1
|
He W, Shi X, Dong Z. The roles of RACK1 in the pathogenesis of Alzheimer's disease. J Biomed Res 2024; 38:137-148. [PMID: 38410996 PMCID: PMC11001590 DOI: 10.7555/jbr.37.20220259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/15/2023] [Accepted: 04/24/2023] [Indexed: 02/28/2024] Open
Abstract
The receptor for activated C kinase 1 (RACK1) is a protein that plays a crucial role in various signaling pathways and is involved in the pathogenesis of Alzheimer's disease (AD), a prevalent neurodegenerative disease. RACK1 is highly expressed in neuronal cells of the central nervous system and regulates the pathogenesis of AD. Specifically, RACK1 is involved in regulation of the amyloid-β precursor protein processing through α- or β-secretase by binding to different protein kinase C isoforms. Additionally, RACK1 promotes synaptogenesis and synaptic plasticity by inhibiting N-methyl-D-aspartate receptors and activating gamma-aminobutyric acid A receptors, thereby preventing neuronal excitotoxicity. RACK1 also assembles inflammasomes that are involved in various neuroinflammatory pathways, such as nuclear factor-kappa B, tumor necrosis factor-alpha, and NOD-like receptor family pyrin domain-containing 3 pathways. The potential to design therapeutics that block amyloid-β accumulation and inflammation or precisely regulate synaptic plasticity represents an attractive therapeutic strategy, in which RACK1 is a potential target. In this review, we summarize the contribution of RACK1 to the pathogenesis of AD and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Wenting He
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Xiuyu Shi
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Zhifang Dong
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| |
Collapse
|
2
|
Bordone MP, Damianich A, Bernardi MA, Eidelman T, Sanz-Blasco S, Gershanik OS, Avale ME, Ferrario JE. Fyn knockdown prevents levodopa-induced dyskinesia in a mouse model of Parkinson's disease. eNeuro 2021; 8:ENEURO.0559-20.2021. [PMID: 34099487 PMCID: PMC8281260 DOI: 10.1523/eneuro.0559-20.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 12/23/2022] Open
Abstract
Dopamine replacement by levodopa is the most widely used therapy for Parkinson's disease (PD), however patients often develop side effects, known as levodopa-induced dyskinesia (LID), that usually need therapeutic intervention. There are no suitable therapeutic options for LID, except for the use of the NMDA receptor antagonist amantadine, which has limited efficacy. The NMDA receptor is indeed the most plausible target to manage LID in PD and recently the kinase Fyn- one of its key regulators- became a new putative molecular target involved in LID. The aim of this work was to reduce Fyn expression to alleviate LID in a mouse model of PD. We performed intra-striatal delivery of a designed micro-RNA against Fyn (miRNA-Fyn) in 6-OHDA-lesioned mice treated with levodopa. The miRNA-Fyn was delivered either before or after levodopa exposure to assess its ability to prevent or revert dyskinesia. Pre-administration of miRNA-Fyn reduced LID with a concomitant reduction of FosB-ΔFosB protein levels -a marker of LID- as well as decreased phosphorylation of the NR2B-NMDA subunit, which is a main target of Fyn. On the other hand, post L-DOPA delivery of miRNA-Fyn was less effective to revert already established dyskinesia, suggesting that early blocking of Fyn activity might be a more efficient therapeutic approach. Together, our results provide proof of concept about Fyn as a plausible therapeutic target to manage LID, and validate RNA silencing as a potential approach to locally reduce striatal Fyn, rising new perspectives for RNA therapy interventions in PD.Significance StatementLevodopa induced dyskinesia (LID) is an incapacitant side effect of treatment in Parkinson's disease (PD). LID is a therapeutic challenge, lacking an effective pharmacological treatment, except for the use of inhibitors of the NMDA receptor, which have limited efficacy and may trigger untoward side effects. The kinase Fyn is a key regulator of NMDA function and a potential therapeutic target to control LID. Here, we show that RNA interference therapy to reduce the amount of Fyn mRNA in the adult brain is effective to prevent LID in a mouse model of PD, setting the grounds for future biomedical interventions to manage LID in PD.
Collapse
Affiliation(s)
- Melina P Bordone
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Instituto de Biociencias, Biotecnología y Biología traslacional (iB3), Ciudad Autónoma de Buenos Aires, Argentina (C1428EGA)
- CONICET, Ciudad Autónoma de Buenos Aires, Argentina (C1113AAD)
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA), Ciudad Autónoma de Buenos Aires, Argentina (C1113AAD)
| | - Ana Damianich
- CONICET - Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), "Dr. Héctor N. Torres", Ciudad Autónoma de Buenos Aires, Argentina (C1428ADN)
| | - M Alejandra Bernardi
- CONICET, Ciudad Autónoma de Buenos Aires, Argentina (C1113AAD)
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA), Ciudad Autónoma de Buenos Aires, Argentina (C1113AAD)
| | - Tomas Eidelman
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Instituto de Biociencias, Biotecnología y Biología traslacional (iB3), Ciudad Autónoma de Buenos Aires, Argentina (C1428EGA)
| | - Sara Sanz-Blasco
- CONICET, Ciudad Autónoma de Buenos Aires, Argentina (C1113AAD)
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA), Ciudad Autónoma de Buenos Aires, Argentina (C1113AAD)
| | - Oscar S Gershanik
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA), Ciudad Autónoma de Buenos Aires, Argentina (C1113AAD)
| | - M Elena Avale
- CONICET - Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), "Dr. Héctor N. Torres", Ciudad Autónoma de Buenos Aires, Argentina (C1428ADN)
| | - Juan E Ferrario
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Instituto de Biociencias, Biotecnología y Biología traslacional (iB3), Ciudad Autónoma de Buenos Aires, Argentina (C1428EGA).
- CONICET, Ciudad Autónoma de Buenos Aires, Argentina (C1113AAD)
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA), Ciudad Autónoma de Buenos Aires, Argentina (C1113AAD)
| |
Collapse
|
3
|
Ehinger Y, Morisot N, Phamluong K, Sakhai SA, Soneja D, Adrover MF, Alvarez VA, Ron D. cAMP-Fyn signaling in the dorsomedial striatum direct pathway drives excessive alcohol use. Neuropsychopharmacology 2021; 46:334-342. [PMID: 32417851 PMCID: PMC7852539 DOI: 10.1038/s41386-020-0712-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/11/2020] [Indexed: 12/19/2022]
Abstract
Fyn kinase in the dorsomedial striatum (DMS) of rodents plays a central role in mechanisms underlying excessive alcohol intake. The DMS is comprised of medium spiny neurons (MSNs) that project directly (dMSNs) or indirectly (iMSNs) to the substantia nigra. Here, we examined the cell-type specificity of Fyn's actions in alcohol use. First, we knocked down Fyn selectively in DMS dMSNs or iMSNs of mice and measured the level of alcohol consumption. We found that downregulation of Fyn in dMSNs, but not in iMSNs, reduces excessive alcohol but not saccharin intake. D1Rs are coupled to Gαs/olf, which activate cAMP signaling. To examine whether Fyn's actions are mediated through cAMP signaling, DMS dMSNs were infected with GαsDREADD, and the activation of Fyn signaling was measured following CNO treatment. We found that remote stimulation of cAMP signaling in DMS dMSNs activates Fyn and promotes the phosphorylation of the Fyn substrate, GluN2B. In contract, remote activation of GαsDREADD in DLS dMSNs did not alter Fyn signaling. We then tested whether activation of GαsDREADD in DMS dMSNs or iMSNs alters alcohol intake and observed that CNO-dependent activation of GαsDREADD in DMS dMSNs but not iMSNs increases alcohol but not saccharin intake. Finally, we examined the contribution of Fyn to GαsDREADD-dependent increase in alcohol intake, and found that systemic administration of the Fyn inhibitor, AZD0503 blocks GαsDREADD-dependent increase in alcohol consumption. Our results suggest that the cAMP-Fyn axis in the DMS dMSNs is a molecular transducer of mechanisms underlying the development of excessive alcohol consumption.
Collapse
Affiliation(s)
- Yann Ehinger
- Department of Neurology, University of California San Francisco (UCSF), San Francisco, CA, 94143, USA
| | - Nadege Morisot
- Department of Neurology, University of California San Francisco (UCSF), San Francisco, CA, 94143, USA
- Nkarta Therapeutics, San Francisco, CA, USA
| | - Khanhky Phamluong
- Department of Neurology, University of California San Francisco (UCSF), San Francisco, CA, 94143, USA
| | - Samuel A Sakhai
- Department of Neurology, University of California San Francisco (UCSF), San Francisco, CA, 94143, USA
- Sage Therapeutics, San Francisco, CA, USA
| | - Drishti Soneja
- Department of Neurology, University of California San Francisco (UCSF), San Francisco, CA, 94143, USA
| | - Martin F Adrover
- National Institutes of Alcohol Abuse and Alcoholism, National Institute of Health, Bethesda, MD, 20892, USA
- INGEBI, CONICET, Buenos Aires, Argentina
| | - Veronica A Alvarez
- National Institutes of Alcohol Abuse and Alcoholism, National Institute of Health, Bethesda, MD, 20892, USA
- Center on Compulsive Behaviors, Intramural Research Program, National Institute of Health, Bethesda, MD, 20892, USA
| | - Dorit Ron
- Department of Neurology, University of California San Francisco (UCSF), San Francisco, CA, 94143, USA.
| |
Collapse
|
4
|
Morisot N, Berger AL, Phamluong K, Cross A, Ron D. The Fyn kinase inhibitor, AZD0530, suppresses mouse alcohol self-administration and seeking. Addict Biol 2019; 24:1227-1234. [PMID: 30536923 PMCID: PMC7032525 DOI: 10.1111/adb.12699] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/15/2018] [Accepted: 10/23/2018] [Indexed: 11/27/2022]
Abstract
Fyn is a member of the Src family of protein tyrosine kinases (PTKs) that plays an important role not only in normal synaptic functions but also in brain pathologies including alcohol use disorder. We previously reported that repeated cycles of binge drinking and withdrawal activate Fyn in the dorsomedial striatum (DMS) of rodents, and that Fyn signaling in the DMS contributes to rat alcohol intake and relapse. Here, we used AZD0530, a CNS penetrable inhibitor of Src PTKs developed for the treatment of Alzheimer disease and cancer and tested its efficacy to suppress alcohol-dependent molecular and behavioral effects. We show that systemic administration of AZD0530 prevents alcohol-induced Fyn activation and GluN2B phosphorylation in the DMS of mice. We further report that a single dose of AZD0530 reduces alcohol operant self-administration and promotes extinction of alcohol self-administration without altering basal and dopamine D1 receptor-dependent locomotion. Together, our findings suggest that AZD0530, through its inhibitory actions on Fyn kinase, dampens alcohol seeking and drinking.
Collapse
Affiliation(s)
- Nadege Morisot
- Department of Neurology, University of California San Francisco, San Francisco, California
| | - Anthony L Berger
- Department of Neurology, University of California San Francisco, San Francisco, California
| | - Khanhky Phamluong
- Department of Neurology, University of California San Francisco, San Francisco, California
| | - Alan Cross
- Innovative Medicines and Early Development Biotech Unit, AstraZeneca Neuroscience, Cambridge, Massachusetts
| | - Dorit Ron
- Department of Neurology, University of California San Francisco, San Francisco, California
| |
Collapse
|
5
|
Logrip ML. Molecular tools to elucidate factors regulating alcohol use. Alcohol 2019; 74:3-9. [PMID: 30033149 DOI: 10.1016/j.alcohol.2018.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/15/2018] [Accepted: 03/15/2018] [Indexed: 12/20/2022]
Abstract
Alcohol use disorder (AUD) is a pervasive societal problem, marked by high levels of alcohol intake and recidivism. Despite these common disease traits, individuals diagnosed with AUD display a range of disordered drinking and alcohol-related behaviors. The diversity in disease presentation, as well as the established polygenic nature of the disorder and complex neurocircuitry, speaks to the variety of neurochemical changes resulting from alcohol intake that may differentially regulate alcohol-related behaviors. Investigations into the molecular adaptations responsible for maladaptive alcohol-related behavioral outcomes require an ever-evolving set of molecular tools to elucidate with increasing precision how alcohol alters behavior through neurochemical changes. This review highlights recent advances in molecular methodology, addressing how incorporation of these cutting-edge techniques not only may enhance current knowledge of the molecular bases of AUD, but also may facilitate identification of improved treatment targets that may be therapeutic in specific subpopulations of AUD individuals.
Collapse
|
6
|
Jin DZ, Mao LM, Wang JQ. Amphetamine activates non-receptor tyrosine kinase Fyn and stimulates ERK phosphorylation in the rat striatum in vivo. Eur J Pharmacol 2018; 843:45-54. [PMID: 30419241 DOI: 10.1016/j.ejphar.2018.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 11/02/2018] [Accepted: 11/06/2018] [Indexed: 12/16/2022]
Abstract
The psychostimulant amphetamine (AMPH) has an impact on a variety of cellular activities in striatal neurons, although underlying signaling mechanisms are incompletely understood. The Src family kinase (SFK) is among key signaling molecules enriched in striatal neurons and is involved in the regulation of a set of discrete downstream targets. Given the likelihood that AMPH may regulate SFKs, we investigated and characterized the effect of AMPH on SFK phosphorylation and enzymatic activity in rat striatal neurons in vivo. We found that AMPH elevated SFK Y416 phosphorylation in striatal slices and the adult rat striatum. This elevation was concentration- and time-dependent and occurred in all subdivisions of the striatum, including the caudate putamen and nucleus accumbens (core and shell). The dopamine D1 receptor antagonist SCH23390 blocked the effect of AMPH. Between Fyn and Src, AMPH elevated phosphorylation of immunoprecipitated Fyn but not Src and increased Fyn kinase activity in the striatum. In parallel with SFKs, striatal ERK phosphorylation was increased by AMPH. This increase in ERK phosphorylation was reduced by the SFK inhibitor PP2. These results demonstrate that AMPH is able to activate SFKs (mainly Fyn) in striatal neurons via a D1 receptor-dependent mechanism. Activated SFKs participate in processing the concomitant ERK response to AMPH.
Collapse
Affiliation(s)
- Dao-Zhong Jin
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA.
| | - Li-Min Mao
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - John Q Wang
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA; Department of Anesthesiology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA.
| |
Collapse
|
7
|
Targeting the intracellular signaling "STOP" and "GO" pathways for the treatment of alcohol use disorders. Psychopharmacology (Berl) 2018; 235:1727-1743. [PMID: 29654346 PMCID: PMC5949137 DOI: 10.1007/s00213-018-4882-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/12/2018] [Indexed: 12/12/2022]
Abstract
In recent years, research has identified the molecular and neural substrates underlying the transition of moderate "social" consumption of alcohol to the characteristic alcohol use disorder (AUD) phenotypes including excessive and compulsive alcohol use which we define in the review as the GO signaling pathways. In addition, growing evidence points to the existence of molecular mechanisms that keep alcohol consumption in check and that confer resilience for the development of AUD which we define herein as the STOP signaling pathways. In this review, we focus on examples of the GO and the STOP intracellular signaling pathways and discuss our current knowledge of how manipulations of these pathways may be used for the treatment of AUD.
Collapse
|