1
|
Zhen L, Chen Y, Gao J, Li B, Jia Y. MicroRNA-99b Regulates Bacillus Calmette-Guerin-Infected Immature Dendritic Cell-Induced CD4+ T Cell Differentiation by Targeting mTOR Signaling. Crit Rev Immunol 2024; 44:35-47. [PMID: 38305335 DOI: 10.1615/critrevimmunol.2023050312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
This study aimed to elucidate the mechanisms by which microRNA-99b (miR-99b) regulates CD4+ T cell differentiation induced by Bacillus Calmette-Guerin (BCG)-infected immature dendritic cells (imDCs). Levels of miR-99b, interferon-gamma (IFN-γ), Foxp3, interleukin (IL)-10, IL-17, IL-23, and ROR-γt were assessed. Effects of miR-99b inhibition and mechanistic target of rapamycin (mTOR) agonist on Th17/Treg cell ratio and cytokine levels (IL-6, IL-17, IL-23) were studied. Expression of mTOR, S6K1, and 4E-BP1 related to miR-99b was analyzed. BCG-infected imDCs led to CD4+ T cell differentiation and altered levels of IFN-γ, Foxp3, IL-10, miR-99b, IL-17, IL-23, and ROR-γt. Inhibition of miR-99b increased the Th17/Treg cell ratio in CD4+ T cells co-cultured with BCG-infected imDCs, and this effect was further enhanced by the mTOR agonist. Additionally, the miR-99b inhibitor elevated the levels of IL-6, IL-17, and IL-23 when CD4+ T cells were co-cultured with BCG-infected imDCs, and the mTOR agonist further amplified this increase. Notably, miR-99b negatively regulated mTOR signaling, as the miR-99b inhibitor upregulated the expression levels of mTOR, S6K1, and 4E-BP1 while decreasing miR-99b. It was concluded that miR-99b modulates CD4+ T cell differentiation via mTOR pathway in response to BCG-infected im-DCs. Inhibiting miR-99b affects Th17/Treg ratio and pro-inflammatory cytokines, potentially impacting tuberculosis immunotherapies.
Collapse
Affiliation(s)
- Libo Zhen
- Department of Tuberculosis, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou 310030, China
| | - Yuanyuan Chen
- Tuberculosis Laboratory, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou 310030, China
| | - Juwei Gao
- Department of Oncology, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310061, China
| | - Boying Li
- Department of Tuberculosis, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou 310030, China
| | - Yangmin Jia
- Department of Occupational Medicine, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou 310030, China
| |
Collapse
|
2
|
Liao L, Yao Z, Kong J, Zhang X, Li H, Chen W, Xie Q. Exploring the role of miRNAs in early chicken embryonic development and their significance. Poult Sci 2023; 102:103105. [PMID: 37852050 PMCID: PMC10587638 DOI: 10.1016/j.psj.2023.103105] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/10/2023] [Accepted: 09/07/2023] [Indexed: 10/20/2023] Open
Abstract
In the early stages of embryonic development, a precise and strictly controlled hierarchy of gene expression is essential to ensure proper development of all cell types and organs. To better understand this gene control process, we constructed a small RNA library from 1- to 5-day-old chick embryos, and identified 2,459 miRNAs including 827 existing, 695 known, and 937 novel miRNAs with bioinformatic analysis. There was absolute high expression of a number of miRNAs in each stage, including gga-miR-363-3p (Em1d), gga-miR-26a-5p (Em2d and Em3d), gga-miR-10a-5p (Em4d), and gga-miR-199-5p (Em5d). We evaluated enriched miRNA profiles, identifying VEGF, Insulin, ErbB, MAPK, Hedgehog, TLR and Hippo signaling pathways as primary regulatory mechanisms enabling complex morphogenetic transformations within tight temporal constraints. Pathway analysis revealed miRNAs as pivotal nodes of interaction, coordinating cascades of gene expression critical for cell fate determination, proliferation, migration, and differentiation across germ layers and developing organ systems. Weighted Gene Co-Expression Network Analysis (WGCNA) generated hub miRNAs whose modular connections spanned regulatory networks, including: gga-miR-181a-3p (blue module), coordinating immunegenesis and myogenesis; gga-miR-126-3p (brown module), regulating vasculogenesis and angiogenesis; gga-miR-302c-5p (turquoise module), enabling pluripotency and self-renew; and gga-miR-429-3p (yellow module), modulating neurogenesis and osteogenesis. The findings of this study extend the knowledge of miRNA expression in early embryonic development of chickens, providing insights into the intricate gene control process that helps ensure proper development.
Collapse
Affiliation(s)
- Liqin Liao
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, Guangdong, China
| | - Ziqi Yao
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jie Kong
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
| | - Xinheng Zhang
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, Guangdong, China
| | - Hongxin Li
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, Guangdong, China
| | - Weiguo Chen
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
| | - Qingmei Xie
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, Guangdong, China.
| |
Collapse
|
3
|
Shyamasundar S, Ramya S, Kandilya D, Srinivasan DK, Bay BH, Ansari SA, Dheen ST. Maternal Diabetes Deregulates the Expression of Mecp2 via miR-26b-5p in Mouse Embryonic Neural Stem Cells. Cells 2023; 12:1516. [PMID: 37296636 PMCID: PMC10252249 DOI: 10.3390/cells12111516] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Maternal diabetes has been associated with a greater risk of neurodevelopmental disorders in offspring. It has been established that hyperglycemia alters the expression of genes and microRNAs (miRNAs) regulating the fate of neural stem cells (NSCs) during brain development. In this study, the expression of methyl-CpG-binding protein-2 (Mecp2), a global chromatin organizer and a crucial regulator of synaptic proteins, was analyzed in NSCs obtained from the forebrain of embryos of diabetic mice. Mecp2 was significantly downregulated in NSCs derived from embryos of diabetic mice when compared to controls. miRNA target prediction revealed that the miR-26 family could regulate the expression of Mecp2, and further validation confirmed that Mecp2 is a target of miR-26b-5p. Knockdown of Mecp2 or overexpression of miR-26b-5p altered the expression of tau protein and other synaptic proteins, suggesting that miR-26b-5p alters neurite outgrowth and synaptogenesis via Mecp2. This study revealed that maternal diabetes upregulates the expression of miR-26b-5p in NSCs, resulting in downregulation of its target, Mecp2, which in turn perturbs neurite outgrowth and expression of synaptic proteins. Overall, hyperglycemia dysregulates synaptogenesis that may manifest as neurodevelopmental disorders in offspring from diabetic pregnancy.
Collapse
Affiliation(s)
- Sukanya Shyamasundar
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
| | - Seshadri Ramya
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
| | - Deepika Kandilya
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
| | - Dinesh Kumar Srinivasan
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
| | - Boon Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
| | - Suraiya Anjum Ansari
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - S Thameem Dheen
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
| |
Collapse
|
4
|
Goo BS, Mun DJ, Kim S, Nhung TTM, Lee SB, Woo Y, Kim SJ, Suh BK, Park SJ, Lee HE, Park K, Jang H, Rah JC, Yoon KJ, Baek ST, Park SY, Park SK. Schizophrenia-associated Mitotic Arrest Deficient-1 (MAD1) regulates the polarity of migrating neurons in the developing neocortex. Mol Psychiatry 2023; 28:856-870. [PMID: 36357673 PMCID: PMC9908555 DOI: 10.1038/s41380-022-01856-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022]
Abstract
Although large-scale genome-wide association studies (GWAS) have identified an association between MAD1L1 (Mitotic Arrest Deficient-1 Like 1) and the pathology of schizophrenia, the molecular mechanisms underlying this association remain unclear. In the present study, we aimed to address these mechanisms by examining the role of MAD1 (the gene product of MAD1L1) in key neurodevelopmental processes in mice and human organoids. Our findings indicated that MAD1 is highly expressed during active cortical development and that MAD1 deficiency leads to impairments in neuronal migration and neurite outgrowth. We also observed that MAD1 is localized to the Golgi apparatus and regulates vesicular trafficking from the Golgi apparatus to the plasma membrane, which is required for the growth and polarity of migrating neurons. In this process, MAD1 physically interacts and collaborates with the kinesin-like protein KIFC3 (kinesin family member C3) to regulate the morphology of the Golgi apparatus and neuronal polarity, thereby ensuring proper neuronal migration and differentiation. Consequently, our findings indicate that MAD1 is an essential regulator of neuronal development and that alterations in MAD1 may underlie schizophrenia pathobiology.
Collapse
Affiliation(s)
- Bon Seong Goo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Dong Jin Mun
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Seunghyun Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Truong Thi My Nhung
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Su Been Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Youngsik Woo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Soo Jeong Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Bo Kyoung Suh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Sung Jin Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Hee-Eun Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Kunyou Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Hyunsoo Jang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jong-Cheol Rah
- Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Ki-Jun Yoon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seung Tae Baek
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Seung-Yeol Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.
| | - Sang Ki Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.
| |
Collapse
|
5
|
Luo J, Jiang N, Chen J, Yu G, Zhao J, Yang C, Zhao Y. Inhibition of miR-423-5p Exerts Neuroprotective Effects in an Experimental Rat Model of Cerebral Ischemia/Reperfusion Injury. Neuroscience 2022; 503:95-106. [PMID: 36067951 DOI: 10.1016/j.neuroscience.2022.08.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022]
Abstract
MicroRNAs (miRNAs) are widely acknowledged to play a unique role in cerebrovascular disease. This research investigates the function of microRNAs in ischemic stroke via a middle cerebral artery occlusion (MCAO) model. Four differentially expressed microRNAs in rat brains were identified by bioinformatics analysis, and qRT-PCR showed that miR-423-5p exhibited the highest expression in cerebral ischemia/reperfusion injury in rats, with peak levels observed at 24 hours. After microRNA inhibitors and mimics were administrated in the rat model of MCAO, the neurological scores and brain water content were detected, and triphenyltetrazolium chloride (TTC), Hematoxylin and Eosin (H&E), and Nissl staining were conducted to explore the influence of miR-423-5p on ischemic stroke. Subsequently, western blot, ELISA, MPO, TUNEL and commercial assay kits were applied to assess the influence of miR-423-5p on NLRP3 inflammasome, apoptosis, and oxidative stress levels in ischemic penumbra tissue. The results showed that miR-423-5p knockdown could effectively improve neurological indicators, such as cerebral infarct volume, brain water content, neurological scores, and nerve tissue damage, and inhibit the NLRP3 inflammasome, apoptosis, and oxidative stress. In contrast, the miR-423-5p mimic yielded opposite results. In conclusion, inhibition of miR-423-5p expression could effectively attenuate ischemic stroke and might be considered a promising target for stroke.
Collapse
Affiliation(s)
- Jing Luo
- Department of Pathology, Chongqing Medical University, Chongqing 400016, China; Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ning Jiang
- Department of Pathology, Chongqing Medical University, Chongqing 400016, China; Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jialei Chen
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Gao Yu
- Department of Pathology, Chongqing Medical University, Chongqing 400016, China; Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jing Zhao
- Department of Pathophysiology, Chongqing Medical University, Chongqing 400016, China
| | - Changhong Yang
- Department of Bioinformatics, Chongqing Medical University, Chongqing, 400016, China.
| | - Yong Zhao
- Department of Pathology, Chongqing Medical University, Chongqing 400016, China; Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
6
|
Liu B, Shyr Y, Liu Q. Pan-Cancer Analysis Reveals Common and Specific Relationships between Intragenic miRNAs and Their Host Genes. Biomedicines 2021; 9:1263. [PMID: 34572448 PMCID: PMC8471046 DOI: 10.3390/biomedicines9091263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 11/21/2022] Open
Abstract
MicroRNAs (miRNAs) are small endogenous non-coding RNAs that play important roles in regulating gene expression. Most miRNAs are located within or close to genes (host). miRNAs and their host genes have either coordinated or independent transcription. We performed a comprehensive investigation on co-transcriptional patterns of miRNAs and host genes based on 4707 patients across 21 cancer types. We found that only 11.6% of miRNA-host pairs were co-transcribed consistently and strongly across cancer types. Most miRNA-host pairs showed a strong coexpression only in some specific cancer types, demonstrating a high heterogenous pattern. For two particular types of intergenic miRNAs, readthrough and divergent miRNAs, readthrough miRNAs showed higher coexpression with their host genes than divergent ones. miRNAs located within non-coding genes had tighter co-transcription with their hosts than those located within protein-coding genes, especially exonic and junction miRNAs. A few precursor miRNAs changed their dominate form between 5' and 3' strands in different cancer types, including miR-486, miR-99b, let-7e, miR-125a, let-7g, miR-339, miR-26a, miR-16, and miR-218, whereas only two miRNAs with multiple host genes switched their co-transcriptional partner in different cancer types (miR-219a-1 with SLC39A7/HSD17B8 and miR-3615 with RAB37/SLC9A3R1). miRNAs generated from distinct precursors (such as miR-125b from miR-125b-1 or miR-125b-2) were more likely to have cancer-dependent main contributors. miRNAs and hosts were less co-expressed in KIRC than other cancer types, possibly due to its frequent VHL mutations. Our findings shed new light on miRNA biogenesis and cancer diagnosis and treatments.
Collapse
Affiliation(s)
- Baohong Liu
- Key Laboratory of Veterinary Parasitology of Gansu Province, State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Yu Shyr
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Qi Liu
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
7
|
Sauer M, Was N, Ziegenhals T, Wang X, Hafner M, Becker M, Fischer U. The miR-26 family regulates neural differentiation-associated microRNAs and mRNAs by directly targeting REST. J Cell Sci 2021; 134:jcs257535. [PMID: 34151974 PMCID: PMC11443607 DOI: 10.1242/jcs.257535] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/11/2021] [Indexed: 01/13/2023] Open
Abstract
Repressor element 1-silencing transcription factor (REST) plays a crucial role in the differentiation of neural progenitor cells (NPCs). C-terminal domain small phosphatases (CTDSPs) are REST effector proteins that reduce RNA polymerase II activity on genes required for neurogenesis. miR-26b regulates neurogenesis in zebrafish by targeting ctdsp2 mRNA, but the molecular events triggered by this microRNA (miR) remain unknown. Here, we show in a murine embryonic stem cell differentiation paradigm that inactivation of miR-26 family members disrupts the formation of neurons and astroglia and arrests neurogenesis at the neural progenitor level. Furthermore, we show that miR-26 directly targets Rest, thereby inducing the expression of a large set of REST complex-repressed neuronal genes, including miRs required for induction of the neuronal gene expression program. Our data identify the miR-26 family as the trigger of a self-amplifying system required for neural differentiation that acts upstream of REST-controlled miRs.
Collapse
Affiliation(s)
- Mark Sauer
- Institute for Medical Radiology and Cell Research (MSZ) in the Center for Experimental Molecular Medicine (ZEMM), University of Würzburg, D-97078 Würzburg, Germany
| | - Nina Was
- Institute for Medical Radiology and Cell Research (MSZ) in the Center for Experimental Molecular Medicine (ZEMM), University of Würzburg, D-97078 Würzburg, Germany
| | - Thomas Ziegenhals
- Department of Biochemistry, Theodor Boveri-Institute, University of Würzburg, D-97074 Würzburg, Germany
| | - Xiantao Wang
- RNA Molecular Biology Group, Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Disease, Bethesda, MD 20892, USA
| | - Markus Hafner
- RNA Molecular Biology Group, Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Disease, Bethesda, MD 20892, USA
| | - Matthias Becker
- Institute for Medical Radiology and Cell Research (MSZ) in the Center for Experimental Molecular Medicine (ZEMM), University of Würzburg, D-97078 Würzburg, Germany
| | - Utz Fischer
- Department of Biochemistry, Theodor Boveri-Institute, University of Würzburg, D-97074 Würzburg, Germany
| |
Collapse
|
8
|
Chen Y, Tian Z, He L, Liu C, Wang N, Rong L, Liu B. Exosomes derived from miR-26a-modified MSCs promote axonal regeneration via the PTEN/AKT/mTOR pathway following spinal cord injury. Stem Cell Res Ther 2021; 12:224. [PMID: 33820561 PMCID: PMC8022427 DOI: 10.1186/s13287-021-02282-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/11/2021] [Indexed: 12/16/2022] Open
Abstract
Background Exosomes derived from the bone marrow mesenchymal stem cell (MSC) have shown great potential in spinal cord injury (SCI) treatment. This research was designed to investigate the therapeutic effects of miR-26a-modified MSC-derived exosomes (Exos-26a) following SCI. Methods Bioinformatics and data mining were performed to explore the role of miR-26a in SCI. Exosomes were isolated from miR-26a-modified MSC culture medium by ultracentrifugation. A series of experiments, including assessment of Basso, Beattie and Bresnahan scale, histological evaluation, motor-evoked potential recording, diffusion tensor imaging, and western blotting, were performed to determine the therapeutic influence and the underlying molecular mechanisms of Exos-26a in SCI rats. Results Exos-26a was shown to promote axonal regeneration. Furthermore, we found that exosomes derived from miR-26a-modified MSC could improve neurogenesis and attenuate glial scarring through PTEN/AKT/mTOR signaling cascades. Conclusions Exosomes derived from miR-26a-modified MSC could activate the PTEN-AKT-mTOR pathway to promote axonal regeneration and neurogenesis and attenuate glia scarring in SCI and thus present great potential for SCI treatment. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02282-0.
Collapse
Affiliation(s)
- Yuyong Chen
- Department of Spine Surgery, The 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, 510630, Guangdong, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, 510630, Guangdong, China
| | - Zhenming Tian
- Department of Spine Surgery, The 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, 510630, Guangdong, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, 510630, Guangdong, China
| | - Lei He
- Department of Spine Surgery, The 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, 510630, Guangdong, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, 510630, Guangdong, China
| | - Can Liu
- Department of Spine Surgery, The 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, 510630, Guangdong, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, 510630, Guangdong, China
| | - Nangxiang Wang
- Department of Spine Surgery, The 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, 510630, Guangdong, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, 510630, Guangdong, China
| | - Limin Rong
- Department of Spine Surgery, The 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China. .,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, 510630, Guangdong, China. .,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, 510630, Guangdong, China.
| | - Bin Liu
- Department of Spine Surgery, The 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China. .,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, 510630, Guangdong, China. .,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
9
|
Segaran RC, Chan LY, Wang H, Sethi G, Tang FR. Neuronal Development-Related miRNAs as Biomarkers for Alzheimer's Disease, Depression, Schizophrenia and Ionizing Radiation Exposure. Curr Med Chem 2021; 28:19-52. [PMID: 31965936 DOI: 10.2174/0929867327666200121122910] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/30/2019] [Accepted: 10/22/2019] [Indexed: 11/22/2022]
Abstract
Radiation exposure may induce Alzheimer's disease (AD), depression or schizophrenia. A number of experimental and clinical studies suggest the involvement of miRNA in the development of these diseases, and also in the neuropathological changes after brain radiation exposure. The current literature review indicated the involvement of 65 miRNAs in neuronal development in the brain. In the brain tissue, blood, or cerebral spinal fluid (CSF), 11, 55, or 28 miRNAs are involved in the development of AD respectively, 89, 50, 19 miRNAs in depression, and 102, 35, 8 miRNAs in schizophrenia. We compared miRNAs regulating neuronal development to those involved in the genesis of AD, depression and schizophrenia and also those driving radiation-induced brain neuropathological changes by reviewing the available data. We found that 3, 11, or 8 neuronal developmentrelated miRNAs from the brain tissue, 13, 16 or 14 miRNAs from the blood of patient with AD, depression and schizophrenia respectively were also involved in radiation-induced brain pathological changes, suggesting a possibly specific involvement of these miRNAs in radiation-induced development of AD, depression and schizophrenia respectively. On the other hand, we noted that radiationinduced changes of two miRNAs, i.e., miR-132, miR-29 in the brain tissue, three miRNAs, i.e., miR- 29c-5p, miR-106b-5p, miR-34a-5p in the blood were also involved in the development of AD, depression and schizophrenia, thereby suggesting that these miRNAs may be involved in the common brain neuropathological changes, such as impairment of neurogenesis and reduced learning memory ability observed in these three diseases and also after radiation exposure.
Collapse
Affiliation(s)
- Renu Chandra Segaran
- Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, CREATE Tower, Singapore 138602, Singapore
| | - Li Yun Chan
- Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, CREATE Tower, Singapore 138602, Singapore
| | - Hong Wang
- Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, CREATE Tower, Singapore 138602, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Feng Ru Tang
- Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, CREATE Tower, Singapore 138602, Singapore
| |
Collapse
|
10
|
Karkache IY, Damodaran JR, Molstad DHH, Bradley EW. Serine/threonine phosphatases in osteoclastogenesis and bone resorption. Gene 2020; 771:145362. [PMID: 33338510 DOI: 10.1016/j.gene.2020.145362] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/24/2020] [Accepted: 12/08/2020] [Indexed: 12/27/2022]
Abstract
Maintenance of optimal bone mass is controlled through the concerted functions of several cell types, including bone resorbing osteoclasts. Osteoclasts function to remove calcified tissue during developmental bone modeling, and degrade bone at sites of damage during bone remodeling. Changes to bone homeostasis can arise with alterations in osteoclastogenesis and/or catabolic activity that are not offset by anabolic activity; thus, factors that regulate osteoclastogenesis and bone resorption are of interest to further our understanding of basic bone biology, and as potential targets for therapeutic intervention. Several key cytokines, including RANKL and M-CSF, as well as co-stimulatory factors elicit kinase signaling cascades that promote osteoclastogenesis. These kinase cascades are offset by the action of protein phosphatases, including members of the serine/threonine phosphatase family. Here we review the functions of serine/threonine phosphatases and their control of osteoclast differentiation and function, while highlighting deficiencies in our understanding of this understudied class of proteins within the field.
Collapse
Affiliation(s)
- Ismael Y Karkache
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN 55455, United States
| | - Jeyaram R Damodaran
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN 55455, United States
| | - David H H Molstad
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN 55455, United States
| | - Elizabeth W Bradley
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN 55455, United States; Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
11
|
Li C, Li Y, Lu Y, Niu Z, Zhao H, Peng Y, Li M. miR-26 family and its target genes in tumorigenesis and development. Crit Rev Oncol Hematol 2020; 157:103124. [PMID: 33254041 DOI: 10.1016/j.critrevonc.2020.103124] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 08/27/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
The microRNA-26 family, including miR-26a, miR-26b, miR-1297 and miR-4465, is a group of broadly conserved small RNAs with identical sequences at the seed region. The expression of miR-26 could be induced by hypoxia via a HIF-dependent mechanism, and up-regulated during multiple cell differentiation. Accumulating studies have demonstrated that miR-26 family members could be detected in many different kinds of tumors, and their validated target genes are involved in cell metabolism, proliferation, differentiation, apoptosis, invasion and metastasis. The expression of miR-26 might be a potentially valuable biomarker and a new target for cancer therapy. In this review, miR-26 family and its target genes in tumorigenesis and development will be summarized as follows.
Collapse
Affiliation(s)
- Chuangang Li
- The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China.
| | - Yongyi Li
- University of Virginia, Charlottesville, VA 22903, USA
| | - Yufeng Lu
- Dalian Medical University, Dalian 116044, China
| | - Zhaorui Niu
- Dalian Medical University, Dalian 116044, China
| | - Henan Zhao
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Yan Peng
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Molin Li
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
12
|
Lucci C, Mesquita-Ribeiro R, Rathbone A, Dajas-Bailador F. Spatiotemporal regulation of GSK3β levels by miRNA-26a controls axon development in cortical neurons. Development 2020; 147:dev.180232. [PMID: 31964775 PMCID: PMC7033742 DOI: 10.1242/dev.180232] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 12/19/2019] [Indexed: 12/17/2022]
Abstract
Both the establishment of neuronal polarity and axonal growth are crucial steps in the development of the nervous system. The local translation of mRNAs in the axon provides precise regulation of protein expression, and is now known to participate in axon development, pathfinding and synaptic formation and function. We have investigated the role of miR-26a in early stage mouse primary cortical neuron development. We show that micro-RNA-26a-5p (miR-26a) is highly expressed in neuronal cultures, and regulates both neuronal polarity and axon growth. Using compartmentalised microfluidic neuronal cultures, we identified a local role for miR-26a in the axon, where the repression of local synthesis of GSK3β controls axon development and growth. Removal of this repression in the axon triggers local translation of GSK3β protein and subsequent transport to the soma, where it can impact axonal growth. These results demonstrate how the axonal miR-26a can regulate local protein translation in the axon to facilitate retrograde communication to the soma and amplify neuronal responses, in a mechanism that influences axon development. Highlighted Article: Axonal miR-26a can regulate GSK3β translation in the axon to promote retrograde communication to the soma in a mechanism that modulates axon development.
Collapse
Affiliation(s)
- Cristiano Lucci
- School of Life Sciences, Medical School Building, University of Nottingham, NG7 2UH Nottingham, UK
| | - Raquel Mesquita-Ribeiro
- School of Life Sciences, Medical School Building, University of Nottingham, NG7 2UH Nottingham, UK
| | - Alex Rathbone
- School of Life Sciences, Medical School Building, University of Nottingham, NG7 2UH Nottingham, UK
| | - Federico Dajas-Bailador
- School of Life Sciences, Medical School Building, University of Nottingham, NG7 2UH Nottingham, UK
| |
Collapse
|
13
|
Yang L, Du X, Liu L, Cao Q, Pan Z, Li Q. miR-1306 Mediates the Feedback Regulation of the TGF-β/SMAD Signaling Pathway in Granulosa Cells. Cells 2019; 8:cells8040298. [PMID: 30935128 PMCID: PMC6523565 DOI: 10.3390/cells8040298] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 12/11/2022] Open
Abstract
Transforming growth factor-β receptor II (TGFBR2), the type II receptor of the TGF-β/SMA- and MAD-related protein (SMAD) signaling pathway, plays a crucial role in TGF-β signal transduction and is regulated by multiple factors. Nevertheless, the modulation of the non-coding RNA involved in the process of TGFBR2 expression in ovaries is not well studied. In our study, we isolated and characterized the 3′-untranslated region (UTR) of the porcine TGFBR2 gene and microRNA-1306 (miR-1306) was identified as the functional miRNA that targets TGFBR2 in porcine granulosa cells (GCs). Functional analysis showed that miR-1306 promotes apoptosis of GCs as well as attenuating the TGF-β/SMAD signaling pathway targeting and impairing TGFBR2 in GCs. Moreover, we identified the miR-1306 core promoter and found three potential SMAD4-binding elements (SBEs). Luciferase and chromatin immunoprecipitation (ChIP) assays revealed that the transcription factor SMAD4 directly binds to the miR-1306 core promoter and inhibits its transcriptional activity. Furthermore, the TGF-β/SMAD signaling pathway is modulated by SMAD4 positive feedback via inhibition of miR-1306 expression in GCs. Collectively, our findings provide evidence of an epigenetic mechanism that modulates as well as mediates the feedback regulation of the classical TGF-β/SMAD signaling pathway in GCs from porcine ovaries.
Collapse
Affiliation(s)
- Liu Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xing Du
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Lu Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Qiuyu Cao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zengxiang Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Qifa Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
14
|
Wu W, Tan W, Ye S, Zhou Y, Quan J. Analysis of the promoter region of the human miR-32 gene in colorectal cancer. Oncol Lett 2019; 17:3743-3750. [PMID: 30881496 PMCID: PMC6403515 DOI: 10.3892/ol.2019.10042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 02/01/2019] [Indexed: 12/13/2022] Open
Abstract
The pathogenesis of colorectal cancer (CRC) is poorly understood. MicroRNA (miR)-32 upregulation in CRC tissues was previously reported, where it increased the proliferation, migration and invasion, and reduced apoptosis of CRC cells by inhibiting the expression of phosphatase and tensin homolog (PTEN). However, the mechanism underlying miR-32 upregulation remains unknown. miR-32 is an intronic miRNA located within intron 14 of the transmembrane protein 245 gene (TMEM245). The present study aimed to elucidate the biological pathways underlying miR-32 regulation in CRC. A truncated promoter containing the 5′-flanking region of TMEM245/miR-32 gene was constructed. The promoter region was analyzed by dual luciferase reporter assay in CRC cells. DNA pull-down assay and mass spectrometry (MS) were used to identify proteins binding to the core promoter. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and transcription factor (TF) analyses were used to identify the binding proteins. The −320 to −1 bp fragment of the 5′-flanking region exhibited the highest luciferase activity. The regions spanning −606 to −320 bp exhibited a significant decrease in luciferase activity, compared with the −320 to −1 bp fragment. DNA pull-down assay and MS revealed 403 potential miR-32 promoter binding proteins. GO and KEGG pathway analysis indicated that these proteins were involved in numerous physiological and biochemical processes, including ‘structural molecule activity’, ‘RNA binding’, ‘small molecule metabolic process’ and ‘biogenesis’. Furthermore, TF analysis revealed 10 potential interacting TFs, including SMAD family member 1 (SMAD1), signal transducer and activator of transcription 1 (STAT1) and forkhead box K1 (Foxk1). These results suggested that the core promoter region may be located within-320 to −1 bp of the 5′-flanking region of TMEM245/miR-32 gene, while the region from −606 to −320 bp may harbor repressive regulatory elements. The TFs SMAD1, STAT1 and Foxk1 may be involved in the transcriptional regulation of miR-32.
Collapse
Affiliation(s)
- Weiyun Wu
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Wenkai Tan
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Shicai Ye
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Yu Zhou
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Juanhua Quan
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| |
Collapse
|
15
|
Andrew AS, Karagas MR, Schroeck FR, Marsit CJ, Schned AR, Pettus JR, Armstrong DA, Seigne JD. MicroRNA Dysregulation and Non-Muscle-Invasive Bladder Cancer Prognosis. Cancer Epidemiol Biomarkers Prev 2019; 28:782-788. [PMID: 30700445 DOI: 10.1158/1055-9965.epi-18-0884] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/20/2018] [Accepted: 01/23/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The high rate of non-muscle-invasive bladder cancer recurrence is a major challenge in patient management. miRNAs functionally regulate tumor cell proliferation and invasion, and have strong potential as biomarkers because they are robust to degradation. The objective of this project was to identify reproducible prognostic miRNAs in resected non-muscle-invasive bladder tumor tissue that are predictive of the recurrent tumor phenotype. METHODS We utilized patients diagnosed with primary non-muscle-invasive bladder cancer in three independent cohorts for a biomarker discovery/validation approach. Baseline tumor tissue from patients with the clinically challenging, non-muscle-invasive primary low stage (Ta), high grade, and T1 tumors (tumors extending into the lamina propria) comprised the discovery cohort (n = 38). We isolated the tumor tissue RNA and assessed a panel of approximately 800 miRNAs. RESULTS miR-26b-5p was the top-ranking prognostic tumor tissue miRNA, with a time-to-recurrence HR 0.043 for levels above versus below median, (P adj = 0.0003). miR-26b-5p was related to a dose-response reduction in tumor recurrence, and levels above the median were also associated with reduced time-to-progression (P adj = 0.02). We used two independent longitudinal cohorts that included both low-grade and high-grade Ta and T1 tumors for validation and found a consistent relationship between miR-26b-5p and recurrence and progression. CONCLUSIONS Our results suggest that miR-26b-5p levels may be prognostic for non-muscle-invasive bladder cancer recurrence, and can feasibly be assessed in baseline tumor tissue from a wide variety of clinical settings. IMPACT Early identification of those non-muscle-invasive bladder tumor patients with refractory phenotypes would enable individualized treatment and surveillance.
Collapse
Affiliation(s)
- Angeline S Andrew
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire.
| | - Margaret R Karagas
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Florian R Schroeck
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire.,The Dartmouth Institute for Health Policy and Clinical Practice, Geisel School of Medicine at Dartmouth and White River Junction VA Medical Center, White River Junction, Vermont
| | - Carmen J Marsit
- Department of Environmental Health and Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Alan R Schned
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Jason R Pettus
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - David A Armstrong
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - John D Seigne
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| |
Collapse
|