1
|
Cong P, Tong C, Mao S, Shi L, Hou M, Liu Y. DDAH1 deficiency exacerbates cerebral vascular endothelial dysfunction by aggravating BBB disruption and oxidative stress in thoracic blast-induced brain injury. Exp Neurol 2024; 383:114994. [PMID: 39424041 DOI: 10.1016/j.expneurol.2024.114994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/07/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
As terrorist incidents and underground explosion events have become more frequent around the world, brain injury caused by thoracic blast exposure has been more highlighted due to its injured organ, subsequent social and economic burden. It has been reported dimethylarginine dimethylaminohydrolase 1 (DDAH1) plays important roles in regulating vascular endothelial injury repair and angiogenesis, but its role in thoracic blast-induced brain injury remains to be explained. This study seeks to investigate the mechanism of DDAH1 on thoracic blast-induced brain injury. 40 C57BL/6 wild type mice and 40 DDAH1 knockout mice were randomly and equally divided into control group and blast group, respectively. The integrity of blood-brain barrier (BBB) was detected by Evans blue test. The serum inflammatory factors, nitric oxide (NO) contents, and asymmetric dimethylarginine (ADMA) levels were determined through ELISA. HE staining and reactive oxygen species (ROS) detection were performed for histopathological changes. Western blot was used to detect the proteins related to oxidative stress, tight junction, focal adhesion, vascular endothelial injury, and the DDAH1/ADMA/eNOS signaling pathway. DDAH1 deficiency aggravated thoracic blast-induced BBB leakage, inflammatory response, and the increased levels of inflammatory-related factors. Additionally, DDAH1 deficiency also increased ROS generation, MDA and IRE-α expression. Regarding cerebral vascular endothelial dysfunction, DDAH1 deficiency increased the expression of MCAM, FN1, LIMK1, VEGF, MMP9, Vimentin and N-cadherin, while lowering the expression of FMR1, Occludin, claudin-3, claudin-5, Lyn, LIMA1, Glrb, Sez6, Dystrophin, and phosphorylation of VASP. Also, DDAH1 deficiency exacerbated explosion-induced increase of ADMA and decrease of eNOS activity and NO contents. Thus, we conclude that DDAH1 could prevent cerebral vascular endothelial dysfunction and related injury by inhibiting ADMA signaling and increasing eNOS activity in thoracic blast induced brain injury.
Collapse
Affiliation(s)
- Peifang Cong
- Shenyang Medical College, No.146, Huanghe North Street, Yuhong District, Shenyang, Liaoning Province 110034, China
| | - Changci Tong
- Shenyang Medical College, No.146, Huanghe North Street, Yuhong District, Shenyang, Liaoning Province 110034, China
| | - Shun Mao
- Shenyang Medical College, No.146, Huanghe North Street, Yuhong District, Shenyang, Liaoning Province 110034, China
| | - Lin Shi
- Shenyang Medical College, No.146, Huanghe North Street, Yuhong District, Shenyang, Liaoning Province 110034, China
| | - Mingxiao Hou
- Shenyang Medical College, No.146, Huanghe North Street, Yuhong District, Shenyang, Liaoning Province 110034, China
| | - Yunen Liu
- Shenyang Medical College, No.146, Huanghe North Street, Yuhong District, Shenyang, Liaoning Province 110034, China.
| |
Collapse
|
2
|
Luo Z, Tong C, Cong P, Mao S, Xu Y, Hou M, Liu Y. Silencing CD28 attenuated chest blast exposure-induced traumatic brain injury through the PI3K/AKT/NF-κB signaling pathway in male mice. Brain Res Bull 2024; 214:110987. [PMID: 38830487 DOI: 10.1016/j.brainresbull.2024.110987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/16/2024] [Accepted: 05/25/2024] [Indexed: 06/05/2024]
Abstract
In modern war or daily life, blast-induced traumatic brain injury (bTBI) is a growing health concern. Our previous studies demonstrated that inflammation was one of the main features of bTBI, and CD28-activated T cells play a central role in inflammation. However, the mechanism of CD28 in bTBI remains to be elucidated. In this study, traumatic brain injury model induced by chest blast exposure in male mice was established, and the mechanism of CD28 in bTBI was studied by elisa, immunofluorescence staining, flow cytometry analysis and western blot. After exposure to chest shock wave, the inflammatory factors IL-4, IL-6 and HMGB1 in serum were increased, and CD3+ T cells, CD4+ and CD8+ T cell subsets in the lung were activated. In addition, chest blast exposure resulted in impaired spatial learning and memory ability, disruption of the blood-brain barrier (BBB), and the expression of Tau, p-tau, S100β and choline acetyltransferase were increased. The results indicated that genetic knockdown of CD28 could inhibit inflammatory cell infiltration, as well as the activation of CD3+ T cells, CD4+ and CD8+ T cell subsets in the lung, improve spatial learning and memory ability, and ameliorate BBB disruption and hippocampal neuron damage. Moreover, genetic knockdown of CD28 could reduce the expression of p-PI3K, p-AKT and NF-κB. In conclusion, chest blast exposure could lead to bTBI, and attenuate bTBI via the PI3K/AKT/NF-κB signaling pathway in male mice. This study provides new targets for the prevention and treatment of veterans with bTBI.
Collapse
Affiliation(s)
- Zhonghua Luo
- Shenyang Medical College, No. 146, Huanghe North Street, Shenyang 110034, China
| | - Changci Tong
- Shenyang Medical College, No. 146, Huanghe North Street, Shenyang 110034, China
| | - Peifang Cong
- Shenyang Medical College, No. 146, Huanghe North Street, Shenyang 110034, China
| | - Shun Mao
- Shenyang Medical College, No. 146, Huanghe North Street, Shenyang 110034, China
| | - Ying Xu
- Department of Tumor Radiotherapy, the General Hospital of Northern Theater Command, No. 83 Road, Shenhe District, Shenyang l10016, China.
| | - Mingxiao Hou
- The Second Affiliated Hospital of Shenyang Medical College, The Veterans General Hospital of Liaoning Province, No. 20 Beijiu Road, Heping District, Shenyang 110001, China.
| | - Yunen Liu
- Shenyang Medical College, No. 146, Huanghe North Street, Shenyang 110034, China.
| |
Collapse
|
3
|
Zhu X, Chu X, Wang H, Liao Z, Xiang H, Zhao W, Yang L, Wu P, Liu X, Chen D, Xie J, Dai W, Li L, Wang J, Zhao H. Investigating neuropathological changes and underlying neurobiological mechanisms in the early stages of primary blast-induced traumatic brain injury: Insights from a rat model. Exp Neurol 2024; 375:114731. [PMID: 38373483 DOI: 10.1016/j.expneurol.2024.114731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/06/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
The utilization of explosives and chemicals has resulted in a rise in blast-induced traumatic brain injury (bTBI) in recent times. However, there is a dearth of diagnostic biomarkers and therapeutic targets for bTBI due to a limited understanding of biological mechanisms, particularly in the early stages. The objective of this study was to examine the early neuropathological characteristics and underlying biological mechanisms of primary bTBI. A total of 83 Sprague Dawley rats were employed, with their heads subjected to a blast shockwave of peak overpressure ranging from 172 to 421 kPa in the GI, GII, and GIII groups within a closed shock tube, while the body was shielded. Neuromotor dysfunctions, morphological changes, and neuropathological alterations were detected through modified neurologic severity scores, brain water content analysis, MRI scans, histological, TUNEL, and caspase-3 immunohistochemical staining. In addition, label-free quantitative (LFQ)-proteomics was utilized to investigate the biological mechanisms associated with the observed neuropathology. Notably, no evident damage was discernible in the GII and GI groups, whereas mild brain injury was observed in the GIII group. Neuropathological features of bTBI were characterized by morphologic changes, including neuronal injury and apoptosis, cerebral edema, and cerebrovascular injury in the shockwave's path. Subsequently, 3153 proteins were identified and quantified in the GIII group, with subsequent enriched neurological responses consistent with pathological findings. Further analysis revealed that signaling pathways such as relaxin signaling, hippo signaling, gap junction, chemokine signaling, and sphingolipid signaling, as well as hub proteins including Prkacb, Adcy5, and various G-protein subunits (Gnai2, Gnai3, Gnao1, Gnb1, Gnb2, Gnb4, and Gnb5), were closely associated with the observed neuropathology. The expression of hub proteins was confirmed via Western blotting. Accordingly, this study proposes signaling pathways and key proteins that exhibit sensitivity to brain injury and are correlated with the early pathologies of bTBI. Furthermore, it highlights the significance of G-protein subunits in bTBI pathophysiology, thereby establishing a theoretical foundation for early diagnosis and treatment strategies for primary bTBI.
Collapse
Affiliation(s)
- Xiyan Zhu
- Department of Military Traffic Injury Prevention and Control, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiang Chu
- Cognitive Development and Learning and Memory Disorders Translational Medicine Laboratory, Children's Hospital, Chongqing Medical University, Chongqing, China; Emergency department, Daping Hospital, Army Medical University, Chongqing, China
| | - Hao Wang
- Neurosurgery department, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhikang Liao
- Department of Military Traffic Injury Prevention and Control, Daping Hospital, Army Medical University, Chongqing, China
| | - Hongyi Xiang
- Department of Military Traffic Injury Prevention and Control, Daping Hospital, Army Medical University, Chongqing, China
| | - Wenbing Zhao
- Department of Military Traffic Injury Prevention and Control, Daping Hospital, Army Medical University, Chongqing, China
| | - Li Yang
- Department of Military Traffic Injury Prevention and Control, Daping Hospital, Army Medical University, Chongqing, China
| | - Pengfei Wu
- Department of Military Traffic Injury Prevention and Control, Daping Hospital, Army Medical University, Chongqing, China
| | - Xing Liu
- Department of Military Traffic Injury Prevention and Control, Daping Hospital, Army Medical University, Chongqing, China
| | - Diyou Chen
- Department of Military Traffic Injury Prevention and Control, Daping Hospital, Army Medical University, Chongqing, China
| | - Jingru Xie
- Department of Military Traffic Injury Prevention and Control, Daping Hospital, Army Medical University, Chongqing, China
| | - Wei Dai
- Department of Military Traffic Injury Prevention and Control, Daping Hospital, Army Medical University, Chongqing, China
| | - Lei Li
- Trauma Medical Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Jianmin Wang
- Department of Weapon Bioeffect Assessment, Daping Hospital, Army Medical University, Chongqing, China.
| | - Hui Zhao
- Department of Military Traffic Injury Prevention and Control, Daping Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|