1
|
Zhang X, Xia L, Yang Q, Tang P. Phosphodiesterase type 5 inhibitors related hearing impairment: a real world study based on the FDA adverse event reporting system. Sci Rep 2024; 14:9743. [PMID: 38679603 PMCID: PMC11056362 DOI: 10.1038/s41598-024-60493-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024] Open
Abstract
Recent studies focused on exploring phosphodiesterase type 5 inhibitors (PDE5Is)-related hearing impairment. This study aimed to comprehensively explore real-world hearing impairment associated with PDE5Is based on the US Food and Drug Administration Adverse Event Reporting System (FAERS). The characteristics and correlation of PDE5Is-related hearing impairment reported in the FAERS database from the fourth quarter of 2003 to the second quarter of 2023 were analyzed using disproportionality analysis. The Standardized Medical Dictionary for Regulatory Activities (MedDRA) Queries (SMQs) were used to analyze the adverse events (AEs) of hearing impairment. A total of 1,438 reported cases of hearing impairment were associated with four PDE5Is, revealing statistically significant reporting odds ratio (ROR), proportional reporting ratio (PRR), and information component (IC) with the SMQ. The average age of all patients was more than 55 years, over 70% of AEs were reported in men. Most of the reported cases were from the United States. Reports for all the drugs indicated an increase since 2008, except for avanafil. This study showed that the disability rates of PDE5Is were 8.14-40%, the rates of initial or prolonged hospitalization were 6.21-10.24%, and the rates of required intervention were 3.31-9.45%. The pharmacovigilance study identified a potential risk of hearing impairment associated with PDE5Is, indicating the need for continuous monitoring and appropriate management.
Collapse
Affiliation(s)
- Xunyan Zhang
- Department of Pharmacy, Suining Central Hospital, No.127, West Desheng Road, Chuanshan District, Suining, 629000, Sichuan, People's Republic of China
| | - Lu Xia
- Cancer Center of Suining Central Hospital, Suining, 629000, Sichuan, People's Republic of China
| | - Qiang Yang
- Department of Pharmacy, Suining Central Hospital, No.127, West Desheng Road, Chuanshan District, Suining, 629000, Sichuan, People's Republic of China
| | - Pingxiu Tang
- Department of Pharmacy, Suining Central Hospital, No.127, West Desheng Road, Chuanshan District, Suining, 629000, Sichuan, People's Republic of China.
| |
Collapse
|
2
|
Han L, Wang Z, Wang D, Gao Z, Hu S, Shi D, Shu Y. Mechanisms and otoprotective strategies of programmed cell death on aminoglycoside-induced ototoxicity. Front Cell Dev Biol 2024; 11:1305433. [PMID: 38259515 PMCID: PMC10800616 DOI: 10.3389/fcell.2023.1305433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
Aminoglycosides are commonly used for the treatment of life-threatening bacterial infections, however, aminoglycosides may cause irreversible hearing loss with a long-term clinical therapy. The mechanism and prevention of the ototoxicity of aminoglycosides are still limited although amounts of studies explored widely. Specifically, advancements in programmed cell death (PCD) provide more new perspectives. This review summarizes the general signal pathways in programmed cell death, including apoptosis, autophagy, and ferroptosis, as well as the mechanisms of aminoglycoside-induced ototoxicity. Additionally, novel interventions, especially gene therapy strategies, are also investigated for the prevention or treatment of aminoglycoside-induced hearing loss with prospective clinical applications.
Collapse
Affiliation(s)
- Lei Han
- Department of Otorhinolaryngology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Zijing Wang
- Department of Otorhinolaryngology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Daqi Wang
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Ziwen Gao
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Shaowei Hu
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Dazhi Shi
- Department of Otorhinolaryngology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yilai Shu
- Department of Otorhinolaryngology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Cutri RM, Lin J, Nguyen NV, Shakya D, Shibata SB. Neomycin-Induced Deafness in Neonatal Mice. J Neurosci Methods 2023; 391:109852. [PMID: 37031766 DOI: 10.1016/j.jneumeth.2023.109852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/26/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023]
Abstract
BACKGROUND Hearing impairment is a rising public health issue, and current therapeutics fail to restore normal auditory sensation. Animal models are essential to a better understanding of the pathophysiology of deafness and developing therapeutics to restore hearing. NEW METHODS Wild-type CBA/CaJ neonatal mice P2-5 were used in this study. Neomycin suspension (500nl of 50 or 100mg/ml) was micro-injected into the endolymphatic space. Cochlear morphology was examined 3 and 7 days after injection; hair cell (HC) loss, supporting cell morphology, and neurite denervation pattern were assessed with whole-mounts. At 2 and 4 weeks post-injection, the spiral ganglion neuron (SGN) density was analyzed with cryostat sections. Audiometric responses were measured with auditory brain response (ABR) at 4 weeks. RESULTS Rapid and complete degeneration of the inner and outer HCs occurred as early as 3 days post-injection. Subsequently, time- and dose-dependent degeneration patterns were observed along the axis of the cochlear membranous labyrinth forming a flat epithelium. Likewise, the SGN histology demonstrated significant cell density reduction at 2 and 4 weeks. The ABR threshold measurements confirmed profound deafness at 4 weeks. COMPARISON WITH EXISTING METHODS Compared to previously described local and systemic aminoglycoside injections, this method provides a reliable, robust, and rapid deafening model with a single infusion of neomycin in neonatal mice. This model also allows for investigating the effects of inner ear damage during auditory maturation. CONCLUSIONS A single injection of neomycin into the endolymphatic space induces robust HC loss and denervation in neonatal mice.
Collapse
Affiliation(s)
- Raffaello M Cutri
- Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Joshua Lin
- Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Nhi V Nguyen
- Caruso Department of Otolaryngology-Head and Neck Surgery, University of Southern California, Los Angeles, CA 90033, USA
| | - Dejan Shakya
- Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Seiji B Shibata
- Caruso Department of Otolaryngology-Head and Neck Surgery, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|