1
|
Damulewicz M, Mazzotta GM. A one-day journey to the suburbs: circadian clock in the Drosophila visual system. FEBS J 2024. [PMID: 39484992 DOI: 10.1111/febs.17317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/17/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024]
Abstract
Living organisms, which are constantly exposed to cyclical variations in their environment, need a high degree of plasticity in their visual system to respond to daily and seasonal fluctuations in lighting conditions. In Drosophila melanogaster, the visual system is a complex tissue comprising different photoreception structures that exhibit daily rhythms in gene expression, cell morphology, and synaptic plasticity, regulated by both the central and peripheral clocks. In this review, we briefly summarize the structure of the circadian clock and the visual system in Drosophila and comprehensively describe circadian oscillations in visual structures, from molecules to behaviors, which are fundamental for the fine-tuning of visual sensitivity. We also compare some features of the rhythmicity in the visual system with that of the central pacemaker and hypothesize about the differences in the regulatory signals and mechanisms that control these two clocks.
Collapse
Affiliation(s)
- Milena Damulewicz
- Department of Cell Biology and Imaging, Jagiellonian University, Kraków, Poland
| | | |
Collapse
|
2
|
Ozcelik G, Koca MS, Sunbul B, Yilmaz-Atay F, Demirhan F, Tiryaki B, Cilenk K, Selvi S, Ozturk N. Interactions of drosophila cryptochrome. Photochem Photobiol 2024; 100:1339-1358. [PMID: 38314442 DOI: 10.1111/php.13916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/06/2024]
Abstract
In this study, we investigate the intricate regulatory mechanisms underlying the circadian clock in Drosophila, focusing on the light-induced conformational changes in the cryptochrome (DmCry). Upon light exposure, DmCry undergoes conformational changes that prompt its binding to Timeless and Jetlag proteins, initiating a cascade crucial for the starting of a new circadian cycle. DmCry is subsequently degraded, contributing to the desensitization of the resetting mechanism. The transient and short-lived nature of DmCry protein-protein interactions (PPIs), leading to DmCry degradation within an hour of light exposure, presents a challenge for comprehensive exploration. To address this, we employed proximity-dependent biotinylation techniques, combining engineered BioID (TurboID) and APEX (APEX2) enzymes with mass spectrometry. This approach enabled the identification of the in vitro DmCry interactome in Drosophila S2 cells, uncovering several novel PPIs associated with DmCry. Validation of these interactions through a novel co-immunoprecipitation technique enhances the reliability of our findings. Importantly, our study suggests the potential of this method to reveal additional circadian clock- or magnetic field-dependent PPIs involving DmCry. This exploration of the DmCry interactome not only advances our understanding of circadian clock regulation but also establishes a versatile framework for future investigations into light- and time-dependent protein interactions in Drosophila.
Collapse
Affiliation(s)
- Gozde Ozcelik
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Mehmet Serdar Koca
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Buket Sunbul
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Fatma Yilmaz-Atay
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Feride Demirhan
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Busra Tiryaki
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Kevser Cilenk
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Saba Selvi
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Nuri Ozturk
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| |
Collapse
|
3
|
Bellanda M, Damulewicz M, Zambelli B, Costanzi E, Gregoris F, Mammi S, Tosatto SCE, Costa R, Minervini G, Mazzotta GM. A PDZ scaffolding/CaM-mediated pathway in Cryptochrome signaling. Protein Sci 2024; 33:e4914. [PMID: 38358255 PMCID: PMC10868427 DOI: 10.1002/pro.4914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/12/2023] [Accepted: 01/13/2024] [Indexed: 02/16/2024]
Abstract
Cryptochromes are cardinal constituents of the circadian clock, which orchestrates daily physiological rhythms in living organisms. A growing body of evidence points to their participation in pathways that have not traditionally been associated with circadian clock regulation, implying that cryptochromes may be subject to modulation by multiple signaling mechanisms. In this study, we demonstrate that human CRY2 (hCRY2) forms a complex with the large, modular scaffolding protein known as Multi-PDZ Domain Protein 1 (MUPP1). This interaction is facilitated by the calcium-binding protein Calmodulin (CaM) in a calcium-dependent manner. Our findings suggest a novel cooperative mechanism for the regulation of mammalian cryptochromes, mediated by calcium ions (Ca2+ ) and CaM. We propose that this Ca2+ /CaM-mediated signaling pathway may be an evolutionarily conserved mechanism that has been maintained from Drosophila to mammals, most likely in relation to its potential role in the broader context of cryptochrome function and regulation. Further, the understanding of cryptochrome interactions with other proteins and signaling pathways could lead to a better definition of its role within the intricate network of molecular interactions that govern circadian rhythms.
Collapse
Affiliation(s)
| | - Milena Damulewicz
- Department of Cell Biology and ImagingJagiellonian UniversityKrakówPoland
| | - Barbara Zambelli
- Department of Pharmacy and BiotechnologyUniversity of BolognaBolognaItaly
| | - Elisa Costanzi
- Department of Chemical SciencesUniversity of PadovaPadovaItaly
| | | | - Stefano Mammi
- Department of Chemical SciencesUniversity of PadovaPadovaItaly
| | | | - Rodolfo Costa
- Department of BiologyUniversity of PadovaPadovaItaly
- Institute of Neuroscience, National Research Council of Italy (CNR)PadovaItaly
- Chronobiology Section, Faculty of Health and Medical SciencesUniversity of SurreyGuildfordUK
| | | | | |
Collapse
|
4
|
Bradlaugh AA, Fedele G, Munro AL, Hansen CN, Hares JM, Patel S, Kyriacou CP, Jones AR, Rosato E, Baines RA. Essential elements of radical pair magnetosensitivity in Drosophila. Nature 2023; 615:111-116. [PMID: 36813962 PMCID: PMC9977682 DOI: 10.1038/s41586-023-05735-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/16/2023] [Indexed: 02/24/2023]
Abstract
Many animals use Earth's magnetic field (also known as the geomagnetic field) for navigation1. The favoured mechanism for magnetosensitivity involves a blue-light-activated electron-transfer reaction between flavin adenine dinucleotide (FAD) and a chain of tryptophan residues within the photoreceptor protein CRYPTOCHROME (CRY). The spin-state of the resultant radical pair, and therefore the concentration of CRY in its active state, is influenced by the geomagnetic field2. However, the canonical CRY-centric radical-pair mechanism does not explain many physiological and behavioural observations2-8. Here, using electrophysiology and behavioural analyses, we assay magnetic-field responses at the single-neuron and organismal levels. We show that the 52 C-terminal amino acid residues of Drosophila melanogaster CRY, lacking the canonical FAD-binding domain and tryptophan chain, are sufficient to facilitate magnetoreception. We also show that increasing intracellular FAD potentiates both blue-light-induced and magnetic-field-dependent effects on the activity mediated by the C terminus. High levels of FAD alone are sufficient to cause blue-light neuronal sensitivity and, notably, the potentiation of this response in the co-presence of a magnetic field. These results reveal the essential components of a primary magnetoreceptor in flies, providing strong evidence that non-canonical (that is, non-CRY-dependent) radical pairs can elicit magnetic-field responses in cells.
Collapse
Affiliation(s)
- Adam A Bradlaugh
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Giorgio Fedele
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Rende, Italy
| | - Anna L Munro
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Celia Napier Hansen
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - John M Hares
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
- Pelican Healthcare, Cardiff, UK
| | - Sanjai Patel
- Manchester Fly Facility, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | | | - Alex R Jones
- Biometrology, Chemical and Biological Sciences Department, National Physical Laboratory, Teddington, UK
| | - Ezio Rosato
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK.
| | - Richard A Baines
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
5
|
Kyriacou CP, Rosato E. Genetic analysis of cryptochrome in insect magnetosensitivity. Front Physiol 2022; 13:928416. [PMID: 36035470 PMCID: PMC9399412 DOI: 10.3389/fphys.2022.928416] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022] Open
Abstract
The earth's magnetic field plays an important role in the spectacular migrations and navigational abilities of many higher animals, particularly birds. However, these organisms are not amenable to genetic analysis, unlike the model fruitfly, Drosophila melanogaster, which can respond to magnetic fields under laboratory conditions. We therefore review the field of insect magnetosensitivity focusing on the role of the Cryptochromes (CRYs) that were first identified in Arabidopsis and Drosophila as key molecular components of circadian photo-entrainment pathways. Physico-chemical studies suggest that photo-activation of flavin adenine dinucleotide (FAD) bound to CRY generates a FADo- Trpo+ radical pair as electrons skip along a chain of specific Trp residues and that the quantum spin chemistry of these radicals is sensitive to magnetic fields. The manipulation of CRY in several insect species has been performed using gene editing, replacement/rescue and knockdown methods. The effects of these various mutations on magnetosensitivity have revealed a number of surprises that are discussed in the light of recent developments from both in vivo and in vitro studies.
Collapse
Affiliation(s)
- Charalambos P. Kyriacou
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | | |
Collapse
|
6
|
Mazzotta GM, Damulewicz M, Cusumano P. Better Sleep at Night: How Light Influences Sleep in Drosophila. Front Physiol 2020; 11:997. [PMID: 33013437 PMCID: PMC7498665 DOI: 10.3389/fphys.2020.00997] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/22/2020] [Indexed: 01/25/2023] Open
Abstract
Sleep-like states have been described in Drosophila and the mechanisms and factors that generate and define sleep-wake profiles in this model organism are being thoroughly investigated. Sleep is controlled by both circadian and homeostatic mechanisms, and environmental factors such as light, temperature, and social stimuli are fundamental in shaping and confining sleep episodes into the correct time of the day. Among environmental cues, light seems to have a prominent function in modulating the timing of sleep during the 24 h and, in this review, we will discuss the role of light inputs in modulating the distribution of the fly sleep-wake cycles. This phenomenon is of growing interest in the modern society, where artificial light exposure during the night is a common trait, opening the possibility to study Drosophila as a model organism for investigating shift-work disorders.
Collapse
Affiliation(s)
| | - Milena Damulewicz
- Department of Cell Biology and Imaging, Jagiellonian University, Kraków, Poland
| | - Paola Cusumano
- Department of Biology, University of Padova, Padua, Italy
| |
Collapse
|
7
|
Damulewicz M, Mazzotta GM. One Actor, Multiple Roles: The Performances of Cryptochrome in Drosophila. Front Physiol 2020; 11:99. [PMID: 32194430 PMCID: PMC7066326 DOI: 10.3389/fphys.2020.00099] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/27/2020] [Indexed: 01/19/2023] Open
Abstract
Cryptochromes (CRYs) are flavoproteins that are sensitive to blue light, first identified in Arabidopsis and then in Drosophila and mice. They are evolutionarily conserved and play fundamental roles in the circadian clock of living organisms, enabling them to adapt to the daily 24-h cycles. The role of CRYs in circadian clocks differs among different species: in plants, they have a blue light-sensing activity whereas in mammals they act as light-independent transcriptional repressors within the circadian clock. These two different functions are accomplished by two principal types of CRYs, the light-sensitive plant/insect type 1 CRY and the mammalian type 2 CRY acting as a negative autoregulator in the molecular circadian clockwork. Drosophila melanogaster possesses just one CRY, belonging to type 1 CRYs. Nevertheless, this single CRY appears to have different functions, specific to different organs, tissues, and even subset of cells in which it is expressed. In this review, we will dissect the multiple roles of this single CRY in Drosophila, focusing on the regulatory mechanisms that make its pleiotropy possible.
Collapse
Affiliation(s)
- Milena Damulewicz
- Department of Cell Biology and Imaging, Jagiellonian University, Kraków, Poland
| | | |
Collapse
|
8
|
Hansen CN, Özkaya Ö, Roe H, Kyriacou CP, Giongo L, Rosato E. Locomotor Behaviour and Clock Neurons Organisation in the Agricultural Pest Drosophila suzukii. Front Physiol 2019; 10:941. [PMID: 31396106 PMCID: PMC6667661 DOI: 10.3389/fphys.2019.00941] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/09/2019] [Indexed: 01/29/2023] Open
Abstract
Drosophila suzukii (Matsumara) also called Spotted Wing Drosophila (SWD), is an invasive pest species originally from Asia that has now spread widely across Europe and North America. The majority of drosophilids including the best known Drosophila melanogaster only breed on decaying fruits. On the contrary, the presence of a strong serrated ovipositor and behavioural and metabolic adaptations allow D. suzukii to lay eggs inside healthy, ripening fruits that are still on the plant. Here we present an analysis of the rhythmic locomotor activity behaviour of D. suzukii under several laboratory settings. Moreover, we identify the canonical clock neurons in this species by reporting the expression pattern of the major clock proteins in the brain. Interestingly, a fundamentally similar organisation of the clock neurons network between D. melanogaster and D. suzukii does not correspond to similar characteristics in rhythmic locomotor activity behaviour.
Collapse
Affiliation(s)
- Celia Napier Hansen
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Özge Özkaya
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Helen Roe
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Charalambos P Kyriacou
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Lara Giongo
- Centro Ricerca e Innovazione, Fondazione Edmund Mach, Trento, Italy
| | - Ezio Rosato
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|