1
|
Jing Y, Luo Y, Li L, Liu M, Liu JX. Deficiency of copper responsive gene stmn4 induces retinal developmental defects. Cell Biol Toxicol 2024; 40:2. [PMID: 38252267 PMCID: PMC10803583 DOI: 10.1007/s10565-024-09847-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/08/2024] [Indexed: 01/23/2024]
Abstract
As part of the central nervous system (CNS), the retina senses light and also conducts and processes visual impulses. The damaged development of the retina not only causes visual damage, but also leads to epilepsy, dementia and other brain diseases. Recently, we have reported that copper (Cu) overload induces retinal developmental defects and down-regulates microtubule (MT) genes during zebrafish embryogenesis, but whether the down-regulation of microtubule genes mediates Cu stress induced retinal developmental defects is still unknown. In this study, we found that microtubule gene stmn4 exhibited obviously reduced expression in the retina of Cu overload embryos. Furthermore, stmn4 deficiency (stmn4-/-) resulted in retinal defects similar to those seen in Cu overload embryos, while overexpression of stmn4 effectively rescued retinal defects and cell apoptosis occurred in the Cu overload embryos and larvae. Meanwhile, stmn4 deficient embryos and larvae exhibited reduced mature retinal cells, the down-regulated expression of microtubules and cell cycle-related genes, and the mitotic cell cycle arrests of the retinal cells, which subsequently tended to apoptosis independent on p53. The results of this study demonstrate that Cu stress might lead to retinal developmental defects via down-regulating expression of microtubule gene stmn4, and stmn4 deficiency leads to impaired cell cycle and the accumulation of retinal progenitor cells (RPCs) and their subsequent apoptosis. The study provides a certain referee for copper overload in regulating the retinal development in fish.
Collapse
Affiliation(s)
- YuanYuan Jing
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yi Luo
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - LingYa Li
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mugen Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Jing-Xia Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
2
|
Chen J, Zeng H, Lv W, Sun N, Wang C, Xu W, Hu M, Gan X, He L, He S, Fang C. Pseudo-chromosome-length genome assembly for a deep-sea eel Ilyophis brunneus sheds light on the deep-sea adaptation. SCIENCE CHINA. LIFE SCIENCES 2023:10.1007/s11427-022-2251-8. [PMID: 36648612 DOI: 10.1007/s11427-022-2251-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/22/2022] [Indexed: 01/18/2023]
Abstract
High hydrostatic pressure, low temperature, and scarce food supply are the major factors that limit the survival of vertebrates in extreme deep-sea environments. Here, we constructed a high-quality genome of the deep-sea Muddy arrowtooth eel (MAE, Ilyophis brunneus, captured below a depth of 3,500 m) by using Illumina, PacBio, and Hi-C sequencing. We compare it against those of shallow-water eel and other outgroups to explore the genetic basis that underlies the adaptive evolution to deep-sea biomes. The MAE genome was estimated to be 1.47 Gb and assembled into 14 pseudo-chromosomes. Phylogenetic analyses indicated that MAE diverged from its closely related shallow-sea species, European eel, ∼111.9 Mya and experienced a rapid evolution. The genome evolutionary analyses primarily revealed the following: (i) under high hydrostatic pressure, the positively selected gene TUBGCP3 and the expanded family MLC1 may improve the cytoskeleton stability; ACOX1 may enhance the fluidity of cell membrane and maintain transport activity; the expansion of ABCC12 gene family may enhance the integrity of DNA; (ii) positively selected HARS likely maintain the transcription ability at low temperatures; and (iii) energy metabolism under a food-limited environment may be increased by expanded and positively selected genes in AMPK and mTOR signaling pathways.
Collapse
Affiliation(s)
- Jie Chen
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Honghui Zeng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Wenqi Lv
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ning Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjie Xu
- School for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Mingliang Hu
- School for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xiaoni Gan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Lisheng He
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Shunping He
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China. .,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Chengchi Fang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Bartoszewski S, Dawidziuk M, Kasica N, Durak R, Jurek M, Podwysocka A, Guilbride DL, Podlasz P, Winata CL, Gawlinski P. A Zebrafish/Drosophila Dual System Model for Investigating Human Microcephaly. Cells 2022; 11:cells11172727. [PMID: 36078134 PMCID: PMC9455030 DOI: 10.3390/cells11172727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 08/27/2022] [Accepted: 08/28/2022] [Indexed: 12/02/2022] Open
Abstract
Microcephaly presents in neurodevelopmental disorders with multiple aetiologies, including bi-allelic mutation in TUBGCP2, a component of the biologically fundamental and conserved microtubule-nucleation complex, γ-TuRC. Elucidating underlying principles driving microcephaly requires clear phenotype recapitulation and assay reproducibility, areas where go-to experimental models fall short. We present an alternative simple vertebrate/invertebrate dual system to investigate fundamental TUBGCP2-related processes driving human microcephaly and associated developmental traits. We show that antisense morpholino knockdown (KD) of the Danio rerio homolog, tubgcp2, recapitulates human TUBGCP2-associated microcephaly. Co-injection of wild type mRNA pre-empts microcephaly in 55% of KD zebrafish larvae, confirming causality. Body shortening observed in morphants is also rescued. Mitotic marker (pH3) staining further reveals aberrantly accumulated dividing brain cells in microcephalic tubgcp2 KD morphants, indicating that tubgcp2 depletion disrupts normal mitosis and/or proliferation in zebrafish neural progenitor brain cells. Drosophila melanogaster double knockouts (KO) for TUBGCP2 homologs Grip84/cg7716 also develop microcephalic brains with general microsomia. Exacerbated Grip84/cg7716-linked developmental aberration versus single mutations strongly suggests interactive or coinciding gene functions. We infer that tubgcp2 and Grip84/cg7716 affect brain size similarly to TUBGCP2 and recapitulate both microcephaly and microcephaly-associated developmental impact, validating the zebrafish/fly research model for human microcephaly. Given the conserved cross-phyla homolog function, the data also strongly support mitotic and/or proliferative disruption linked to aberrant microtubule nucleation in progenitor brain cells as key mechanistic defects for human microcephaly.
Collapse
Affiliation(s)
- Slawomir Bartoszewski
- Department of Biology, Institute of Biology and Biotechnology, University of Rzeszów, 35-601 Rzeszów, Poland
| | - Mateusz Dawidziuk
- Department of Medical Genetics, Institute of Mother and Child, 01-211 Warsaw, Poland
| | - Natalia Kasica
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Roma Durak
- Department of Biology, Institute of Biology and Biotechnology, University of Rzeszów, 35-601 Rzeszów, Poland
| | - Marta Jurek
- Department of Medical Genetics, Institute of Mother and Child, 01-211 Warsaw, Poland
| | - Aleksandra Podwysocka
- Department of Medical Genetics, Institute of Mother and Child, 01-211 Warsaw, Poland
| | | | - Piotr Podlasz
- Department of Pathophysiology, Forensic Veterinary Medicine and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Cecilia Lanny Winata
- Laboratory of Zebrafish Developmental Genomics, International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
| | - Pawel Gawlinski
- Department of Medical Genetics, Institute of Mother and Child, 01-211 Warsaw, Poland
- Correspondence:
| |
Collapse
|
4
|
Li J, Yang W, Wang YJ, Ma C, Curry CJ, McGoldrick D, Nickerson DA, Chong JX, Blue EE, Mullikin JC, Reefhuis J, Nembhard WN, Romitti PA, Werler MM, Browne ML, Olshan AF, Finnell RH, Feldkamp ML, Pangilinan F, Almli LM, Bamshad MJ, Brody LC, Jenkins MM, Shaw GM. Exome sequencing identifies genetic variants in anophthalmia and microphthalmia. Am J Med Genet A 2022; 188:2376-2388. [PMID: 35716026 PMCID: PMC9283271 DOI: 10.1002/ajmg.a.62874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 11/10/2022]
Abstract
Anophthalmia and microphthalmia (A/M) are rare birth defects affecting up to 2 per 10,000 live births. These conditions are manifested by the absence of an eye or reduced eye volumes within the orbit leading to vision loss. Although clinical case series suggest a strong genetic component in A/M, few systematic investigations have been conducted on potential genetic contributions owing to low population prevalence. To overcome this challenge, we utilized DNA samples and data collected as part of the National Birth Defects Prevention Study (NBDPS). The NBDPS employed multi-center ascertainment of infants affected by A/M. We performed exome sequencing on 67 family trios and identified numerous genes affected by rare deleterious nonsense and missense variants in this cohort, including de novo variants. We identified 9 nonsense changes and 86 missense variants that are absent from the reference human population (Genome Aggregation Database), and we suggest that these are high priority candidate genes for A/M. We also performed literature curation, single cell transcriptome comparisons, and molecular pathway analysis on the candidate genes and performed protein structure modeling to determine the potential pathogenic variant consequences on PAX6 in this disease.
Collapse
Affiliation(s)
- Jingjing Li
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, the Bakar Computational Health Sciences Institute, the Parker Institute for Cancer Immunotherapy, and the Department of Neurology, School of Medicine, University of California, San Francisco, CA, USA
| | - Wei Yang
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Yuejun Jessie Wang
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, the Bakar Computational Health Sciences Institute, the Parker Institute for Cancer Immunotherapy, and the Department of Neurology, School of Medicine, University of California, San Francisco, CA, USA
| | - Chen Ma
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Cynthia J. Curry
- Genetic Medicine, Department of Pediatrics, University of California, San Francisco/Fresno, CA, USA
| | - Daniel McGoldrick
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Deborah A. Nickerson
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Jessica X. Chong
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Elizabeth E. Blue
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - James C. Mullikin
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jennita Reefhuis
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Wendy N. Nembhard
- Department of Epidemiology, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Paul A. Romitti
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA, USA
| | - Martha M. Werler
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Marilyn L. Browne
- Birth Defects Registry, New York State Department of Health, Albany, NY, USA
- Department of Epidemiology and Biostatistics, School of Public Health, University at Albany, Rensselaer, NY, USA
| | - Andrew F. Olshan
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Richard H. Finnell
- Center for Precision Environmental Health, Departments of Molecular and Cellular Biology, Molecular and Human Genetics and Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Marcia L. Feldkamp
- Division of Medical Genetics, Department of Pediatrics, 295 Chipeta Way, Suite 2S010, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Faith Pangilinan
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lynn M. Almli
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mike J. Bamshad
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Lawrence C. Brody
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mary M. Jenkins
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Gary M. Shaw
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | |
Collapse
|
5
|
Adenan MNH, Yazan LS, Christianus A, Md Hashim NF, Mohd Noor S, Shamsudin S, Ahmad Bahri FJ, Abdul Rahim K. Radioprotective Effects of Kelulut Honey in Zebrafish Model. Molecules 2021; 26:1557. [PMID: 33809054 PMCID: PMC8000245 DOI: 10.3390/molecules26061557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 11/17/2022] Open
Abstract
Large doses of ionizing radiation can damage human tissues. Therefore, there is a need to investigate the radiation effects as well as identify effective and non-toxic radioprotectors. This study evaluated the radioprotective effects of Kelulut honey (KH) from stingless bee (Trigona sp.) on zebrafish (Danio rerio) embryos. Viable zebrafish embryos at 24 hpf were dechorionated and divided into four groups, namely untreated and non-irradiated, untreated and irradiated, KH pre-treatment and amifostine pre-treatment. The embryos were first treated with KH (8 mg/mL) or amifostine (4 mM) before irradiation at doses of 11 Gy to 20 Gy using gamma ray source, caesium-137 (137Cs). Lethality and abnormality analysis were performed on all of the embryos in the study. Immunohistochemistry assay was also performed using selected proteins, namely γ-H2AX and caspase-3, to investigate DNA damages and incidences of apoptosis. KH was found to reduce coagulation effects at up to 20 Gy in the lethality analysis. The embryos developed combinations of abnormality, namely microphthalmia (M), body curvature and microphthalmia (BM), body curvature with microphthalmia and microcephaly (BMC), microphthalmia and pericardial oedema (MO), pericardial oedema (O), microphthalmia with microcephaly and pericardial oedema (MCO) and all of the abnormalities (AA). There were more abnormalities developed from 24 to 72 h (h) post-irradiation in all groups. At 96 h post-irradiation, KH was identified to reduce body curvature effect in the irradiated embryos (up to 16 Gy). γ-H2AX and caspase-3 intensities in the embryos pre-treated with KH were also found to be lower than the untreated group at gamma irradiation doses of 11 Gy to 20 Gy and 11 Gy to 19 Gy, respectively. KH was proven to increase the survival rate of zebrafish embryos and exhibited protection against organ-specific abnormality. KH was also found to possess cellular protective mechanism by reducing DNA damage and apoptosis proteins expression.
Collapse
Affiliation(s)
- Mohd Noor Hidayat Adenan
- Agrotechnology and Biosciences Division, Malaysian Nuclear Agency, Bangi, Kajang 43000, Malaysia; (M.N.H.A.); (S.S.); (K.A.R.)
- Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.C.); (F.J.A.B.)
| | - Latifah Saiful Yazan
- Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.C.); (F.J.A.B.)
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Annie Christianus
- Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.C.); (F.J.A.B.)
| | - Nur Fariesha Md Hashim
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Suzita Mohd Noor
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Jalan Universiti, Kuala Lumpur 50603, Malaysia;
| | - Shuhaimi Shamsudin
- Agrotechnology and Biosciences Division, Malaysian Nuclear Agency, Bangi, Kajang 43000, Malaysia; (M.N.H.A.); (S.S.); (K.A.R.)
| | - Farah Jehan Ahmad Bahri
- Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.C.); (F.J.A.B.)
| | - Khairuddin Abdul Rahim
- Agrotechnology and Biosciences Division, Malaysian Nuclear Agency, Bangi, Kajang 43000, Malaysia; (M.N.H.A.); (S.S.); (K.A.R.)
| |
Collapse
|
6
|
Tubgcp3 is a mitotic regulator of planarian epidermal differentiation. Gene 2021; 775:145440. [PMID: 33482282 DOI: 10.1016/j.gene.2021.145440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 09/29/2020] [Accepted: 01/13/2021] [Indexed: 11/20/2022]
Abstract
Tubgcp3/GCP3 (The centrosomal protein γ-tubulin complex protein 3) is a component of the γ-tubulin small complexes (γ-TuSCs) and γ-tubulin ring complexes (γ-TuRCs), which play critical roles in mitotic spindle formation during mitosis. However, its function in stem cell development has not been thoroughly elucidated. The planarian flatworm, which contains a large number of adult somatic stem cells (neoblasts), is a unique model to study stem cell lineage development in vivo. Here, we identified a homolog of Tubgcp3 in planarian Dugesia japonica, and found that Tubgcp3 is required for the maintenance of epidermal lineage. RNAi targeting Tubgcp3 resulted in tissue homeostasis and regeneration defect. Knockdown of Tubgcp3 reduced cell divisions and led to a loss of the mature epidermal cells. Our findings indicate that Tubgcp3 is a mitotic regulator and plays a crucial role in planarian epidermal differentiation.
Collapse
|
7
|
Yang Y, Zhu X, Jia X, Hou W, Zhou G, Ma Z, Yu B, Pi Y, Zhang X, Wang J, Wang G. Phosphorylation of Msx1 promotes cell proliferation through the Fgf9/18-MAPK signaling pathway during embryonic limb development. Nucleic Acids Res 2020; 48:11452-11467. [PMID: 33080014 PMCID: PMC7672426 DOI: 10.1093/nar/gkaa905] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/26/2020] [Accepted: 10/08/2020] [Indexed: 11/25/2022] Open
Abstract
Msh homeobox (Msx) is a subclass of homeobox transcriptional regulators that control cell lineage development, including the early stage of vertebrate limb development, although the underlying mechanisms are not clear. Here, we demonstrate that Msx1 promotes the proliferation of myoblasts and mesenchymal stem cells (MSCs) by enhancing mitogen-activated protein kinase (MAPK) signaling. Msx1 directly binds to and upregulates the expression of fibroblast growth factor 9 (Fgf9) and Fgf18. Accordingly, knockdown or antibody neutralization of Fgf9/18 inhibits Msx1-activated extracellular signal-regulated kinase 1/2 (Erk1/2) phosphorylation. Mechanistically, we determined that the phosphorylation of Msx1 at Ser136 is critical for enhancing Fgf9 and Fgf18 expression and cell proliferation, and cyclin-dependent kinase 1 (CDK1) is apparently responsible for Ser136 phosphorylation. Furthermore, mesenchymal deletion of Msx1/2 results in decreased Fgf9 and Fgf18 expression and Erk1/2 phosphorylation, which leads to serious defects in limb development in mice. Collectively, our findings established an important function of the Msx1-Fgf-MAPK signaling axis in promoting cell proliferation, thus providing a new mechanistic insight into limb development.
Collapse
Affiliation(s)
- Yenan Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Xiaoli Zhu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui 230001, China
| | - Xiang Jia
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Wanwan Hou
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Guoqiang Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Zhangjing Ma
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Bin Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Yan Pi
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Xumin Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Jingqiang Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Gang Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai 200438, China
| |
Collapse
|
8
|
Xu Y, Yao T, Huang K, Liu G, Huang Y, Gao J, Ye H, Shen S, Ma J. Circular RNA circTUBGCP3 Is Up-Regulated and Promotes Cell Proliferation, Migration and Survivability via Sponge mir-30b in Osteosarcoma. Onco Targets Ther 2020; 13:3729-3737. [PMID: 32440142 PMCID: PMC7210039 DOI: 10.2147/ott.s245366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/19/2020] [Indexed: 12/19/2022] Open
Abstract
Purpose Prevailing evidences have demonstrated that circular RNAs (circRNAs) are closely associated with various stages of carcinogenesis. However, very few studies have delineated the specific mechanism of association between circRNAs and osteosarcoma (OS). It offers a novel insight that circRNAs can be explored as a potential therapeutic strategy for OS. Materials and Methods In this study, circTUBGCP3 was chosen from the existing reported circRNA microarray data obtained from OS cell lines and normal bone cells. Subsequently, qRT-PCR was performed to evaluate the expression level of circTUBGCP3 in OS samples and cell lines. Functional assays were conducted to estimate the impact of circTUBGCP3 on human OS cells proliferation, vitality, survivability, and migration. Western blot, luciferase reporter and in vivo tumorigenesis assays were performed to analyze the signaling pathways underlying the interaction of circTUBGCP3, miR-30b, and Vimentin. Results The data indicate that circTUBGCP3 may act as a sponge of miR-30b that further alters the expression of Vimentin, and promotes the proliferation and metastatic properties of OS cells. Conclusion circTUBGCP3 serves as a tumor promoter in tumorigenesis by increasing the possibilities of OS initiation and proliferation.
Collapse
Affiliation(s)
- Yining Xu
- Shaoxing University School of Medicine, Shaoxing, Zhejiang 312000, People's Republic of China.,Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Teng Yao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Kangmao Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Gang Liu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Yizhen Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Jun Gao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Huali Ye
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Shuying Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Jianjun Ma
- Shaoxing University School of Medicine, Shaoxing, Zhejiang 312000, People's Republic of China.,Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|