormal neuromuscular junctions, endoplasmic reticulum stress and the subsequent induction of the unfolded protein response. Here, we review and discuss the evidence for alterations to these processes that have been reported in cellular and animal models of TDP-43 proteinopathy.
Collapse
Affiliation(s)
- Alistair Wood
- School of Molecular Science, University of Western Australia, Nedlands 6009, Australia;
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Health Research Building, Discovery Way, Murdoch 6150, Australia; (Y.G.); (N.P.)
| | - Yuval Gurfinkel
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Health Research Building, Discovery Way, Murdoch 6150, Australia; (Y.G.); (N.P.)
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands 6009, Australia;
| | - Nicole Polain
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Health Research Building, Discovery Way, Murdoch 6150, Australia; (Y.G.); (N.P.)
| | - Wesley Lamont
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands 6009, Australia;
| | - Sarah Lyn Rea
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Health Research Building, Discovery Way, Murdoch 6150, Australia; (Y.G.); (N.P.)
- Hub for Immersive Visualisation and eResearch, Curtin University, Bentley 6102, Australia
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands 6009, Australia
| |
Collapse
|