1
|
Awuah WA, Ben-Jaafar A, Karkhanis S, Nkrumah-Boateng PA, Kong JSH, Mannan KM, Shet V, Imran S, Bone M, Boye ANA, Ranganathan S, Shah MH, Abdul-Rahman T, Atallah O. Cancer stem cells in meningiomas: novel insights and therapeutic implications. Clin Transl Oncol 2024:10.1007/s12094-024-03728-6. [PMID: 39316249 DOI: 10.1007/s12094-024-03728-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024]
Abstract
Meningiomas (MGs), which arise from meningothelial cells of the dura mater, represent a significant proportion of primary tumours of the central nervous system (CNS). Despite advances in treatment, the management of malignant meningioma (MMG) remains challenging due to diagnostic, surgical, and resection limitations. Cancer stem cells (CSCs), a subpopulation within tumours capable of self-renewal and differentiation, are highlighted as key markers of tumour growth, metastasis, and treatment resistance. Identifying additional CSC-related markers enhances the precision of malignancy evaluations, enabling advancements in personalised medicine. The review discusses key CSC biomarkers that are associated with high levels of expression, aggressive tumour behaviour, and poor outcomes. Recent molecular research has identified CSC-related biomarkers, including Oct-4, Sox2, NANOG, and CD133, which help maintain cellular renewal, proliferation, and drug resistance in MGs. This study highlights new therapeutic strategies that could improve patient prognosis with more durable tumour regression. The use of combination therapies, such as hydroxyurea alongside diltiazem, suggests more efficient and effective MG management compared to monotherapy. Signalling pathways such as NOTCH and hedgehog also offer additional avenues for therapeutic development. CRISPR/Cas9 technology has also been employed to create meningioma models, uncovering pathways related to cell growth and proliferation. Since the efficacy of traditional therapies is limited in most cases due to resistance mechanisms in CSCs, further studies on the biology of CSCs are warranted to develop therapeutic interventions that are likely to be effective in MG. Consequently, improved diagnostic approaches may lead to personalised treatment plans tailored to the specific needs of each patient.
Collapse
Affiliation(s)
| | - Adam Ben-Jaafar
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | - Jonathan Sing Huk Kong
- School of Medicine, College of Medical & Veterinary Life Sciences, University of Glasgow, Glasgow, UK
| | - Krishitha Meenu Mannan
- School of Medicine, Queen's University Belfast, Dentistry & Biomedical Sciences, Belfast, UK
| | - Vallabh Shet
- University of Connecticut New Britain Program, New Britain, Connecticut, USA
| | - Shahzeb Imran
- School of Medicine, Queen's University Belfast, Dentistry & Biomedical Sciences, Belfast, UK
| | - Matan Bone
- Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Salford, UK
| | | | | | | | | | - Oday Atallah
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| |
Collapse
|
2
|
Ahirwar K, Kumar A, Srivastava N, Saraf SA, Shukla R. Harnessing the potential of nanoengineered siRNAs carriers for target responsive glioma therapy: Recent progress and future opportunities. Int J Biol Macromol 2024; 266:131048. [PMID: 38522697 DOI: 10.1016/j.ijbiomac.2024.131048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/19/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
Past scientific testimonials in the field of glioma research, the deadliest tumor among all brain cancer types with the life span of 10-15 months after diagnosis is considered as glioblastoma multiforme (GBM). Even though the availability of treatment options such as chemotherapy, radiotherapy, and surgery, are unable to completely cure GBM due to tumor microenvironment complexity, intrinsic cellular signalling, and genetic mutations which are involved in chemoresistance. The blood-brain barrier is accountable for restricting drugs entry at the tumor location and related biological challenges like endocytic degradation, short systemic circulation, and insufficient cellular penetration lead to tumor aggression and progression. The above stated challenges can be better mitigated by small interfering RNAs (siRNA) by knockdown genes responsible for tumor progression and resistance. However, siRNA encounters with challenges like inefficient cellular transfection, short circulation time, endogenous degradation, and off-target effects. The novel functionalized nanocarrier approach in conjunction with biological and chemical modification offers an intriguing potential to address challenges associated with the naked siRNA and efficiently silence STAT3, coffilin-1, EGFR, VEGF, SMO, MGMT, HAO-1, GPX-4, TfR, LDLR and galectin-1 genes in GBM tumor. This review highlights the nanoengineered siRNA carriers, their recent advancements, future perspectives, and strategies to overcome the systemic siRNA delivery challenges for glioma treatment.
Collapse
Affiliation(s)
- Kailash Ahirwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P. 226002, India
| | - Ankit Kumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P. 226002, India
| | - Nidhi Srivastava
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P. 226002, India
| | - Shubhini A Saraf
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P. 226002, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P. 226002, India.
| |
Collapse
|
3
|
Orešković D, Madero Pohlen A, Cvitković I, Alen JF, Raguž M, Álvarez-Sala de la Cuadra A, Bazarra Castro GJ, Bušić Z, Konstantinović I, Ledenko V, Martínez Macho C, Müller D, Žarak M, Jovanov-Milosevic N, Chudy D, Marinović T. Chronic hyperglycemia and intracranial meningiomas. BMC Cancer 2024; 24:488. [PMID: 38632533 PMCID: PMC11022447 DOI: 10.1186/s12885-024-12243-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
Meningiomas are among the most common primary tumors of the central nervous system. Previous research into the meningioma histological appearance, genetic markers, transcriptome and epigenetic landscape has revealed that benign meningiomas significantly differ in their glucose metabolism compared to aggressive lesions. However, a correlation between the systemic glucose metabolism and the metabolism of the tumor hasn't yet been found. We hypothesized that chronic levels of glycaemia (approximated with glycated hemoglobin (HbA1c)) are different in patients with aggressive and benign meningiomas. The study encompassed 71 patients with de novo intracranial meningiomas, operated on in three European hospitals, two in Croatia and one in Spain. Our results show that patients with WHO grade 2 meningiomas had significantly higher HbA1c values compared to patients with grade 1 lesions (P = 0.0290). We also found a significant number of patients (19/71; 26.7%) being hyperglycemic, harboring all the risks that such a condition entails. Finally, we found a significant correlation between our patients' age and their preoperative HbA1c levels (P = 0.0008, ρ(rho) = 0.388), suggesting that older meningioma patients are at a higher risk of having their glycaemia severely dysregulated. These findings are especially important considering the current routine and wide-spread use of corticosteroids as anti-edematous treatment. Further research in this area could lead to better understanding of meningiomas and have immediate clinical impact.
Collapse
Affiliation(s)
- D Orešković
- Department of Neurosurgery, Clinical Hospital Dubrava, Zagreb, Croatia.
| | - A Madero Pohlen
- Department of Neurosurgery, University Hospital de la Princesa, Madrid, Spain
| | - I Cvitković
- Department of Neurosurgery, University Hospital Center Split, Split, Croatia
| | - J F Alen
- Department of Neurosurgery, University Hospital de la Princesa, Madrid, Spain
| | - M Raguž
- Department of Neurosurgery, Clinical Hospital Dubrava, Zagreb, Croatia
| | | | - G J Bazarra Castro
- Department of Neurosurgery, University Hospital de la Princesa, Madrid, Spain
| | - Z Bušić
- Department of Neurosurgery, University Hospital Center Split, Split, Croatia
| | - I Konstantinović
- Department of Neurosurgery, University Hospital Center Split, Split, Croatia
| | - V Ledenko
- Department of Neurosurgery, University Hospital Center Split, Split, Croatia
| | - C Martínez Macho
- Department of Neurosurgery, University Hospital de la Princesa, Madrid, Spain
| | - D Müller
- Department of Pathology, Clinical Hospital Dubrava, Zagreb, Croatia
| | - M Žarak
- Clinical Department of Laboratory Diagnostics, Clinical Hospital Dubrava, Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - N Jovanov-Milosevic
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
- Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, Croatian Institute for Brain Research, University of Zagreb, Zagreb, Croatia
| | - D Chudy
- Department of Neurosurgery, Clinical Hospital Dubrava, Zagreb, Croatia
- Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, Croatian Institute for Brain Research, University of Zagreb, Zagreb, Croatia
| | - T Marinović
- Department of Neurosurgery, Clinical Hospital Dubrava, Zagreb, Croatia
- Department of Neurology and Neurosurgery, Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| |
Collapse
|
4
|
Korte B, Mathios D. Innovation in Non-Invasive Diagnosis and Disease Monitoring for Meningiomas. Int J Mol Sci 2024; 25:4195. [PMID: 38673779 PMCID: PMC11050588 DOI: 10.3390/ijms25084195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/26/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
Meningiomas are tumors of the central nervous system that vary in their presentation, ranging from benign and slow-growing to highly aggressive. The standard method for diagnosing and classifying meningiomas involves invasive surgery and can fail to provide accurate prognostic information. Liquid biopsy methods, which exploit circulating tumor biomarkers such as DNA, extracellular vesicles, micro-RNA, proteins, and more, offer a non-invasive and dynamic approach for tumor classification, prognostication, and evaluating treatment response. Currently, a clinically approved liquid biopsy test for meningiomas does not exist. This review provides a discussion of current research and the challenges of implementing liquid biopsy techniques for advancing meningioma patient care.
Collapse
Affiliation(s)
- Brianna Korte
- Department of Neurosurgery, Washington University Medical Campus, St. Louis, MO 63110, USA
| | - Dimitrios Mathios
- Department of Neurosurgery, Washington University Medical Campus, St. Louis, MO 63110, USA
| |
Collapse
|
5
|
Biricioiu MR, Sarbu M, Ica R, Vukelić Ž, Kalanj-Bognar S, Zamfir AD. Advances in Mass Spectrometry of Gangliosides Expressed in Brain Cancers. Int J Mol Sci 2024; 25:1335. [PMID: 38279335 PMCID: PMC10816113 DOI: 10.3390/ijms25021335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
Gangliosides are highly abundant in the human brain where they are involved in major biological events. In brain cancers, alterations of ganglioside pattern occur, some of which being correlated with neoplastic transformation, while others with tumor proliferation. Of all techniques, mass spectrometry (MS) has proven to be one of the most effective in gangliosidomics, due to its ability to characterize heterogeneous mixtures and discover species with biomarker value. This review highlights the most significant achievements of MS in the analysis of gangliosides in human brain cancers. The first part presents the latest state of MS development in the discovery of ganglioside markers in primary brain tumors, with a particular emphasis on the ion mobility separation (IMS) MS and its contribution to the elucidation of the gangliosidome associated with aggressive tumors. The second part is focused on MS of gangliosides in brain metastases, highlighting the ability of matrix-assisted laser desorption/ionization (MALDI)-MS, microfluidics-MS and tandem MS to decipher and structurally characterize species involved in the metastatic process. In the end, several conclusions and perspectives are presented, among which the need for development of reliable software and a user-friendly structural database as a search platform in brain tumor diagnostics.
Collapse
Affiliation(s)
- Maria Roxana Biricioiu
- National Institute for Research and Development in Electrochemistry and Condensed Matter, 300224 Timisoara, Romania; (M.R.B.); (M.S.); (R.I.)
- Faculty of Physics, West University of Timisoara, 300223 Timisoara, Romania
| | - Mirela Sarbu
- National Institute for Research and Development in Electrochemistry and Condensed Matter, 300224 Timisoara, Romania; (M.R.B.); (M.S.); (R.I.)
| | - Raluca Ica
- National Institute for Research and Development in Electrochemistry and Condensed Matter, 300224 Timisoara, Romania; (M.R.B.); (M.S.); (R.I.)
| | - Željka Vukelić
- Department of Chemistry and Biochemistry, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Svjetlana Kalanj-Bognar
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Alina D. Zamfir
- National Institute for Research and Development in Electrochemistry and Condensed Matter, 300224 Timisoara, Romania; (M.R.B.); (M.S.); (R.I.)
- Department of Technical and Natural Sciences, “Aurel Vlaicu” University of Arad, 310330 Arad, Romania
| |
Collapse
|
6
|
Wach J, Basaran AE, Arlt F, Vychopen M, Seidel C, Barrantes-Freer A, Müller W, Gaunitz F, Güresir E. CDKN2A/B deletions are strongly associated with meningioma progression: a meta-analysis of individual patient data. Acta Neuropathol Commun 2023; 11:189. [PMID: 38017560 PMCID: PMC10685484 DOI: 10.1186/s40478-023-01690-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/15/2023] [Indexed: 11/30/2023] Open
Abstract
Homozygous CDKN2A/B deletion has been associated with an increased risk of recurrence in meningiomas. However, the evidence is confined to a limited number of studies, and the importance of heterozygous CDKN2A/B deletions remains insufficiently investigated. Hence, the present meta-analysis reconstructs individual patient data (IPD) and reconstructs the probabilities of progression-free survival (PFS) stratified by CDKN2A/B status. IPD of PFS rates were extracted from published Kaplan-Meier plots using the R package IPDfromKM in R studio (RStudio, Boston, MA, USA). Reconstructed Kaplan-Meier Plots of the pooled IPD data were created. One-stage and two-stage meta-analyses were performed. Hazard ratios (HR) were used as effective measures. Of 181 records screened, four articles with 2521 participants were included. The prevalence of homozygous CDKN2A/B deletions in the included studies was 0.049 (95% CI 0.040-0.057), with higher tumor grades associated with a significantly greater proportion of CDKN2A/B deletions. The reconstructed PFS curves for the pooled cohort showed that the median PFS time of patients with a CDKN2A/B wild-type status, heterozygous or homozygous CDKN2A/B deletion was 180.0 (95% CI 145.7-214.3), 26.1 (95% CI 23.3-29.0), and 11.00 (95% CI 8.6-13.3) months, respectively (p < 0.0001). Both hetero- or homozygous CDKN2A/B deletions were significantly associated with shortened time to meningioma progression. One-stage meta-analysis showed that hetero- (HR: 5.5, 95% CI 4.0-7.6, p < 0.00001) and homozygous CDKN2A/B deletions (HR: 8.4, 95% CI 6.4-11.0, p < 0.00001) are significantly associated with shortened time to meningioma progression. Multivariable Cox regression analysis of progression in a subgroup with available covariates (age, sex, WHO grade, and TERT status) and also two-stage meta-analysis confirmed and validated the results of the one-stage analysis that both heterozygous and homozygous CDKN2A/B deletions are of prognostic importance. Further large-scale studies of WHO grade 2 and 3 meningiomas are needed to validate the importance of heterozygous CDKN2A/B deletions with consideration of established factors.
Collapse
Affiliation(s)
- Johannes Wach
- Department of Neurosurgery, University Hospital Leipzig, 04103, Leipzig, Germany.
| | - Alim Emre Basaran
- Department of Neurosurgery, University Hospital Leipzig, 04103, Leipzig, Germany
| | - Felix Arlt
- Department of Neurosurgery, University Hospital Leipzig, 04103, Leipzig, Germany
| | - Martin Vychopen
- Department of Neurosurgery, University Hospital Leipzig, 04103, Leipzig, Germany
| | - Clemens Seidel
- Department of Radiation Oncology, University Hospital Leipzig, 04103, Leipzig, Germany
| | | | - Wolf Müller
- Department of Neuropathology, University Hospital Leipzig, 04103, Leipzig, Germany
| | - Frank Gaunitz
- Department of Neurosurgery, University Hospital Leipzig, 04103, Leipzig, Germany
| | - Erdem Güresir
- Department of Neurosurgery, University Hospital Leipzig, 04103, Leipzig, Germany
| |
Collapse
|
7
|
Halabi R, Dakroub F, Haider MZ, Patel S, Amhaz NA, Reslan MA, Eid AH, Mechref Y, Darwiche N, Kobeissy F, Omeis I, Shaito AA. Unveiling a Biomarker Signature of Meningioma: The Need for a Panel of Genomic, Epigenetic, Proteomic, and RNA Biomarkers to Advance Diagnosis and Prognosis. Cancers (Basel) 2023; 15:5339. [PMID: 38001599 PMCID: PMC10670806 DOI: 10.3390/cancers15225339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Meningiomas are the most prevalent primary intracranial tumors. The majority are benign but can undergo dedifferentiation into advanced grades classified by World Health Organization (WHO) into Grades 1 to 3. Meningiomas' tremendous variability in tumor behavior and slow growth rates complicate their diagnosis and treatment. A deeper comprehension of the molecular pathways and cellular microenvironment factors implicated in meningioma survival and pathology is needed. This review summarizes the known genetic and epigenetic aberrations involved in meningiomas, with a focus on neurofibromatosis type 2 (NF2) and non-NF2 mutations. Novel potential biomarkers for meningioma diagnosis and prognosis are also discussed, including epigenetic-, RNA-, metabolomics-, and protein-based markers. Finally, the landscape of available meningioma-specific animal models is overviewed. Use of these animal models can enable planning of adjuvant treatment, potentially assisting in pre-operative and post-operative decision making. Discovery of novel biomarkers will allow, in combination with WHO grading, more precise meningioma grading, including meningioma identification, subtype determination, and prediction of metastasis, recurrence, and response to therapy. Moreover, these biomarkers may be exploited in the development of personalized targeted therapies that can distinguish between the 15 diverse meningioma subtypes.
Collapse
Affiliation(s)
- Reem Halabi
- Department of Biological and Chemical Sciences, Lebanese International University, Beirut 1105, Lebanon;
| | - Fatima Dakroub
- Department of Experimental Pathology, Microbiology and Immunology and Center for Infectious Diseases Research, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon;
| | - Mohammad Z. Haider
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (M.Z.H.); (A.H.E.)
| | - Stuti Patel
- Department of Biology, University of Florida, Gainesville, FL 32601, USA; (S.P.); (N.A.A.)
| | - Nayef A. Amhaz
- Department of Biology, University of Florida, Gainesville, FL 32601, USA; (S.P.); (N.A.A.)
| | - Mohammad A. Reslan
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107, Lebanon; (M.A.R.); (N.D.); (F.K.)
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (M.Z.H.); (A.H.E.)
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA;
| | - Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107, Lebanon; (M.A.R.); (N.D.); (F.K.)
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107, Lebanon; (M.A.R.); (N.D.); (F.K.)
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers (CNMB), Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Ibrahim Omeis
- Hammoud Hospital University Medical Center, Saida 652, Lebanon
- Division of Neurosurgery, Penn Medicine, Lancaster General Health, Lancaster, PA 17601, USA
| | - Abdullah A. Shaito
- Biomedical Research Center, College of Medicine, and Department of Biomedical Sciences at College of Health Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|