1
|
Liu D, Kang H, Gao M, Pei W, Wang S, Chen Z. Silencing of purinergic receptor P2Y2 inhibited enteric neural crest cell proliferation, invasion and migration via suppressing ERK signaling pathway in Hirschsprung disease. 3 Biotech 2023; 13:312. [PMID: 37637003 PMCID: PMC10447770 DOI: 10.1007/s13205-023-03721-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/29/2023] [Indexed: 08/29/2023] Open
Abstract
The current study aimed to explore the effect and underlying mechanism of the purinergic receptor P2Y2 in regulating the loss of intestinal neurons and the intestinal neural crest in Hirschsprung's disease (HSCR). Western blotting was used to assess the expression levels of P2Y2 in colon tissues. An in vivo HSCR mouse model was established following treatment with benzalkonium chloride (BAC). We overexpressed or silenced P2Y2 in SH-SY5Y cells, and cell proliferation, migration, and invasion were subsequently investigated by CCK-8, wound healing, and transwell assays, respectively. Additionally, we implemented a xenograft model to assess the impact of P2Y2 on tumor growth as well as the expression of extracellular signal-regulated kinase (ERK). The results showed that the expression of P2Y2 protein in the colon tissues of patients with HSCR was lower than that in the normal colon tissues. P2Y2 expression is downregulated in the colon tissues of mice with HSCR. Additionally, P2Y2 silencing inhibited SH-SY5Y cell proliferation, invasion, and migration. Furthermore, adenosine 5'-triphosphate (ATP, a strong agonist of P2Y2)-induced P2Y2 overexpression enhanced the proliferation, invasion, and migration of SH-SY5Y cells. Immunofluorescence staining and western blot analysis revealed that P2Y2 silencing downregulated phosphorylated (p)-ERK in SH-SY5Y cells. In addition, treatment with PD98059, a p-ERK inhibitor, reversed the effects of ATP on SH-SY5Y cell proliferation, invasion, and migration. Finally, we demonstrated that P2Y2 silencing suppressed tumor growth and decreased p-ERK expression. Overall, the results of the present study suggest that P2Y2 plays an important role in HSCR pathogenesis. P2Y2 silencing inhibited the proliferation, invasion, and migration of nerve cells by suppressing the ERK signaling pathway. P2Y2 silencing could be considered an innovative and possible target for treating HSCR.
Collapse
Affiliation(s)
- Dengrui Liu
- Department of Pediatric Surgery, The First Hospital of Lanzhou University, No. 1 Donggang West Road, Lanzhou, 730000 Gansu China
| | - Hongxia Kang
- Department of Pain, Gansu Provincial People’s Hospital, Lanzhou, 730000 Gansu China
| | - Mingtai Gao
- Department of Pediatric Surgery, The First Hospital of Lanzhou University, No. 1 Donggang West Road, Lanzhou, 730000 Gansu China
| | - Wei Pei
- Department of Pediatric Surgery, The First Hospital of Lanzhou University, No. 1 Donggang West Road, Lanzhou, 730000 Gansu China
| | - Shimo Wang
- Department of Pediatric Surgery, The First Hospital of Lanzhou University, No. 1 Donggang West Road, Lanzhou, 730000 Gansu China
| | - Zhou Chen
- Department of Pediatric Surgery, The First Hospital of Lanzhou University, No. 1 Donggang West Road, Lanzhou, 730000 Gansu China
| |
Collapse
|
2
|
Zhou WK, Qu Y, Liu YM, Gao MJ, Tang CY, Huang L, Du Q, Yin J. The abnormal phosphorylation of the Rac1, Lim-kinase 1, and Cofilin proteins in the pathogenesis of Hirschsprung's disease. Bioengineered 2022; 13:8548-8557. [PMID: 35322726 PMCID: PMC9161833 DOI: 10.1080/21655979.2022.2051882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Rac1 can affect the migration of neural crest cells by regulating the polymerization of actin and the membrane formation process. But the role of the Rac1 signaling pathway in the pathogenesis of Hirschsprung’s disease (HSCR) remains unclear. In order to investigate the mechanism of the abnormal protein phosphorylation of Rac1, Lim-kinase 1 (Limk1) and Cofilin involved in the pathogenesis of HSCR. The protein phosphorylation levels of these proteins were detected by Western blot in 30 samples of HSCR narrow segment, 30 samples of transitional segment tissues, and 14 samples of normal intestinal tissues. Subsequently, in the SH-SY5Y human neuroblastoma cell line, a Rac1, Limk1, and Cofilin inhibitor group, a Rac1 overexpression group (PDGF-BB group), a Rac1 overexpression group + a Limk1 inhibitor group (P-B group), a Rac1 overexpression group + a Cofilin inhibitor group (P-C group) were established. The results showed that the expressions of p-Rac1, p-Limk1, and p-Cofilin in HSCR narrow segment and transitional segment were lower than those in normal intestine (p < 0.05). The expression levels of p-Rac1, p-Limk1, and p-Cofilin in the relative inhibitor group were significantly lower than those in the control group (p < 0.05), and the proliferation and migration levels in the control group and Rac1 overexpression group were significantly higher than those in the Rac1, Limk1, and Cofilin inhibitor group (p < 0.05). In conclusion, the decreased phosphorylation of the Rac1/Limk1/Cofilin signaling pathway in HSCR could inhibit the proliferation and migration of SH-SY5Y cells, and this might be associated with the pathogenesis of HSCR.
Collapse
Affiliation(s)
- Wan-Kang Zhou
- Department of Pediatric General, Thoracic & Urological Surgery II Ward, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yan Qu
- Gastrointestinal Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yuan-Mei Liu
- Department of Pediatric General, Thoracic & Urological Surgery II Ward, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ming-Juan Gao
- Department of Pediatric General, Thoracic & Urological Surgery II Ward, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Cheng-Yan Tang
- Department of Pediatric General, Thoracic & Urological Surgery II Ward, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Lu Huang
- Department of Pediatric General, Thoracic & Urological Surgery II Ward, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qing Du
- Department of Pediatric General, Thoracic & Urological Surgery II Ward, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jia Yin
- Department of Pediatric General, Thoracic & Urological Surgery II Ward, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
3
|
Wang J, Meng X, Feng C, Xiao J, Zhao X, Xiong B, Feng J. Benzophenone-3 induced abnormal development of enteric nervous system in zebrafish through MAPK/ERK signaling pathway. CHEMOSPHERE 2021; 280:130670. [PMID: 33971419 DOI: 10.1016/j.chemosphere.2021.130670] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Hirschsprung disease (HSCR) is a congenital disease characterized by the absence of enteric neurons, which is derived from the failure of the proliferation, differentiation or migration of the enteric neural crest cells (ENCCs). HSCR is associated with multiple risk factors, including polygenic inheritance factors and environmental factors. Genetic studies have been extensively performed, whereas studies related to environmental factors remain insufficient. Benzophenone-3 (BP-3), one important component of the ultraviolet (UV) filters, has been proved to have cytotoxicity and neurotoxicity which might be associated with HSCR. In this study, we used zebrafish as a model to investigate the relationship between BP-3 exposure and the development of the enteric nervous system (ENS) in vivo. Embryos exposed to BP-3 showed an average of 46% reduction of the number of the enteric neurons number. Besides, the ENCCs specific markers (ret and hand2) were downregulated upon BP-3 exposure. Moreover, we identified potential targets of BP-3 through Network Pharmacology Analysis and Autodock and demonstrated that the attenuation of the MAPK/ERK signaling might be the potential mechanism underlying the inhibition of the ENS development by BP-3. Importantly, MAPK/ERK signaling agonist could be used to rescue the ENS defects of zebrafish induced by BP-3. Overall, we characterized the influence of BP-3 on ENS development in vivo and explored possible molecular mechanisms.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xinyao Meng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chenzhao Feng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jun Xiao
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiang Zhao
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bo Xiong
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Jiexiong Feng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
4
|
Li Y, Lv X, Chen H, Zhi Z, Wei Z, Wang B, Zhou L, Li H, Tang W. Peptide Derived from AHNAK Inhibits Cell Migration and Proliferation in Hirschsprung's Disease by Targeting the ERK1/2 Pathway. J Proteome Res 2021; 20:2308-2318. [PMID: 33853325 DOI: 10.1021/acs.jproteome.0c00811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Hirschsprung's disease (HSCR) is characterized by the lack of ganglion cells in the distal part of the digestive tract. It occurs due to migration disorders of enteric neural crest cells (ENCCs) from 5 to 12 weeks of embryonic development. More and more studies show that HSCR is a result of the interaction of multiple genes and the microenvironments, but its specific pathogenesis has not been fully elucidated. Studies have confirmed that many substances in the intestinal microenvironment, such as laminin and β1-integrin, play a vital regulatory role in cell growth and disease progression. In addition to these high-molecular-weight proteins, research on endogenous polypeptides derived from these proteins has been increasing in recent years. However, it is unclear whether these endogenous peptides have effects on the migration of ENCCs and thus participate in the occurrence of HSCR. Previously, our research group found that compared with the normal intestinal tissue, the expression of AHNAK protein in the stenosed intestinal tissue of HSCR patients was significantly upregulated, and overexpression of AHNAK could inhibit cell migration and proliferation. In this study, endogenous peptides were extracted from the normal control intestinal tissue and the stenosed HSCR intestinal tissue. The endogenous polypeptide expression profile was analyzed by liquid chromatography-mass spectrometry, and multiple peptides derived from AHNAK protein were found. We selected one of them, "EGPEVDVNLPK", for research. Because there is no uniform naming system, this peptide is temporarily named PDAHNAK (peptide derived from AHNAK). This project aims to clarify the potential role of PDAHNAK in the development of HSCR and to further understand its relationship with its precursor protein AHNAK and how they contribute to the development of HSCR.
Collapse
Affiliation(s)
- Yuhan Li
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiurui Lv
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,School of Medicine & Dentistry, University of Rochester, Rochester 14642, United States
| | - Huan Chen
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhengke Zhi
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhonghong Wei
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Binyu Wang
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - LingLing Zhou
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Hongxing Li
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Weibing Tang
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|