1
|
Liang C, Zhai TY, Fang S, Chen J, Liu LM, Yu N, Zhao HB. ATP-gated P2x7 receptor is a major channel type at type II auditory nerves and required for hearing sensitivity efferent controlling and noise protection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618333. [PMID: 39464017 PMCID: PMC11507775 DOI: 10.1101/2024.10.14.618333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Hearing sensitivity and noise protection are mediated and determined by negative feedback of the cochlear efferent system. Type II auditory nerves (ANs) innervate outer hair cells (OHCs) in the cochlea and provide an input to this efferent control. However, little is known about underlying channel information. Here, we report that ATP-gated P2x7 receptor had a predominant expression at type II ANs and the synaptic areas under inner hair cells and OHCs with lateral and medial olivocochlear efferent nerves. Knockout (KO) of P2x7 increased hearing sensitivity with enhanced acoustic startle response (ASR), auditory brainstem response (ABR), and cochlear microphonics (CM) by increasing OHC electromotility, an active cochlear amplifier in mammals. P2x7 KO also increased susceptibility to noise. Middle level noise exposure could impair active cochlear mechanics resulting in permanent hearing loss in P2x7 KO mice. These data demonstrate that P2x7 receptors have a critical role in type II AN function and the cochlear efferent system to control hearing sensitivity; deficiency of P2x7 receptors can impair the cochlear efferent suppression leading to hearing oversensitivity and susceptibility to noise.
Collapse
|
2
|
Gardner EC, Tramont C, Bachanová P, Wang C, Do H, Boutz DR, Kar S, Zemelman BV, Gollihar JD, Ellington AD. Engineering a human P2X2 receptor with altered ligand selectivity in yeast. J Biol Chem 2024; 300:107248. [PMID: 38556082 PMCID: PMC11063903 DOI: 10.1016/j.jbc.2024.107248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 03/14/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024] Open
Abstract
P2X receptors are a family of ligand gated ion channels found in a range of eukaryotic species including humans but are not naturally present in the yeast Saccharomyces cerevisiae. We demonstrate the first recombinant expression and functional gating of the P2X2 receptor in baker's yeast. We leverage the yeast host for facile genetic screens of mutant P2X2 by performing site saturation mutagenesis at residues of interest, including SNPs implicated in deafness and at residues involved in native binding. Deep mutational analysis and rounds of genetic engineering yield mutant P2X2 F303Y A304W, which has altered ligand selectivity toward the ATP analog AMP-PNP. The F303Y A304W variant shows over 100-fold increased intracellular calcium amplitudes with AMP-PNP compared to the WT receptor and has a much lower desensitization rate. Since AMP-PNP does not naturally activate P2X receptors, the F303Y A304W P2X2 may be a starting point for downstream applications in chemogenetic cellular control. Interestingly, the A304W mutation selectively destabilizes the desensitized state, which may provide a mechanistic basis for receptor opening with suboptimal agonists. The yeast system represents an inexpensive, scalable platform for ion channel characterization and engineering by circumventing the more expensive and time-consuming methodologies involving mammalian hosts.
Collapse
Affiliation(s)
- Elizabeth C Gardner
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Caitlin Tramont
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Petra Bachanová
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Chad Wang
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Hannah Do
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Daniel R Boutz
- Antibody Discovery and Accelerated Protein Therapeutics, Department of Pathology & Genomic Medicine, Houston Methodist Research Institute, Houston, Texas, USA
| | - Shaunak Kar
- Antibody Discovery and Accelerated Protein Therapeutics, Department of Pathology & Genomic Medicine, Houston Methodist Research Institute, Houston, Texas, USA
| | - Boris V Zemelman
- Department of Neuroscience, Center for Learning and Memory, The University of Texas at Austin, Austin, Texas, USA.
| | - Jimmy D Gollihar
- Antibody Discovery and Accelerated Protein Therapeutics, Department of Pathology & Genomic Medicine, Houston Methodist Research Institute, Houston, Texas, USA.
| | - Andrew D Ellington
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, USA.
| |
Collapse
|
3
|
Gasparri F, Sarkar D, Bielickaite S, Poulsen MH, Hauser AS, Pless SA. P2X2 receptor subunit interfaces are missense variant hotspots where mutations tend to increase apparent ATP affinity. Br J Pharmacol 2022; 179:3859-3874. [PMID: 35285517 PMCID: PMC9314836 DOI: 10.1111/bph.15830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 01/31/2022] [Accepted: 02/09/2022] [Indexed: 11/30/2022] Open
Abstract
Background and Purpose P2X receptors are trimeric ligand‐gated ion channels that open a cation‐selective pore in response to ATP binding to their large extracellular domain. The seven known P2X subtypes can assemble as homotrimeric or heterotrimeric complexes and contribute to numerous physiological functions, including nociception, inflammation and hearing. The overall structure of P2X receptors is well established, but little is known about the range and prevalence of human genetic variations and the functional implications of specific domains. Experimental Approach Here, we examine the impact of P2X2 receptor inter‐subunit interface missense variants identified in the human population or by structural predictions. We test both single and double mutants through electrophysiological and biochemical approaches. Key Results We demonstrate that predicted extracellular domain inter‐subunit interfaces display a higher‐than‐expected density of missense variations and that the majority of mutations that disrupt putative inter‐subunit interactions result in channels with higher apparent ATP affinity. Lastly, we show that double mutants at the subunit interface show significant energetic coupling, especially if located in close proximity. Conclusion and Implications We provide the first structural mapping of the mutational distribution across the human population in a ligand‐gated ion channel and show that the density of missense mutations is constrained between protein domains, indicating evolutionary selection at the domain level. Our data may indicate that, unlike other ligand‐gated ion channels, P2X2 receptors have evolved an intrinsically high threshold for activation, possibly to allow for additional modulation or as a cellular protection mechanism against overstimulation.
Collapse
Affiliation(s)
- Federica Gasparri
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Debayan Sarkar
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Sarune Bielickaite
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Mette Homann Poulsen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
4
|
Chen X, Abad C, Chen ZY, Young JI, Gurumurthy CB, Walz K, Liu XZ. Generation and characterization of a P2rx2 V60L mouse model for DFNA41. Hum Mol Genet 2021; 30:985-995. [PMID: 33791800 DOI: 10.1093/hmg/ddab077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/06/2021] [Accepted: 03/12/2021] [Indexed: 11/13/2022] Open
Abstract
P2RX2 encodes the P2X2 receptor, which is an adenosine triphosphate (ATP) gated (purinoreceptor) ion channel. P2RX2 c. 178G > T (p.V60L) mutation was previously identified in two unrelated Chinese families, as the cause of human DFNA41, a form of dominant, early-onset and progressive sensorineural hearing loss. We generated and characterized a knock-in mouse model based on human p.V60L mutation that recapitulates the human phenotype. Heterozygous KI mice started to exhibit hearing loss at 21-day-old and progressed to deafness by 6-month-old. Vestibular dysfunction was also observed in mutant mice. Abnormal morphology of the inner hair cells and ribbon synapses was progressively observed in KI animals suggesting that P2rx2 plays a role in the membrane spatial location of the ribbon synapses. These results suggest that P2rx2 is essential for acoustic information transfer, which can be the molecular mechanism related to hearing loss.
Collapse
Affiliation(s)
- Xiaoya Chen
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.,Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Clemer Abad
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Zheng-Yi Chen
- Department of Otolaryngology and Program in Neuroscience, Harvard Medical School and Eaton Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114, USA
| | - Juan I Young
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA.,Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Channabasavaiah B Gurumurthy
- Mouse Genome Engineering Core Facility, Vice Chancellor for Research Office, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Katherina Walz
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA.,Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Xue Zhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.,Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
5
|
Korrapati S, Taukulis I, Olszewski R, Pyle M, Gu S, Singh R, Griffiths C, Martin D, Boger E, Morell RJ, Hoa M. Single Cell and Single Nucleus RNA-Seq Reveal Cellular Heterogeneity and Homeostatic Regulatory Networks in Adult Mouse Stria Vascularis. Front Mol Neurosci 2019; 12:316. [PMID: 31920542 PMCID: PMC6933021 DOI: 10.3389/fnmol.2019.00316] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/05/2019] [Indexed: 12/20/2022] Open
Abstract
The stria vascularis (SV) generates the endocochlear potential (EP) in the inner ear and is necessary for proper hair cell mechanotransduction and hearing. While channels belonging to SV cell types are known to play crucial roles in EP generation, relatively little is known about gene regulatory networks that underlie the ability of the SV to generate and maintain the EP. Using single cell and single nucleus RNA-sequencing, we identify and validate known and rare cell populations in the SV. Furthermore, we establish a basis for understanding molecular mechanisms underlying SV function by identifying potential gene regulatory networks as well as druggable gene targets. Finally, we associate known deafness genes with adult SV cell types. This work establishes a basis for dissecting the genetic mechanisms underlying the role of the SV in hearing and will serve as a basis for designing therapeutic approaches to hearing loss related to SV dysfunction.
Collapse
Affiliation(s)
- Soumya Korrapati
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Ian Taukulis
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Rafal Olszewski
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Madeline Pyle
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Shoujun Gu
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Riya Singh
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Carla Griffiths
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Daniel Martin
- Biomedical Research Informatics Office, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Erich Boger
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Robert J. Morell
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Michael Hoa
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
6
|
Hearing loss mutations alter the functional properties of human P2X2 receptor channels through distinct mechanisms. Proc Natl Acad Sci U S A 2019; 116:22862-22871. [PMID: 31636190 DOI: 10.1073/pnas.1912156116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Activation of P2X2 receptor channels by extracellular ATP is thought to play important roles in cochlear adaptation to elevated sound levels and protection from overstimulation. Each subunit of a trimeric P2X2 receptor is composed of intracellular N and C termini, a large extracellular domain containing the ATP binding site and 2 transmembrane helices (TM1 and TM2) that form a cation permeable pore. Whole-exome sequencing and linkage analysis have identified 3 hP2X2 receptor mutations (V60L, D273Y, and G353R) that cause dominantly inherited progressive sensorineural hearing loss (DFNA41). Available structures of related P2X receptors suggest that these 3 mutations localize to TM1 (V60L), TM2 (G353R), or the β-sheet linking the TMs to the extracellular ATP binding sites (D273Y). Previous studies have concluded that the V60L and G353R mutants are nonfunctional, whereas the D273Y mutant has yet to be studied. Here, we demonstrate that both V60L and G353R mutations do form functional channels, whereas the D273Y mutation prevents the expression of functional channels on the cell membrane. Our results show that the V60L mutant forms constitutively active channels that are insensitive to ATP or the antagonist suramin, suggesting uncoupling of the pore and the ligand binding domains. In contrast, the G353R mutant can be activated by ATP but exhibits alterations in sensitivity to ATP, inward rectification, and ion selectivity. Collectively, our results demonstrate that the loss of functional P2X2 receptors or distinct alterations of its functional properties lead to noise-induced hearing loss, highlighting the importance of these channels in preserving hearing.
Collapse
|
7
|
Gasparri F, Wengel J, Grutter T, Pless SA. Molecular determinants for agonist recognition and discrimination in P2X2 receptors. J Gen Physiol 2019; 151:898-911. [PMID: 31126967 PMCID: PMC6605687 DOI: 10.1085/jgp.201912347] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/06/2019] [Indexed: 12/26/2022] Open
Abstract
P2X receptors (P2XRs) are ligand-gated cation channels involved in pain and inflammation. Gasparri et al. show that the backbone carbonyl atoms of amino acid residue Thr184 are involved in ligand discrimination, while those of Lys69 contribute mostly to ligand recognition by rat P2X2Rs. P2X receptors (P2XRs) are trimeric ligand-gated ion channels that open a cation-selective pore in response to ATP binding. P2XRs contribute to synaptic transmission and are involved in pain and inflammation, thus representing valuable drug targets. Recent crystal structures have confirmed the findings of previous studies with regards to the amino acid chains involved in ligand recognition, but they have also suggested that backbone carbonyl atoms contribute to ATP recognition and discrimination. Here we use a combination of site-directed mutagenesis, amide-to-ester substitutions, and a range of ATP analogues with subtle alterations to either base or sugar component to investigate the contributions of backbone carbonyl atoms toward ligand recognition and discrimination in rat P2X2Rs. Our findings demonstrate that while the Lys69 backbone carbonyl makes an important contribution to ligand recognition, the discrimination between different ligands is mediated by both the side chain and the backbone carbonyl oxygen of Thr184. Together, our data demonstrate how conserved elements in P2X2Rs recognize and discriminate agonists.
Collapse
Affiliation(s)
- Federica Gasparri
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Wengel
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Thomas Grutter
- University of Strasbourg, Centre National de la Recherche Scientifique, Conception et Application de Molécules Bioactives Unité Mixte de Recherche 7199, Strasbourg, France
| | - Stephan A Pless
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|