1
|
Yuan X, Hu S, Fan X, Jiang C, Xu Y, Hao R, Xu Z, Yu Y, Rastegar-Kashkooli Y, Huang L, Wang TJ, Wang Q, Su S, Wang L, Wang J, Wang M, Kim YT, Bhawal UK, Wang F, Zhao T, Wang J, Chen X, Wang J. Central post-stroke pain: advances in clinical and preclinical research. Stroke Vasc Neurol 2024:svn-2024-003418. [PMID: 39343438 DOI: 10.1136/svn-2024-003418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/04/2024] [Indexed: 10/01/2024] Open
Abstract
Central poststroke pain (CPSP) is a medical complication that arises poststroke and significantly impacts the quality of life and social functioning of affected individuals. Despite ongoing research, the exact pathomechanisms of CPSP remain unclear, and practical treatments are still unavailable. Our review aims to systematically analyse current clinical and preclinical studies on CPSP, which is critical for identifying gaps in knowledge and guiding the development of effective therapies. The review will clarify the clinical characteristics, evaluation scales and contemporary therapeutic approaches for CPSP based on clinical investigations. It will particularly emphasise the CPSP model initiated by stroke, shedding light on its underlying mechanisms and evaluating treatments validated in preclinical studies. Furthermore, the review will not only highlight methodological limitations in animal trials but also offer specific recommendations to researchers to improve the quality of future investigations and guide the development of effective therapies. This review is expected to provide valuable insights into the current knowledge regarding CPSP and can serve as a guide for future research and clinical practice. The review will contribute to the scientific understanding of CPSP and help develop effective clinical interventions.
Collapse
Affiliation(s)
- Xiqian Yuan
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Siyuan Hu
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaochong Fan
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chao Jiang
- Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yan Xu
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ruochen Hao
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Zili Xu
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yiyang Yu
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yousef Rastegar-Kashkooli
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- School of International Education, Zhengzhou University, Zhengzhou, Henan, China
| | - Leo Huang
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Tom J Wang
- Program in Behavioral Biology, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Qiao Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Songxue Su
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Limin Wang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Junyang Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Menglu Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yun Tai Kim
- Division of Functional Food Research, Korea Food Research Institute, Wanju-gun, Wanju Jeollabuk-do, Korea (the Republic of)
- Department of Food Biotechnology, Korea University of Science & Technology, Daejeon, Korea (the Republic of)
| | - Ujjal K Bhawal
- Center for Global Health Research, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil nadu, India
- Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Fushun Wang
- Department of Psychology, Sichuan Normal University, Chengdu, Sichuan, China
| | - Ting Zhao
- Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Junmin Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xuemei Chen
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jian Wang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Nakamoto K, Tokuyama S. Spinal lipocalin 2 as a factor in the development of central post-stroke pain. Brain Res 2024; 1838:148976. [PMID: 38705557 DOI: 10.1016/j.brainres.2024.148976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Central poststroke pain (CPSP) is a type of central neuropathic pain whose mechanisms remain unknown. Recently, we showed that activated astrocytes and microglial cells are present in the spinal cord of CPSP model mice. Activated glial cells exacerbate cerebral ischemic pathology by increasing the expression of inflammatory factors. However, the involvement of spinal glial cells in CPSP remains unknown. We hypothesized that spinal glial cell-derived molecules cause hyperexcitability or promoted the development of CPSP. In this study, we identified glial cell-derived factors involved in the development of CPSP using a bilateral common carotid occlusion (BCAO)-induced CPSP mouse model. Male ddY mice were subjected to BCAO for 30 min. The von Frey test assessed mechanical hypersensitivity in the right hind paw of mice. BCAO mice showed hypersensitivity to mechanical stimuli and astrocyte activation in the spinal cord 3 days after treatment. DNA microarray analysis revealed a significant increase in lipocalin 2 (LCN2), is known as neutrophil gelatinase-associated lipocalin, in the superficial dorsal horns of BCAO-induced CPSP model mice. LCN2 colocalized with GFAP, an astrocyte marker. Spinal GFAP-positive cells in BCAO mice co-expressed signal transducer and activator of transcription 3 (STAT3). The increase in the fluorescence intensity of LCN2 and GFAP in BCAO mice was suppressed by intrathecal injection of AG490, an inhibitor of JAK2 and downstream STAT3 activation, or anti-LCN2 antibody. Our findings indicated that LCN2 in spinal astrocytes may be a key molecule and may be partly involved in the development of CPSP.
Collapse
Affiliation(s)
- Kazuo Nakamoto
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Japan
| | - Shogo Tokuyama
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Japan.
| |
Collapse
|
3
|
Lv H, Huang J, Zhang X, He Z, Zhang J, Chen W. Xenon ameliorates chronic post-surgical pain by regulating mitophagy in microglia and rats mediated by PINK1/Parkin pathway. PeerJ 2024; 12:e16855. [PMID: 38390390 PMCID: PMC10883148 DOI: 10.7717/peerj.16855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 01/08/2024] [Indexed: 02/24/2024] Open
Abstract
Background Chronic post-surgical pain (CPSP) is one of the important causes of poor postoperative outcomes, the activation of microglia in the spinal cord is closely related to the generation, transmission and maintenance of CPSP. Xenon (Xe), an anesthetic gas, has been reported to be able to significantly reduce intraoperative analgesia and postoperative pain sensation at low doses. However, the mechanism of the regulatory effect of xenon on activated microglia after CPSP remains unclear. Methods In this study, CPSP model rats were treated with 50% Xe inhalation for 1 h following skin/muscle incision and retraction (SMIR), once a day for 5 consecutive days, and then the painbehavioraltests (pain behavior indexes paw withdrawal mechanical threshold, PWMT and thermal withdrawal latency, TWL), microglial activation, oxidative stress-related indexes (malondialdehyde, MDA; superoxide dismutase, SOD; hydrogen peroxide, H2O2; and catalase, CAT), mitophagy and PINK1/Parkin pathway were examined. Results The present results showed that a single dose of Xe treatment in SMIR rat model could significantly improve PWMT and TWL in the short-term at a single treatment and long-term at multiple treatments. Xe treatment inhibited microglia activation and oxidative stress in the spinal dorsal horn of SMIR rats, as indicated by the decrease of Iba1 and MDA/H2O2 levels and the increase of SOD/CAT levels. Compared with the control group, Xe further increased the CPSP promoted Mito-Tracker (a mitochondrial marker) and LC3 (an autophagy marker) co-localization positive spots and PINK1/Parkin/ATG5/BECN1 (autophagy-related proteins) protein expression levels, and inhibited the Mito-SOX (a mitochondrial reactive oxygen species marker) positive signal, indicating that Xe promoted microglia mitophagy and inhibited oxidative stress in CPSP. Mechanistically, we verified that Xe promoted PINK1/Parkin signaling pathway activation. Conclusion Xe plays a role in ameliorating chronic post-surgical pain by regulating the PINK1/Parkin pathway mediated microglial mitophagy and provide new ideas and targets for the prevention and treatment of CPSP.
Collapse
Affiliation(s)
- Hu Lv
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiaojiao Huang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xin Zhang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhiyong He
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun Zhang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Chen
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Fujimura M. Gabapentin improves neuropathic pain in Minamata disease model rats. Environ Health Prev Med 2024; 29:31. [PMID: 38825526 PMCID: PMC11157338 DOI: 10.1265/ehpm.24-00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/02/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND Methylmercury (MeHg), the causative agent of Minamata disease, damages the cranial nervous system and causes specific sensory disturbances, especially hypoesthesia, in the extremities. However, recent reports demonstrate that patients with chronic Minamata disease conversely develop neuropathic pain in the lower extremities. Studies on our established Minamata disease model rats showed that MeHg-mediated neurodegeneration might induce neuropathic pain by over time through inducing rewiring with neuronal activation in the somatosensory cortex via microglial activation in the spinal dorsal horn. METHODS In this study, the effects of gabapentin, a potentially effective treatment for neuropathic pain, was evaluated using this Minamata disease model rats. To further elucidate the mechanism of its medicinal effects, histochemical and biochemical analyses of the nervous system of Minamata disease model rats were conducted. RESULTS Gabapentin treatment restored the reduction in the pain threshold caused by MeHg exposure in rats. Histochemical and biochemical analyses revealed that gabapentin showed no effect on MeHg-induced neurodegeneration in entire nervous system and microglial activation in the spinal dorsal horn. However, it was shown that gabapentin may reduce excessive synaptogenesis through its antagonist action on the alpha2-delta-1 subunit of calcium channels in the somatosensory cortex. CONCLUSIONS These results indicate that gabapentin may alleviated neuropathic pain in MeHg poisoning, as typified by Minamata disease, by reversibly modulation synaptic rewiring in the somatosensory cortex.
Collapse
Affiliation(s)
- Masatake Fujimura
- Department of Basic Medical Sciences, National Institute for Minamata Disease, Minamata, Japan
| |
Collapse
|
5
|
Li YR, Dang ZH, Li SS, Li GY, Cai HB, Lu YW, Xie LL, Li LL, Huang LL, Qin XD, Bu F. Progress of research into microglial mediation of central post-stroke pain. Int J Immunopathol Pharmacol 2024; 38:3946320241309220. [PMID: 39699048 DOI: 10.1177/03946320241309220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
Abstract
Central post-stroke pain (CPSP) is a chronic neuropathic pain syndrome that commonly occurs after cerebral stroke, and it severely impairs the daily activities of stroke patients. A number of fundamental and clinical studies support the theory that CPSP is mainly caused by ischemic and hemorrhagic injury of the spinal-thalamic-cortical neural pathway. However, the underlying reasons of CPSP genesis and development are far from clear. In recent years, the majority of research focused on microglia, the main resident immune cells of the central nervous system, which highlighted its critical role in the regulation of CPSP. The present article concentrated on exciting discoveries of microglia in mediating CPSP from the perspectives of their bioactive factors, cellular receptors, and signaling pathways, in order to offer a convenient and easy-to-digest overview. In addition, the potential and challenges of several agents in clinical translation of CPSP treatment was discussed based on recent preclinical studies.
Collapse
Affiliation(s)
- Yue-Rong Li
- Department of Neurology & Psychology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong
| | - Zhao-Hui Dang
- Department of Neurology & Psychology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong
| | - Shan-Shan Li
- Department of Neurology & Psychology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong
| | - Guang-Ya Li
- Department of Neurology & Psychology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong
| | - Hao-Bin Cai
- Department of Neurology & Psychology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong
| | - Yun-Wei Lu
- Department of Neurology & Psychology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong
| | - Lin-Lin Xie
- Department of Neurology & Psychology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong
| | - Li-Ling Li
- Department of Neurology & Psychology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong
| | - Liu-Ling Huang
- Department of Neurology & Psychology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong
| | - Xiu-De Qin
- Department of Neurology & Psychology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong
| | - Fan Bu
- Department of Neurology & Psychology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong
| |
Collapse
|
6
|
Cheng Y, Wu B, Huang J, Chen Y. Research Progress on the Mechanisms of Central Post-Stroke Pain: A Review. Cell Mol Neurobiol 2023; 43:3083-3098. [PMID: 37166685 DOI: 10.1007/s10571-023-01360-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/02/2023] [Indexed: 05/12/2023]
Abstract
Central Post-Stroke Pain (CPSP) is a primary sequelae of stroke that can develop in the body part corresponding to the cerebrovascular lesion after stroke, most typically after ischemic stroke but also after hemorrhagic stroke. The pathogenesis of CPSP is currently unknown, and research into its mechanism is ongoing. To summarize current research on the CPSP mechanism and provide guidance for future studies. Use "central post-stroke pain," "stroke AND thalamic pain," "stroke AND neuropathic pain," "post-stroke thalamic pain" as the search term. The search was conducted in the PubMed and China National Knowledge Infrastructure databases, summarizing and classifying the retrieved mechanism studies. The mechanistic studies on CPSP are extensive, and we categorized the included mechanistic studies and summarized them in terms of relevant pathway studies, relevant signals and receptors, relevant neural tissues, and described endoplasmic reticulum stress and other relevant studies, as well as summarized the mechanisms of acupuncture treatment. Studies have shown that the pathogenesis of CPSP involves the entire spinal-thalamo-cortical pathway and that multiple substances in the nervous system are involved in the formation and development of CPSP. Among them, the relevant receptors and signals are the hotspot of research, and the discovery and exploration of different receptors and signals have provided a wide range of therapeutic ideas for CPSP. As a very effective treatment, acupuncture is less studied regarding the analgesic mechanism of CPSP, and further experimental studies are still needed.
Collapse
Affiliation(s)
- Yupei Cheng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, 88 Changling Road, Tianjin, 300381, China
- Tianjin University of Traditional Chinese Medicine, 88 Changling Road, Tianjin, 301617, China
| | - Bangqi Wu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, 88 Changling Road, Tianjin, 300381, China.
| | - Jingjie Huang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, 88 Changling Road, Tianjin, 300381, China
- Tianjin University of Traditional Chinese Medicine, 88 Changling Road, Tianjin, 301617, China
| | - Yameng Chen
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, 88 Changling Road, Tianjin, 300381, China
- Tianjin University of Traditional Chinese Medicine, 88 Changling Road, Tianjin, 301617, China
| |
Collapse
|
7
|
Shi H, Chen M, Zheng C, Yinglin B, Zhu B. Fecal Microbiota Transplantation Alleviated Paclitaxel-Induced Peripheral Neuropathy by Interfering with Astrocytes and TLR4/p38MAPK Pathway in Rats. J Pain Res 2023; 16:2419-2432. [PMID: 37483406 PMCID: PMC10361291 DOI: 10.2147/jpr.s415642] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/09/2023] [Indexed: 07/25/2023] Open
Abstract
Purpose Paclitaxel-induced peripheral neuropathy (PIPN) constitutes a refractory and progressive adverse consequence of paclitaxel treatment, causing pain and sensory anomalies in cancer survivors. Although the gut-brain axis is involved in multiple disorders including cancer, its impact on peripheral pain conditions remains elusive. Thus, we assessed the importance of gut microbiota and related mechanisms in PIPN. Methods By implementing fecal microbiota transplantation (FMT) in a rat PIPN model (ie, rats treated with paclitaxel; hereafter as PIPN rats), we explored the effect of gut microbiota on PIPN rats using multiple methods, including different behavioral tests, 16S ribosomal DNA (rDNA) sequencing, and biochemical techniques. Results Sequencing of 16S rDNA revealed that the abundance of genera Bacteroides and UCG-005 increased, while that of genera Turicibacter, Clostridium sensu stricto 1 and Corynebacterium decreased in the PIPN rats. However, when treated with FMT using fecal from normal rats, the mechanical allodynia and thermal hyperalgesia in PIPN rats were significantly alleviated. In addition, FMT treatment reduced the expression of toll-like receptor 4 (TLR4), phospho-p38 mitogen-activated protein kinase (p-p38MAPK), and the astrocytic marker glial fibrillary acidic protein in the colon and spinal dorsal horn. TAK242 (a TLR4 inhibitor) significantly alleviated the behavioral hypersensitivity of PIPN rats and inhibited the TLR4/p38MAPK pathway in astrocytes in these rats. Conclusion The gut microbiota played a critical role in PIPN. Future therapies treating PIPN should consider microbe-based treatment as an option.
Collapse
Affiliation(s)
- Haibin Shi
- Department of Anesthesiology, the Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Minmin Chen
- Department of Anesthesiology, Hangzhou Women’s Hospital, Hangzhou, Zhejiang, People’s Republic of China
| | - Caihong Zheng
- Department of Anesthesiology, Hangzhou Women’s Hospital, Hangzhou, Zhejiang, People’s Republic of China
| | - Bian Yinglin
- Department of Anesthesiology, Hangzhou Women’s Hospital, Hangzhou, Zhejiang, People’s Republic of China
| | - Bin Zhu
- Department of Anesthesiology, Hangzhou Women’s Hospital, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
8
|
Yang F, Jing JJ, Fu SY, Su XZ, Zhong YL, Chen DS, Wu XZ, Zou YQ. Spinal MCP-1 Contributes to Central Post-stroke Pain by Inducing Central Sensitization in Rats. Mol Neurobiol 2023; 60:2086-2098. [PMID: 36602702 DOI: 10.1007/s12035-022-03184-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/18/2022] [Indexed: 01/06/2023]
Abstract
Central post-stroke pain (CPSP) is a highly refractory form of central neuropathic pain that has been poorly studied mechanistically. Recent observations have emphasized the critical role of the spinal dorsal horn in CPSP. However, the underlying mechanisms remain unclear. In this study, rats were subjected to thalamic hemorrhage to investigate the role of spinal monocyte chemoattractant protein-1 (MCP-1) and C-C motif chemokine receptor 2 (CCR2) in the development of CPSP. Immunohistochemical staining and ELISA were used to assess the expression changes of c-Fos, Iba-1, GFAP, MCP-1, and CCR2 in the dorsal horn of the lumbar spinal cord following thalamic hemorrhage, and the involvement of spinal MCP-1 in CPSP was examined by performing intrathecal anti-MCP-1 mAb injection to neutralize the spinal extracellular MCP-1. We demonstrated that intra-thalamic collagenase microinjection induced persistent bilateral mechanical pain hypersensitivity and facilitated the spontaneous pain behaviors evoked by intraplantar bee venom injection. Accompanying CPSP, the expression of c-Fos, Iba-1, and GFAP in the lumbar spinal dorsal horn was significantly increased up to 28 days post-intra-thalamic collagenase microinjection. Intrathecal injection of minocycline and fluorocitrate dramatically reverses the bilateral mechanical pain hypersensitivity. Moreover, intra-thalamic collagenase microinjection dramatically induced the up-regulation of MCP-1 but had no effect on the expression of CCR2 in the bilateral lumbar spinal dorsal horn, and MCP-1 was primarily localized in the neuron. Intrathecal injection of anti-MCP-1 mAb was also able to reverse CPSP and reduce the expression of c-Fos, Iba-1, and GFAP in the lumbar spinal dorsal horn. These findings indicated that spinal MCP-1 contributes to CPSP by mediating the activation of spinal neurons and glial cells following thalamic hemorrhage stroke, which may provide insights into pharmacologic treatment for CPSP.
Collapse
Affiliation(s)
- Fei Yang
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical College/900th Hospital of the Joint Logistic Support Force, Fujian Medical University, Fuzhou, 350025, China.,Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, China.,Pain Research Institute, Fujian Medical University, Fuzhou, 350025, China
| | - Jun-Jie Jing
- Department of Neurosurgery, Fujian Children's Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350025, China
| | - Si-Yin Fu
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical College/900th Hospital of the Joint Logistic Support Force, Fujian Medical University, Fuzhou, 350025, China.,Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, China
| | - Xiu-Zhu Su
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical College/900th Hospital of the Joint Logistic Support Force, Fujian Medical University, Fuzhou, 350025, China.,Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, China
| | - Yu-Ling Zhong
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical College/900th Hospital of the Joint Logistic Support Force, Fujian Medical University, Fuzhou, 350025, China.,Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, China
| | - Dong-Sheng Chen
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical College/900th Hospital of the Joint Logistic Support Force, Fujian Medical University, Fuzhou, 350025, China. .,Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, China.
| | - Xiao-Zhi Wu
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical College/900th Hospital of the Joint Logistic Support Force, Fujian Medical University, Fuzhou, 350025, China. .,Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, China.
| | - Yi-Qing Zou
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical College/900th Hospital of the Joint Logistic Support Force, Fujian Medical University, Fuzhou, 350025, China. .,Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, China.
| |
Collapse
|
9
|
Li HL, Lin M, Tan XP, Wang JL. Role of Sensory Pathway Injury in Central Post-Stroke Pain: A Narrative Review of Its Pathogenetic Mechanism. J Pain Res 2023; 16:1333-1343. [PMID: 37101520 PMCID: PMC10124563 DOI: 10.2147/jpr.s399258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 04/07/2023] [Indexed: 04/28/2023] Open
Abstract
Central post-stroke pain (CPSP) is a severe chronic neuropathic pain syndrome that is a direct result of cerebrovascular lesions affecting the central somatosensory system. The pathogenesis of this condition remains unclear owing to its extensive clinical manifestations. Nevertheless, clinical and animal experiments have allowed a comprehensive understanding of the mechanisms underlying CPSP occurrence, based on which different theoretical hypotheses have been proposed. We reviewed and collected the literature and on the mechanisms of CPSP by searching the English literature in PubMed and EMBASE databases for the period 2002-2022. Recent studies have reported that CPSP occurrence is mainly due to post-stroke nerve injury and microglial activation, with an inflammatory response leading to central sensitization and de-inhibition. In addition to the primary injury at the stroke site, peripheral nerves, spinal cord, and brain regions outside the stroke site are involved in the occurrence and development of CPSP. In the present study, we reviewed the mechanism of action of CPSP from both clinical studies and basic research based on its sensory pathway. Through this review, we hope to increase the understanding of the mechanism of CPSP.
Collapse
Affiliation(s)
- Hai-Li Li
- Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
| | - Min Lin
- Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
| | - Xing-Ping Tan
- Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
| | - Jiang-Lin Wang
- Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
- Correspondence: Jiang-Lin Wang, Pain Department, The Affiliated Hospital of Southwest Medical University, No. 25 Pacific Street, Luzhou, Sichuan Province, 646000, People’s Republic of China, Tel +8618090880626, Fax +86830-3165469, Email
| |
Collapse
|