1
|
Tong CQ, Li MJ, Liu Y, Zhou Q, Sun WQ, Chen JY, Wang D, Li F, Chen ZJ, Song YH. Regulation of hippocampal miRNA expression by intestinal flora in anxiety-like mice. Eur J Pharmacol 2024; 984:177016. [PMID: 39369876 DOI: 10.1016/j.ejphar.2024.177016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024]
Abstract
This study investigated the possible interaction between gut flora and miRNAs and the effect of both on anxiety disorders. The model group was induced with chronic restraint stress (CRS) and each group was tested for anxiety-like behaviour by open field test and elevated plus maze test. Meanwhile, the gut flora was analysed by 16S rRNA high-throughput sequencing. The miRNAs in hippocampus were analysed by high-throughput sequencing, and the key miRNAs were obtained by using the method of bioinformatics analysis. PCR was used to verify the significantly related key miRNAs. Spearman correlation analysis was used to explore the correlation between behaviour, key miRNAs and differential gut microbiota. The 16S rRNA high-throughput sequencing result showed that the gut flora was dysregulated in the model group. In particular, Verrucomicrobia, Akkermansia, Anaerostipes, Ralstonia, Burkholderia and Anaeroplasma were correlated with behaviour. The results of miRNA high-throughput sequencing analysis and bioinformatics analysis showed that 7 key miRNAs influenced the pathogenesis of anxiety, and qRT-PCR results were consistent with the high-throughput sequencing results. Mmu-miR-543-3p and mmu-miR-26a-5p were positively correlated with Verrucomicrobia, Akkermansia and Anaerostipes. Therefore, we infer that chronic stress caused the decrease of Akkermansia abundance, which may aggravate the decrease of mmu-miR-543-3p and mmu-miR-26a-5p expression, leading to the increase of SLC1A2 expression. In conclusion, gut flora has played an important influence on anxiety with changes in miRNAs.
Collapse
Affiliation(s)
- Chang-Qing Tong
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, BJ, China
| | - Meng-Jia Li
- College of Life Science, Beijing University of Chinese Medicine, Beijing, BJ, China
| | - Yan Liu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, BJ, China
| | - Qin Zhou
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, BJ, China
| | - Wen-Qi Sun
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, BJ, China
| | - Jia-Yi Chen
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, BJ, China
| | - Di Wang
- Department of traditional Chinese Medicine, Beijing ANDing hospital affiliated to capital University of medical sciences, Beijing, BJ, China
| | - Feng Li
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, BJ, China
| | - Zi-Jie Chen
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, BJ, China.
| | - Yue-Han Song
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, BJ, China.
| |
Collapse
|
2
|
Skop KM, Bajor L, Sevigny M, Swank C, Tallavajhula S, Nakase-Richardson R, Miles SR. Exploring the relationship between sleep apnea and vestibular symptoms following traumatic brain injury. PM R 2023; 15:1524-1535. [PMID: 37490363 DOI: 10.1002/pmrj.13044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/09/2023] [Accepted: 07/14/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND Traumatic brain injury (TBI) is a complex health problem in military veterans and service members (V/SM) that often involves comorbid vestibular impairment. Sleep apnea is another comorbidity that may exacerbate, and/or be exacerbated by, vestibular dysfunction. OBJECTIVE To examine the relationship between sleep apnea and vestibular symptoms in V/SM diagnosed with TBI of any severity. DESIGN Multicenter cohort study; cross-sectional sample. SETTING In-patient TBI rehabilitation units within five Veterans Affairs (VA) Polytrauma Rehabilitation Centers. PARTICIPANTS V/SM with a diagnosis of TBI (N = 630) enrolled in the VA TBI Model Systems study. INTERVENTION Not applicable. METHODS A multivariable regression model was used to evaluate the association between sleep apnea and vestibular symptom severity while controlling for relevant covariates, for example, posttraumatic stress disorder (PTSD). MAIN OUTCOME MEASURES Lifetime history of sleep apnea was determined via best source reporting. Vestibular disturbances were measured with the 3-item Vestibular subscale of the Neurobehavioral Symptom Inventory (NSI). RESULTS One third (30.6%) of the sample had a self-reported sleep apnea diagnosis. Initial analysis showed that participants who had sleep apnea had more severe vestibular symptoms (M = 3.84, SD = 2.86) than those without sleep apnea (M = 2.88, SD = 2.67, p < .001). However, when the data was analyzed via a multiple regression model, sleep apnea no longer reached the threshold of significance as a factor associated with vestibular symptoms. PTSD severity was shown to be significantly associated with vestibular symptoms within this sample (p < .001). CONCLUSION Analysis of these data revealed a relationship between sleep apnea and vestibular symptoms in V/SM with TBI. The significance of this relationship was affected when PTSD symptoms were factored into a multivariable regression model. However, given that the mechanisms and directionality of these relationships are not yet well understood, we assert that in terms of clinical relevance, providers should emphasize screening for each of the three studied comorbidities (sleep apnea, vestibular symptoms, and PTSD).
Collapse
Affiliation(s)
- Karen M Skop
- Physical Medicine and Rehabilitation Services, Department of Physical Therapy, James A Haley Veterans' Hospital, Tampa, Florida, USA
- Morsani College of Medicine, University of South Florida, School of Physical Therapy, Tampa, Florida, USA
| | - Laura Bajor
- Mental Health and Behavioral Sciences Service, James A Haley Veterans' Hospital, Tampa, Florida, USA
- Department of Psychiatry & Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Harvard South Shore Psychiatry Training Program, Brockton, Massachusetts, USA
| | - Mitch Sevigny
- Research Department, Craig Hospital, Englewood, Colorado, USA
| | - Chad Swank
- Baylor Scott & White Research Institute for Rehabilitation, Dallas, Texas, USA
- Baylor Scott White Research Institute, Dallas, Texas, USA
| | - Sudha Tallavajhula
- University of Texas McGovern Medical School, Houston, Texas, USA
- TIRR Memorial Hermann Neurological Sleep Disorders Center, Houston, Texas, USA
| | - Risa Nakase-Richardson
- Mental Health and Behavioral Sciences and Defense and Veterans' Brain Injury Center, James A. Haley Veterans' Hospital, Tampa, Florida, USA
- Morsani College of Medicine, Pulmonary and Sleep Medicine Division, University of South Florida, Tampa, Florida, USA
| | - Shannon R Miles
- Mental Health and Behavioral Sciences Service, James A Haley Veterans' Hospital, Tampa, Florida, USA
- Department of Psychiatry & Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
3
|
Hatat B, Boularand R, Bringuier C, Chanut N, Besnard S, Mueller AM, Weyer K, Seilheimer B, Tighilet B, Chabbert C. Vertigoheel improves central vestibular compensation after unilateral peripheral vestibulopathy in rats. Front Neurol 2022; 13:969047. [PMID: 36212670 PMCID: PMC9541623 DOI: 10.3389/fneur.2022.969047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022] Open
Abstract
The aim of this study was to assess the effect of Vertigoheel on central vestibular compensation and cognitive deficits in rats subjected to peripheral vestibular loss. Young adult male Long Evans rats were subjected to bilateral vestibular insults through irreversible sequential ototoxic destructions of the vestibular sensory organs. Vestibular syndrome characteristics were monitored at several time points over days and weeks following the sequential insults, using a combination of behavioral assessment paradigms allowing appreciation of patterns of change in static and dynamic deficits, together with spatial navigation, learning, and memory processes. Vertigoheel administered intraperitoneally significantly improved maximum body velocity and not moving time relative to its vehicle control on days 2 and 3 and on day 2, respectively, after unilateral vestibular lesion (UVL). It also significantly improved postural control relative to its vehicle 1 day after UVL. Conversely, Vertigoheel did not display any significant effect vs. vehicle on the severity of the syndrome, nor on the time course of other examined parameters, such as distance moved, mean body velocity, meander, and rearing. Spatial cognition testing using Y- and T-maze and eight-radial arm maze did not show any statistically significant difference between Vertigoheel and vehicle groups. However, Vertigoheel potentially enhanced the speed of learning in sham animals. Evaluating Vertigoheel's effect on thigmotaxis during the open-field video tracking test revealed no significant difference between Vertigoheel and its vehicle control groups suggesting that Vertigoheel does not seem to induce sedative or anxiolytic effects that could negatively affect vestibular and memory function. Present observations reveal that Vertigoheel improves central vestibular compensation following the unilateral peripheral vestibular loss as demonstrated by improvement of specific symptoms.
Collapse
Affiliation(s)
| | | | | | | | - Stéphane Besnard
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Marseille, France
- Unité GDR2074 CNRS, Marseille, France
| | | | | | | | - Brahim Tighilet
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Marseille, France
- Unité GDR2074 CNRS, Marseille, France
- *Correspondence: Brahim Tighilet
| | - Christian Chabbert
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Marseille, France
- Unité GDR2074 CNRS, Marseille, France
- Christian Chabbert
| |
Collapse
|
4
|
Electroacupuncture Reverses CUMS-Induced Depression-Like Behaviors and LTP Impairment in Hippocampus by Downregulating NR2B and CaMK II Expression. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9639131. [PMID: 34804187 PMCID: PMC8604574 DOI: 10.1155/2021/9639131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/13/2021] [Indexed: 11/18/2022]
Abstract
Objective Depression is a global mental health problem with high disability rate, which brings a huge disease burden to the world. Electroacupuncture (EA) has been shown to be an effective method for the treatment of depression. However, the mechanism underling the antidepressant effect of EA has not been clearly clarified. The change of synaptic plasticity is the focus in the study of antidepressant mechanism. This study will observe the effect of EA on LTP of hippocampal synaptic plasticity and explore its possible mechanism. Methods The depression-like behavior rat model was established by chronic unpredictable mild stress (CUMS). EA stimulation (Hegu and Taichong) was used to treat the depressed rats. The depression-like behavior of rats was tested by weight measurement, open field test, depression preference test, and novelty suppressed feeding test. Long-term potentiation (LTP) was recorded at CA1 synapses in hippocampal slices by electrophysiological method. N-methyl-D-aspartate receptor subunit 2B (NR2B) and calmodulin-dependent protein kinase II (CaMK II) protein levels were examined by using western blot. Results After the establishment of CUMS-induced depression model, the weight gain rate, sucrose preference rate, line crossing number, and rearing times of rats decreased, and feeding time increased. At the same time, the LTP in hippocampus was impaired, and the expressions of NR2B and CaMK II were upregulated. After EA treatment, the depression-like behavior of rats was improved, the impairment of LTP was reversed, and the expression levels of NR2B and CaMK II protein were downregulated. Conclusion EA can ameliorate depression-like behaviors by restoring LTP induction, downregulating NR2B and CaMK II expression in CUMS model rats, which might be part of the mechanism of EA antidepressant.
Collapse
|
5
|
Smith PF, Zheng Y. Applications of Multivariate Statistical and Data Mining Analyses to the Search for Biomarkers of Sensorineural Hearing Loss, Tinnitus, and Vestibular Dysfunction. Front Neurol 2021; 12:627294. [PMID: 33746881 PMCID: PMC7966509 DOI: 10.3389/fneur.2021.627294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/01/2021] [Indexed: 11/24/2022] Open
Abstract
Disorders of sensory systems, as with most disorders of the nervous system, usually involve the interaction of multiple variables to cause some change, and yet often basic sensory neuroscience data are analyzed using univariate statistical analyses only. The exclusive use of univariate statistical procedures, analyzing one variable at a time, may limit the potential of studies to determine how interactions between variables may, as a network, determine a particular result. The use of multivariate statistical and data mining methods provides the opportunity to analyse many variables together, in order to appreciate how they may function as a system of interacting variables, and how this system or network may change as a result of sensory disorders such as sensorineural hearing loss, tinnitus or different types of vestibular dysfunction. Here we provide an overview of the potential applications of multivariate statistical and data mining techniques, such as principal component and factor analysis, cluster analysis, multiple linear regression, random forest regression, linear discriminant analysis, support vector machines, random forest classification, Bayesian classification, and orthogonal partial least squares discriminant analysis, to the study of auditory and vestibular dysfunction, with an emphasis on classification analytic methods that may be used in the search for biomarkers of disease.
Collapse
Affiliation(s)
- Paul F. Smith
- Department of Pharmacology and Toxicology, Brain Health Research Centre, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Brain Research New Zealand Centre of Research Excellence, University of Auckland, Auckland, New Zealand
- The Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, Auckland, New Zealand
| | - Yiwen Zheng
- Department of Pharmacology and Toxicology, Brain Health Research Centre, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Brain Research New Zealand Centre of Research Excellence, University of Auckland, Auckland, New Zealand
- The Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|